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Large-momentum effective theory allows extraction of hadron parton distribution functions in lattice
QCD by matching them to quark bilinear matrix elements of hadrons with large momenta. We calculate the
matching kernels for the unpolarized, helicity, and transversity-isovector parton distribution functions and
skewless generalized parton distributions of all hadrons in the hybrid-regularization-invariant momentum
subtraction (RI/MOM) scheme. This renormalization scheme uses RI/MOM when the Wilson line length is
less than z, otherwise a mass subtraction scheme is used. By design, the nonhybrid scheme is recovered as
z, — oo. In the opposite limit, z; — 0, the self-renormalization scheme is obtained. When the parameters
pR=0 and uRz; < 1, the hybrid-R/MOM scheme coincides with the hybrid-ratio scheme times
the charge of the PDF. We also discuss the subtlety related to the commutativity of Fourier transform

and e expansion in the MS scheme.
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I. INTRODUCTION

Parton distribution functions (PDFs) describe fundamen-
tal structures of hadrons in terms of distributions of quarks
and gluons. There are many midenergy facilities around the
world trying to determine these structures and their three-
dimensional generalizations such as at Brookhaven and
Jefferson Laboratory in the United States, GSI in Germany,
J-PARC in Japan, and a future electron-ion collider (EIC)
[1]. The knowledge learned can be applied to searches of
physics beyond the Standard Model in energy-frontier
experiments like the LHC.

Large-momentum effective theory (LaMET) [2,3] ena-
bles computation of the Bjorken-x dependence of hadron
PDFs on a Euclidean lattice. It is complementary to
experiments especially in kinematic regions that are diffi-
cult to access in experiments. LaMET relates equal-time
spatial correlators, whose Fourier transforms are called

109222064 @ntu.edu.tw
“jwc@phys.ntu.edu.tw

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2022/106(1)/014507(19)

014507-1

quasi-PDFs, to PDFs in the limit of infinite hadron
momentum. For large but finite momenta accessible on a
realistic lattice, LaMET relates quasi-PDFs to physical ones
through a factorization theorem, the proof of which was
developed in Refs. [4-6].

Since LaMET was proposed, a lot of progress has been
made in the theoretical understanding of the formalism
[5,7-67]. The method has been applied in lattice calcu-
lations of PDFs for the up and down quark content of the
nucleon [20,26,27,29,64-66,68-78], = [79-83], and K [81]
mesons, and the A™ [84] baryon. Despite limited volumes
[75,85] and relatively coarse lattice spacings, previous
state-of-the-art nucleon isovector quark PDFs, determined
from lattice data at the physical pion mass [71,72] and the
physical-continuum limit (i.e., with continuum extrapola-
tions at physical pion mass) [86] have shown reasonable
agreement with phenomenological results extracted from
the experimental data. Encouraged by this success, LaMET
has also been extended to twist-three PDFs [87—89] and
generalized parton distributions (GPDs) [90], as well as
gluon [91-93], strange and charm distributions [94]. It was
also applied to meson distribution amplitudes (DAs)
[21,95-98] and GPDs [99-104]. Attempts have also been
made to generalize LaMET to transverse momentum-
dependent (TMD) PDFs [105-113], to calculate the non-
perturbative Collins-Soper evolution kernel [107,114—117]
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and soft functions [118,119] on the lattice. LaMET also
brought renewed interest in earlier approaches [120—127]
and inspired new ones [128—144]. For recent reviews on
these topics, we refer readers to Refs. [145-150] for more
details.

An essential component in the factorization theorem is
the matching kernel. The matching kernel compensates the
difference between the quasi-PDF and PDF in the UV. The
matching kernel depends on the renormalization scheme
and scale used. While the standard scheme for PDF is MS,
several different schemes for quasi-PDF have been pro-
posed. One natural choice is to use the bare quasi-PDF
regulated by the lattice spacing. However, the kernel has to
be recomputed when different versions of lattice discreti-
zation are used, and the lattice perturbation theory typically
has a slow convergence, not to mention the power diver-
gence in the kernel [23]. Fortunately, using the fact that the
quark bilinear operators are multiplicatively renormalized
in coordinate space, different nonperturbative renormaliza-
tion schemes have been developed, such as the regulari-
zation-invariant momentum subtraction (RI/MOM) scheme
[13,27] and the ratio scheme [131] that will be discussed
in detail in this work. A nice feature of these schemes is
that now the quasi-PDF is renormalized, the dependence
on the lattice discretization and slow convergence of
lattice perturbation theory can be removed by going to
the continuum limit."

Despite the advantage of the RI/MOM and ratio schemes
mentioned above, their renormalization factors or counter-
terms, which, instead of belonging to perturbative UV
physics, have nonperturbative IR contributions as well [63].
To fix this problem, a hybrid scheme was proposed to
change the renormalization to a Wilson line mass sub-
traction scheme when the length of the quark bilinear
operator is longer than a scale z; < 0.3 fm [63].

In this manuscript, we calculate the matching kernels for
the unpolarized, helicity, and transversity isovector PDFs of
all hadrons in the hybrid-RI/MOM scheme in Sec. III C
[63]. (For hadrons with spins less than 1/2, such as the
pions, only the unpolarized PDFs exist.) These matching
kernels are identical to those for generalized parton dis-
tributions (GPDs) in the zero-skewness limit [6]. In this
limit, GPD has a probability-density interpretation in the
longitudinal Bjorken-x and the transverse impact-param-
eter distributions [152] (see also [153]).

This hybrid-RI/MOM scheme uses RI/MOM when the
Wilson line length z < z, and a mass subtraction scheme
when z > z,. By design, the nonhybrid scheme is recovered

IRef. [151] asserted that the continuum limit of RI/MOM for
quasi-PDF might not exist. If confirmed, then our hybrid-RI/
MOM one-loop kernel in Sec. III C, which assumes the existence
of this continuum limit, will no longer be valid. However, the
general procedure on how to convert a nonhybrid matching kernel
in momentum space to a hybrid one can still be applied to any
other hybrid scheme.

as z; — oo. In the opposite limit, z; — 0, the kernel for the
self-renormalization scheme [154] is obtained and shown in
Sec. (III B). Our result suggests that one cannot apply self-
renormalization to the entire range of z; some modification
of the scheme at small z is needed. A popular limit of
hybrid-RI/MOM is to set the parameter pX = 0 such that
the renormalization factor is real. If the parameter u®
further satisfies Agcp < uk < 1/z, then the kernels will
coincide with those in the hybrid-ratio scheme (i.e., ratio
scheme for z < z, and mass subtraction scheme for z > z)
multiplied by the charges of the PDFs as shown in
Sec. III B.

We also discuss the subtlety related to the commutativity
of Fourier transform and e expansion in the MS scheme in
Appendix. This is equivalent to asking whether there is any
difference between computing the matching kernel directly
using the momentum space Feynman rules and computing
it in coordinate space and then transforming to momentum
space. We find that there is an ambiguity in the Fourier
transform of the Inz? term. If we take the prescription of
maintaining quark number conservation to fix the ambi-
guity, then Fourier transform and e expansion indeed
commute in this case. Reference [5] addressed this subtlety
not through identifying the ambiguity but by arguing that
the terms that caused the noncommutativity would not
contribute in the matching provided that both the quark and
antiquark numbers are finite in the PDFs of hadrons.
However, apparently this condition is not always satisfied
in global fits. We find that the condition is actually less
stringent—only the net quark number needs to be finite,
hence is satisfied for all hadrons.

II. REVIEW OF THE SELF- AND HYBRID-
RENORMALIZATION SCHEMES

In this section we review the procedure of hybrid renorm-
alization and matching largely following Refs. [63,154].

We are interested in the quark PDF of a hadron defined
through a hadronic matrix element of a quark bilinear
operator on a light cone,

1

QB(?ZTG)E2IT+(Pll/'/(ff‘)WW(f‘,O)W(O)IP% (1)
where the nucleon momentum is P* = (P°,0,0, P%) and

the superscripts £ are the light cone coordinates
&t = (t£7)/+/2. The flavor index is suppressed since
we study the nonsinglet case where mixing is not consid-
ered. The superscripts B and ¢ indicate that it is a bare
matrix element regularized by d =4 —2e dimensional
spacetime. The Wilson line is a path order (denoted by P)
line integral of the gauge field A

W) = pesp (=ig [ arat@). @
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which makes sure the quark bilinear is gauge invariant. The
Fourier transform of the bare light cone correlator yields a
bare quark PDF,

dé— Pt
¢ (x.e) = / :

S, )

The y* structure in the operator indicates the PDF is

unpolarized. We use ¢gMS(x, ) to express the MS renor-
malized PDF with the renormalization scale pu.

The quasi-PDF g is defined as the Fourier transform of
an equal-time correlator of quark bilinear O

. dzP* . .. ~
Pre= [ Sher Qe @

T

with equal time correlator along the z-direction

0% (2. P, €) = 5 (PIF AW O O)|P). (5)

Note that the yx indices on the right-hand side are not
summed over. The correlator is multiplicative renormalized
[15,24,25]

0°(z.P*.€) = Z¥(z. P*.e,0) Q" (2. P*. i), (6)

where ZX is the renormalization factor or counterterm
defined in a specific scheme X and ji is the renormalization
scale of the quasi-PDF in the X scheme. This provides a
convenient way to convert from one scheme to another.

For a nucleon moving with momentum P* that is much
larger than the nucleon mass M and Agcp, the quasi-PDF
can be related to PDF through a factorization theorem. In
coordinate space, the factorization is [5],

N I T —
O (z.P*. 1) = / daC* (a2, fi, ) / dye™ P gMS(y y)

-1 1
+ O(22M?, 22 Agcp)- (7)

To derive this formula, operator product expansion (OPE)
is used such that the right hand side of Eq. (7) is the sum of
a tower of twist-2 matrix elements with the corresponding
Wilson coefficients renormalized in the X scheme plus
O(z2*Ajep) higher-twist effects. The twist-2 matrix ele-
ments are then further recast into a PDF in coordinate space

shown as a Fourier transform of gM$ above.

In momentum space, the factorization formula is

. . Ldy x S
qX(.x,sz,u):/ —CX(—J’,/J,,M,PZ)‘]MS()M“)

1|y| Yy
M2 Ajep
+O<—,Q—>, (8)
Pz’ P2

where C¥ is the matching kernel in the X scheme [5,9].
The relation between the coordinate space and momen-
tum space matching kernels is

CX(&.y. ji.p. P?)

P? . 1 . 2
_ / 2dZ ezﬁzP" / dae_laz}l CX ((Z, Z/y, ﬂa ,"t) (9)
T -1

Our main focus in this paper is to compute CX either
directly or through C¥. If the scheme X is MS, the ratio or
RI/MOM, CX can be computed in both ways. For the
hybrid scheme, as we will see, computation through CX is
more convenient.

The factorization formula in momentum space is rigor-
ously proven only in the MS scheme [128,148]. However,
we can convert the MS result to other schemes using the
multiplicative renormalization property for the spatial
correlators. The procedure is outlined below.

For an X scheme other than the MS scheme such as the
ratio scheme or the RI/MOM scheme, we can define the
conversion factor by the ratio of the correlators

2 ()= L @GP 2P e )
s Hs QMS(Z,PZ,/;/) ZX(Z,PZ,E‘,ﬂ)

MS ’ (10)

where we have used Eq. (6) and the ¢ dependence in the
renormalization factors ought to cancel. The conversion
factor also converts the coordinate space matching kernel to
a different scheme

Caz. i il p) = Z (2, i ))CYS (a2 ' p). - (11)

Then through Eq. (9), the momentum space matching
kernel of scheme X is obtained.

A. Hybrid scheme

The conversion factor is a ratio of counterterms which
should only have perturbative UV contributions in QCD.
However, we will see an example in Sec. III B whose
conversion factor behaves like 1+ calnz?, with ¢ a
constant. Therefore, the conversion factor becomes non-
perturbative in the IR or large z, which is not desirable.

To fix this problem, a hybrid scheme is proposed [63].
The idea is to change the renormalization scheme at larger z
such that the conversion factor does not grow with z.
A candidate proposed in [63] is the Wilson line mass
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subtraction scheme which argues that the quark bilinear
operator has a divergent structure as C?exp(—dm|z|)
[15,23-25], where C and ém are the vertex and mass
counterterms that can be determined nonperturbatively
using lattice QCD [23,53]. Since power divergence is
absent in dimensional regularization, the counterterm for
the mass subtraction scheme computed in dimensional
regularization only gives a z independent constant.
Similarly, so is the counterterm for the MS scheme.
Therefore the conversion factor for the hybrid scheme is
a constant for large z.

If the conversion factor between the MS and mass
subtraction scheme is simply a constant, perhaps one
can use the mass subtraction scheme for the whole range
of z. As we discussed in Sec. III C for self-renormalization,
while the conversion factor is simple, the matching kernel
has a In 72 dependence at short distance, hence is not ideal.

Hybrid renormalization is to have the best of both worlds
by having mass subtraction at large distance to avoid the
large distance logarithm and having RI/MOM or ratio
scheme in short distance to avoid the short distance
logarithm. The boundary between large and short distance
is denoted as z,, which is tested to be <0.3 fm. Therefore,
the conversion factor between the hybrid scheme and the
MS scheme is

hybrid-X ~ ~
W @z i)

= Z5 (2, . {10z, = |2]) + 25 (25, 1 1)O(|2] = 24),
(12)

where the constant conversion factor for z > z; is fixed by
demanding that the conversion factor is continuous in z.

In the following we called the hybrid scheme using the X
scheme in the short z region the “hybrid-X scheme, such
as the hybrid-ratio and hybrid-RI/MOM schemes.

B. Self-renormalization scheme
as a special hybrid scheme

In Ref. [154], an interesting idea was proposed to use
the coordinate-space correlators of multiple lattice spacings
to determine the counterterms. It was called “self-
renormalization”.

The self-renormalization counterterm is parametrized
with explicit dependence on the lattice spacing a [154],

2z a) = exp [a In(aAqcp)

3Cr. (In(1/(aAqep))
* by ln< ln(ﬂ/AQCD) >

+In <1+m>]. (13)

+moz + f(z)a

Motivated by the mass subtraction scheme, the first two
terms are the linear divergent and finite parts of the mass
counterterm, the third term is the discretization error, and
the last two terms come from resumming the z independent
logarithmic divergence. This form describes the test data
well in Ref. [154]. At large z, no large In z> appears since
the logarithmic divergence is z independent. At small z, the
constant MS counterterm is also built in.

The construction of self-renormalization is similar to the
mass subtraction scheme used in the hybrid renormaliza-
tion at large z. It can be considered as a special case of the
hybrid renormalization with z; = 0. With the same argu-
ment, the conversion factor is a constant

self ~ T
ZE (2. i) = g. (14)

where the constant g can be fixed by the charge of the PDF
at z = 0.

C. The hybrid-ratio scheme as a special case
of the hybrid-RI/MOM scheme

In the RI/MOM scheme [13,27], the bare coordinate-
space matrix element can be renormalized nonperturba-
tively by demanding that the counterterm cancels all the
loop contribution for the matrix element of an off shell
quark state,

0% (z. p*.¢)
ZRI/MOM(Z, p%, 6,,MR) PPt p =1,
= 08(z. P € = 0)] e = €777, (15)

where a subscript ¢ indicates the matrix element is for a
quark state and p* is the quark momentum. After renorm-
alization, the UV divergence vanishes so one can talk
e — 0. Here we study the nonsinglet quasi-PDF so there is
no mixing to the gluon quasi-PDF. The UV divergence
appears in the Wilson coefficients of an OPE and is
independent of the external state, hence one can choose
to evaluate the counterterm using a quark state. The quark
off-shellness uz > Adcp. hence the counterterm ZR/MOM

can be computed perturbatively. The off-shellness intro-
duces a gauge dependence in the matrix element and
typically Landau gauge is employed on the lattice.
However, as we argue below Eq. (17), the off shellness
drops out when p%z> — 0—a condition employed in the
hybrid-RI/MOM scheme. Also, the offshellness behaves
like an effective mass, hence the y’ operator is no longer
protected by chiral symmetry. A projection to the ¥’
structure is implied in Eq. (21).

In the hybrid-RI/MOM scheme, RI/MOM is applied for
7 <z, If p% =0, then
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05(z.0,¢)
ZRI/MOM(Z’ 0’ e, ﬂR)

~ 1. (16)

2,2
P __#R‘Z<ZS

If we also have z,up < 1, then similar to Eq. (15),

ZRUMOM (7.0, ¢, ug) = 08(2.0.€)],,,, o + O(u32?)
0%(z.0.¢)
—
| Zmio(z ¢)

+ O(uzz?)

zpur—0

+ O(uzz?®).- (17)

In the first line of Eq. (17), the dimensionless ZR/MOM
depends on z, pg, and Agcp. Agep can be dropped since
Mz > A§cp. Therefore, the only dimensionless combina-
tion is zug. The zur — O limit implies: (a) In momentum
space, the parton momentum p* > ug. The system is
effectively on-shell because the up off shellness is negli-
gible for highly-relativistic partons. (b) In coordinate space,
the quark matrix element is effectively a local matrix
element because z < 1/ug. This matrix element is related
to a local hadron matrix element in the second line with ¢
the charge of the PDF. For the unpolarized PDF, g = 1. In
the last line, we use the definition of the ratio scheme to
rewrite the zero-momentum hadron matrix element as the
counterterm.

The above arguments show that the hybrid-RI/MOM
scheme will be, up to a charge, identical to the hybrid-ratio
scheme in the limits of

1
pr =0, 18z, K —<K (18)
MR QCD
This connection was first mentioned in passing in Ref. [63].
We have computed the hybrid-ratio kernels for proton
isovector PDFs and explicitly verified that they can be
|

(1 ~
QE/eZtex(L pz7 €, ,M) =

e€~2¢ d
~ (1) 1 _ d%k o
Qsail(z’ pz’e’ﬂ) - 2pt I/t(p) / (Zﬂ)d {(lgT yt)

i(p*
€~2e d
~ (1) L d’k
Qtadpole(zv pz,e,,u) - 2p! u(p)/W(_gz)CF},
A (1) 7z . :_aSCF L_i —ipz
Oy.(z. P76 1) y <€UV )

e ; o
ﬂ, ﬁ(p)/%(—iﬂ“yﬂ) LS

reproduced by taking p3 = 0 and i < p* to their corre-
sponding hybrid-RI/MOM kernels. The gauge dependence
disappears under this limit as expected.

III. MATCHING FACTOR OF QUASI-PDF
IN THE HYBRID SCHEME

A. Purely MS to MS matching

In this section, we reexamine the one loop calculation of
the matching between the MS renormalized quasi-PDF and
the MS renormalized light cone PDF following the steps of
Ref. [5]. We focus on the unpolarized-isovector quark
quasi-PDF in dimensional regularization with spacetime
dimension d = 4 — 2e¢. For this flavor nonsinglet channel,
mixing is not important so we dropped the flavor indices in
the following discussion. The Dirac structure in the quark
bilinear is chosen to be y’ which is typically used on the
lattice to avoid mixing due to discretization induced chiral
symmetry breaking [14,15,28]. Here we choose the exter-
nal quark state to be on shell and massless. The UV and IR
regulators are eyy > 0 and e < 0, respectively [5]. We
express the bare quasi-PDF of a quark state with a subscript
g as O5. In the loop expansion,

08(z, p*. i e) = 0z, p*) + OW(z, pi. i, €) + O(a3),
(19)

with the tree-level term
Q(O)(Z,pz) — omir'z, (20)

In Fig. 1, the one loop diagram of the quasi-PDF is shown.
The diagrams are called the vertex (left), sail (middle two),
and tadpole (right) diagrams. The one-loop contribution to
the nonsinglet bare-quark quasi-PDF from each diagram is
derived as below in the Feynman gauge [5],

. a.U _lg v —ik?
4 P(_ZQT 4 )(p _";()2 u(p)e kz’
—ip®z —ik® lk . a. U _lg v
71,(1)2 e (e7Pi — ¢ kz)5?ﬁ<_lgT 4 )(p—Pllc)T
y y i
(e et ),

(1)

where 1 = e7* /4x is for further convenience of MS subtraction, the Q‘(wa stands for the one-loop quark wave function
renormalization contribution and ji is the renormalization scale for the quasi-PDF. After the loop integral and the e
expansion, the total one-loop contribution reproduces the result of Ref. [5],
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z z

FIG. 1.

Pl A

0W(z, p*.ji.€)

z z

R

Y|P P| A Y|P

Nonsinglet quark quasi-PDF Feynman diagrams at one loop; the vertex (left), sail (middle two), and tadpole (right) diagrams.

a,Cr (3 /1 2z’ . 1 2z
- 241 1)eire 4 [(—— -1 ~1
2 {2 (eUV e )T T Ty T Mae

3 . 1 S S —ip’z_2' 2, ,—Ip°zZ o
X <_e—lp~z + +ipz—e — Ip=ze _2e—zp~z(r*(0’ ipzz) +]/E+1n(—lpZZ))>
2 °ps
21 —ip*z—e 7%y . 11 1
+ +4ipize” 'L F Jiptzl g, 22
Zng P 343 |:2 ) P ( )

where ,F_is a hypergeometric function. ['(a,b) is the
incomplete gamma function defined as

(a,b) = / " e, (23)
b

Now we can extract the counterterm from the bare quasi-
PDF,

~— Cr3 1
IMS(ge) =1+ 552 0 L 0(a?). 24
meo=1+% L row@. (4

After renormalizing Eq. (22) with Eq. (24), the matching
factor between the MS quasi-PDF to MS PDF can be
obtained by either performing a Fourier transform then
using Eq. (8) to obtain the kernel in momentum space, or
using Eq. (7) to obtain the matching kernel in coordinate

space then using Eq. (9) to the momentum space. For MS to

MS matching, these two approaches are equivalent. But for
the hybrid to MS matching, the latter one is simpler.

A more subtle issue is how to deal with the Fourier
transform of Inz?, which appears after the ¢ expansion.
This Fourier integral is not well defined. This raises the
question whether one will obtain the same result for
(a) computing the matching kernel directly using the
momentum space Feynman rules and (b) computing the
matching kernel in coordinate space then Fourier transform
to the momentum space. Route (a) is to take the Fourier
transform before ¢ expansion while route (b) follows the
reversed order. So the question reduces to whether the
Fourier transformation and the e expansion commute. Our
answer is yes, as what was asserted in Ref. [5], but based on
different arguments. We summarize our finding below. The
details of our investigation can be found in Appendix.

The MS to MS matching kernel in momentum space
is [5]

e ;)““L(A)“""] 1
(1—5 MET ) ) T\ ) -
Ms( e H\ _ aCr ) (1ee2, @ —g)) — ) O
C <5vﬁ>5(1—§)+7 (1—5( In3épr +Indé(1 - ¢)) — >+(l)’ et
_MB 43 )[_m'ol—( : )[_mm
( el — Ity +(1) 2028/ (-0’ <0

+a§? (%1“4;2103 +§) <5(1 ~ _% ((1 —15)25+<1 16) ’ (5—11)25+ (51 1))) POl

014507-6



ONE-LOOP HYBRID RENORMALIZATION MATCHING KERNELS ...

PHYS. REV. D 106, 014507 (2022)

where 5 (1/x) is the delta function [please see an example
in Appendix A 3] with the argument being positive and the
plus function is defined as

vt = [Caw ). o

with

[ axtresot = [ axr o) - stoo))

— lim / dxf(x)(g(x) = g(1/p)).

p=0% Jp
(27)

Quark number conservation is formally preserved because
[ deCMS = 1.

In Ref. [5], same expression as Eq. (25) is obtained if
Fourier transform is performed before the ¢ expansion.
However, a different expression, which does not preserve
quark number, is obtained if the ¢ expansion is performed
first. This is because the coordinate space correlator Q) (z)
in Eq. (22) has a In z> dependence after the € expansion. So,
it does not vanish as z — 0. However, if z = 0 is taken
before the integration in Eq. (21), then vector current
conservation yields Q(!)(z = 0) = 0. Therefore, the z — 0
limit in Eq. (22) is not continuous.

At one loop, we follow the method of Ref. [5] and recast
In 72 as a derivative of a power law in Eq. (A9), which has a
similar structure as resumming large logarithms and allows
the Fourier transform being carried out. However, as shown
in Eq. (A10), there is an ambiguity in this approach which
caused the noncommutativity of the Fourier transform and
€ expansion in Ref. [5]. One can take the prescription of
maintaining the formal quark number conservation to fix
the ambiguity. By doing this, the commutativity of Fourier
transform and e expansion is also restored and the kernel
yields the result of Eq. (25).

Reference [5] found, however, that the terms that caused
the noncommutativity of Fourier transform and e expansion
did not contribute in the matching. Hence, effectively these
problems disappeared. In Appendix A 3, we reexamine
how these terms, which are proportional to ¢ functions at
infinite |&[, behave in the matching. We find that as long as
the PDF’s in the matching have finite net quark numbers,

|

then these & functions do not contribute in the matching.
Reference [5] also reached a similar conclusion. However,
their conclusion was based on the requirement that both the
quark and antiquark numbers, instead of the net quark
number, were finite in the PDF’s of hadrons. This is not
supported in global fits. However, despite of the defect,
their conclusion is still correct.

The fact that terms proportional to § functions at infinite
|é| have no contribution in the matching has a profound
implication. After dropping these terms, quark number is
no longer conserved in Eq. (25). This contradicts with the

quark number conservation relation [dECMS = 1. The
contradiction arises from integrating Eq. (A12) over & If
B — 07 limit is taken before the integration, as it should be,
then the integral is zero. However, if the integration is
carried out first, then the integral is finite. Therefore, we
conclude that the MS to MS matching kernel in Eq. (25)
does not conserve the quark number after all. Fortunately,
this problem is fixed in the schemes of RI/MOM, ratio, and
their corresponding hybrid versions, such that quark
number is conserved in these schemes.

B. Ratio and hybrid-ratio schemes

Now we move on to the ratio scheme to MS scheme
matching, then work out the hybrid-ratio scheme to MS
scheme matching.

Using Eq. (17), the ratio scheme renormalization
factor is

Zm(z,1,€) = Q8 (z,p* =0,€)

aCr( 2 3
+—In
2 3€UV 2 46_2“5

~2.2 5
£ +2> +(’)(a%)

(28)

—1+

Using Egs. (10), (24), and (28), _the conversion factor

between the ratio scheme and the MS scheme becomes
Cr (3, @72 5

= - BF (—1 g2 +5> +0@?). (29)

ti ~
Ais (2o F) 2 \2 " de
Then from Eq. (11) and the fact that CMS = §(1 — a)+

O(ay), the matching factor between the ratio to MS scheme
in coordinate space is

~2 o '
Cratio (a, z%{%) = CMS(q, 224?) + (Z%"(z,ﬂ) - 1)8(1 —a) + O(a?)

MS A CF

3. @5

= CMS(q, 2242

Therefore, using Eq. (9), the ratio scheme to MS scheme matching factor in the momentum space is

014507-7
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E>1,

ratio ﬂ _ Ay CF 1+&2 [0.1] 5

ct (5,)?)5(1—5)-#—2” <1 ( In sz+ln4§(l cf)—l>+1+2(1 5)) ) 0<é<1,+0(a2), (31)
4210 =€ _q 3 (ool 0
—Te T oy o £<0.

where we have added the subscript ' to mark it as an
unpolarized case. This is identical to the result of Ref. [146].
The & functions at infinity |£|, which show up in CMS in
Eq. (25) are now canceled. This is expected because the
1/eyy divergence is canceled in the ratio scheme and so are
the associated In z? terms in short distance in the coordinate
space and the & functions at infinity |£| in the momentum
space. More explicitly, in Eq. (22), the first Inz> term
associated with the 1/eyy is canceled by the counterterm,
while the second In z? term associated with the 1/eg has a
vanishing prefactor as z — 0. Therefore, without the In z?
term at small z, the z — 0 limit becomes smooth which in
turn implies manifest quark number conservation.
Despite this nice feature in the ratio scheme, in Eq. (29)
the scheme conversion factor Z%O contains a In z2ji> term
|

22 H

a2, zgh;) OV (a, 2% + (222

Chybrid—ratio (

~2

_ (matio (a, 22, :“_2
u
or

~2

Chybrld-ratlo <a7 22/12, Z%ﬂ R

hybrid-ratio

~2

2 M_) _Cratio(a Zﬂ
H H

at one loop which becomes nonperturbative in IR (or large
z). However, the conversion factor is a ratio of counterterms
which should only have perturbative UV contributions.
Reference [63] argued that this was a drawback of the ratio
scheme which could be remedied by the hybrid scheme to
change the renormalization scheme at large z to a Wilson
line mass subtraction scheme. Then as shown in Eq. (12),
the corresponding conversion factor becomes

hybrid-ratio
MS

(z.25. 1) =

ratio ~
230z, 1)0(z — |2])

Tz 62 - 2,). (32)

And the matching factor of the hybrid-ratio scheme in the
coordinate space is

(z.71) = 1)8(1 — ) + O(3).

) + (Z30 (7, 1) = Z250(2, 1))6(|2| = 2,)8(1 = @) + O(a3),  (33)

3aSCF
4

)+5(1—a) In i—z (|z] = z5) + O(a?). (34)

2

Quark number conservation is manifest in this expression since, as mentioned above, C"™ itself conserves quark number,
and the second term vanishes as z — 0 due to the 8 function. Then using Eq. (9) and the steps detailed in Appendix A 4, the
matching factor of the hybrid-ratio scheme to MS scheme in the momentum space is

hybrid-ratio . M atio i 3a,Cr 1 2Si((1 = &)|y|z,P?) 7o) )
t 3 5PM’ s - 1 3 - s
(o) = (o) 5 et ™ e )y O
1482 ¢ [1.c0]
rlngg+1 , E>1
+(1)
aCr ) (112 (0.1
=5(1-&+ = ln2P2+ln4§(1—§)—1 +1 , 0<é<
27 (1)
[~0.0]
5 In=-1 , <0
+(1)
i((1 — Pz [~o0,00]
27 (1-9) +(1)
014507-8
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where we have added the y' subscript for the unpolarized
PDF and the plus function is for the & variable only—
it has no effect on the |y| factor. Si(x) is the sine integral

defined as
t
x) / sin

The one-loop correction of the matching kernel in Eq. (35)
is written in plus functions; hence, quark number con-
servation is manifestly satisfied. This kernel in Eq. (35),
however, differs from the one of Ref. [63] in the last term
although both derivations agree on Eqgs. (34) and (9).
Reference [63] has

(36)

3asCF Sl((l B f)yZ\PZ)
21 (1l =¢)

instead. In addition to the difference between y and |y|
in the argument of the Si function, quark number con-
servation is violated in the expression of (37) but is
preserved in (35).

In the upper panel of Fig. 2, the matching formula of
Eq. (8) and the one-loop matching factors derived in

(37)

hybrid-rati a,C 142
e G SRR = (i(‘

Eq. (31) and Eq. (35) are used to yield the corresponding
quasi-PDFs in the ratio scheme and the hybrid-ratio
scheme. The input PDF is from the global fit of the
CTEQ-JLab Collaboration(CJ12)[155] and the parameters
used are a; =0.283, P, =15 GeV, and u =3 GeV.
Different values of z; are shown for the hybrid-ratio
scheme. Formally, the ratio scheme is corresponding to
the z;, — oo limit of the hybrid-ratio scheme. However,
a <z, <03 fm, with a the lattice spacing, is recom-
mended to avoid large discretization errors and higher-twist
contaminations [63]. We see the z, = 0.3 fm curve is quite
close to the ratio scheme curve already. Reducing z;
tends to increase the small and positive x part while
making the larger |x| part more negative. In the lower
panel, the difference between the z; = 0.3(0.05) fm and
ratio curve is shown in the left(right) figure. The area
of the curve is zero by quark number conservation.
However, larger range of x is needed for smaller z, for
the integration. (Note that the ranges of x for the two figures
are different.)

Analogous to the unpolarized case in Eq. (35), the matching
factors of the hybrid-ratio scheme to MS scheme in the
momentum space for helicity and transversity cases are

E>1

- [0,1]
1ny§—;+1n4§(1—§)>+%) L 0<gE<1
’ +(1)

1+§2 _5 [_00’0]
- 1-¢ ln]__§ - ) 5 < 0
+(1)
3a,Cr (Si((l - é)lylzsPZ)>[‘°°~°°]
+ +0(a7), (38)
27> (1=¢) ()
and
2 c [1,00]
1—_§ln§_—1 ) E>1
+(1)
Chybrld -ratio 2 /4 o (ISCF 2 I _ B (0,1]
gr &, yz, P%, =6(1-¢&)+—— = ln,2g+ln4§(1 &H—-1 , O0<é<1
yP? 2r yop; )
_ﬂln é) [~0,0] 5 -0
IRV
2a,Cy (Si((l - é)ylzsPZ)> [=o0.c0}
+0@), (39)
n° (1-9¢) ()

with g4 = 1.275 and g; = 0.99(4) [157].

The above hybrid-ratio results are computed with on shell external quark states with dimensional regularization. The
gauge invariant IR regulator ejr is used such that the results are gauge invariant. We have verified that these hybrid-ratio
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— CTEQ6

— 7,=0.3fm
— 2,=0.1fm
—— 25=0.05fm

— Ratio

g Ag(x
2300 8300
0.4 0.6

0.2 0.4
— 73=0.3 fm — 2s=0.05 fm
0.2

-3 = —7 2 X

-1.0

FIG. 2. Upper panel: unpolarized isovector proton quasi-PDFs in the ratio scheme and the hybrid-ratio scheme with varies z; values
computed with the one-loop matching formula. The inputs are the CTEQG6 global fit [156], a; = 0.283, P, = 1.5 GeV, and ¢ = 3 GeV.
The hybrid-ratio curves coincide with the hybrid-RI/MOM curves with p = 0. Lower panel: the difference between the z;, =
0.3(0.05) fm and ratio curve is shown in the left(right) figure. The area of the curve is zero by quark number conservation.

kernels coincide with the hybrid-RI/MOM ones of Sec. III C in the limits of pj — 0 and up < p* (the order of taking the
limits does not matter). We have also verified that the gauge dependence in the hybrid-RI/MOM kernels due to the off-shell
quark IR regulators disappears after the IR singularities are canceled between PDF’s and quasi-PDF’s.

C. Hybrid-RI/MOM scheme
The momentum-space matching kernel between the RI/MOM quasi-PDF and MS PDF in one loop is

CRMOM (&, y, P, i, piaain) = 6(1 =€) + CE(E,y, P2 i) + Co e OV (&, P2 Ji, paspi) + O (), (40)

with " = y', y%y5, y¥*y* for the unpolarized, helicity, and transversity PDF’s respectively. These functions can be found in
Refs. [66,158]. They are derived in Landau gauge which is typically employed on the lattice and minimal projection
described in Ref [158]. The part associated with the bare quasi-PDF is

<l+§21ni+ 1)[1,001 > 1
1—& e )
+(1)
~ [0,1]
CB (.. P ) = 22 <"2 (-ln,z"—;+ln4é<1 - 1) N 1) L o0<e<l
r 2 Yy ()
_1+§21 = _ (=00 0] 0
-z N7 , &<
+(1)
<1+52 In2 + 1>[1'm] E>1
1-¢ é-1 ’
+(1)
. oC 2 2 e 2\ [01]
Clys(Eoy Pp) = =55 ('1*-2 (—1n£73+1n4f<1-§>)+%) L 0<g<
+(1)
_l+§21 =< _1 (=00} 0
-¢ N T=g ; £ <
+(1)
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[1.c0]
2
(Eni-nts) ™+t =
+(1)
[0.1]
CE (&, Piji) = ==+ (ﬁ:( In 2p2 +1n45(1-¢) - 1) + 2(11_5)>+(1) —age 0<&<1 (41)
2% 4. & A L 1
~TENET g gEE=k <0
+(1)
The counterterms can be expressed as
z z
- P
CEM e P o) =—| e L (6= 1) 7). “2)
with p* = yP?, r = u3/p%? —i0".
[10]
=372+ 13rx—8x—10rx+8x° —3r+8x—rx+4x? —-1/r=1
( 20—1) (x—1) (r—dx+4x) - T (1) (1) AN 5= 1>+<1)’ x>1
a,Cr [0,1]
h,(x,r) =— 3r+7" 4" 7+ 3’_8’“5/’2”4)‘ tan~'v/r — 1 , 0<x<1
y 5. e (—1)(1—) .
0,—1]
—3r +l%rx 8x2—10rx+8x —3r4+-8x—rx4-4x’ —-1r=1
< D) (r—dds?) | 2= (r=1) @ 2 >+(l) . x<0
[1.oo]
—(1- 2x 2 (2=3r+2x+4rx—12x>+8x%) 2—3r42x2 11
< - (r—1)(r—4x+4x*)? + (r—l)3/;r(x—1)tan 2x— 1> ’ x>1
+(1)
h o asCF 3r+4x —2+3r 2x2 m o.1] 0 1
J,},S(x r) = 2 =17/ (1= )tan r s <x<
2z 1)
oo, 1]
3r—( 1 2x X2 (2-3r+2x+4rx—12x48x%) 23,4242 —1Vr=1
< (1) (r—dx 427 1)1y AN 2’“)+<1> R
3r+8 (=) ER= A L
2(1—x)(r— 4x+4x \/ﬁ(l_x) an =54 W
r(1-2x) 1 —1Vr=1
+ —1)(r— —4x+4x2 ) + (r 1)% tan 2x—1" x> 1
[0.1]
< " tan~'\/r — 1)
aSCF I—X)
hypi(x,1) = o +(1) (43)
-L4 ( 1)3tan‘1\/r—1, 0<x<l
r—1)2
YT 0 N PR/~ )
2(1—x)(r—4x+4x2)  /r=1(1-x) 2x-1 (1)
r(1-2x) 1 —1Vr=1
T =D (r—4x+ax) (r—l)% tan 2x—1" x<0

The analysis is analogous to Eq. (33), but C? in Eq. (40) is not CMS_ It is bare in the quasi-PDF side whose € pole in the

virtual diagram would be canceled by that in CEIT/MOM

transform the counterterm CRI/ MOoM

momentum space.

014507-11
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.. ~RI/MOM
Now we rewrite CCT/ as

P?
.

PRr

z [—o0,0] z
hr,,,<p—(g—1)+1,r)) —’p

PR w1y PR

RI/MOM ~
CCT/J" (f,y,Pz,//t,p%,/lR)——(

h}(ﬁ—;(g— 1+ 1,r> (44)

with Ar , the plus function part and hf- the nonplus function part. Then analogous to Eq. (33), through Eq. (9),
ZRUMOM (7 1% e ug) — 1 = /dr§€"'(‘f_1)yPZZC§IT/,I}4OM(§,y,PZ,/”t,pﬁ,ug)
= —/dxei(l’:}e(l—x))z(hr.p(x, r) + hi(x,r)) —|—/dxhrﬁp(x, r). (45)

Using this we can construct the renormalization factor of hybrid-RI/MOM in coordinate space

ZmOnRIMOM(7) — | — (ZRMOM(2) — 1))z, = |2]) + (ZRVMOM(z,) = 1)6((2]| - z,)
_ (ZRI/MOM(Z) _ ZRI/MOM(ZS))Q(ZS _ |Z|> + (ZRI/MOM(ZS) _ 1)7 (46)

which can be transformed back to momentum space using Eq. (9) again or the reverse of Eq. (45),

fid- Pdz i(E=1)P? id- z
Clé):[!)’rd RI/MOM (s 1y _ / e (e-1)P z(zhybrdRI/MOM <§> _ 1). (47)

This yields

psro . ([ (@0 sin((E < Da P _pIPsin(PE— 1) = phle— D)z, )
ctipe = ([T 5 A L)

o (elIPkEsin((£ = 1)z,|y PZ)) / > o
d h-(x,
! </—oo x< m(&—1) r®7) +(1)

- - X |y|PZ Sin((yPZ(é_ 1) — P%(X— 1))Zs) / X, r
/— ‘ ( a(yPi(é—1) = pi(x— 1)) >hr( 7). (48)

o +1)

[Se]

Finally, the momentum space matching kernel between the hybrid-RI/MOM quasi-PDF and MS PDF at one loop is

CIPrdRIMOM (2 P2 ji o i, 2g) = 8(1 = &) + CE(E,y, P7, i) + CPRMOM (e pi 5 p2 i z,) + O(c2).  (49)

There are some interesting limits for this result:
(1) When p% — 0and pup < p* = yP* (the order does not matter), the result is reduced to the hybrid-ratio result shown
in Eqgs. (35), (38), and (39):

hybrid-RI[/MOM hybrid-rati H
OO ey P i = Ot 25 e = eGP (5, yzeP?, yPZ)’ (50)

where g defined in Eq. (17) is the charge of the PDF. g,» = 1, g,z,, = g4 =~ 1.275, and g,-,. = gy = 0.99(4) [157].
As expected, the gauge dependence disappears in this limit.
(2) When z; — oo, the RI/MOM result is recovered:

hybrid-RI/MOM RI/MOM ~
Cryn / (57y7PZ Zs_’°°: F/ (é,y,PZ,/,l,p%,//lR). (51)

) (52)

s M, P?{?MR? ZS)

(3) When z; — 0, the self-renormalization scheme result is recovered:

hybrid-RI/MOM . NS JZ
CRPaRNMOM (2 3 P2 i, pho, g, 2, = 0) = G (&, y, P2 i, Pl pig) = CMS <§, P
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Note that a nonzero z; is already assumed in Eq. (49)

such that the 1/¢ poles in virtual diagrams in C? will

be canceled by the counterterm CEIT/MOM. For

h_ybn'd—ratio -1
- ~ MS )
The result is CMS. However, CM5(¢) o 1/]€| as
|é] = oo. That means the plus function is not well
defined since the prefactor in front of 5(&—1)
diverges. This suggests that one cannot use self-
renormalization to all range of z and some modifi-
cation of the scheme at small z is needed. Indeed
Ref. [154] has realized this and fits the self-
renormalized matrix element to the MS one only
down to a perturbative z > a. Also, a modified self-
renormalization or hybrid-ratiolike scheme has been
applied to supplement the self-renormalization with
short distance part renormalized in the ratio scheme
[98]. This scheme is implemented to meson DA
computations with the coordinate space matching
kernel derived as well.

z, =0, we can use Eq. (33) and

IV. CONCLUSION

We have calculated the matching kernels for the
unpolarized, helicity, and transversity-isovector parton
distribution functions and skewless generalized parton
distributions of all hadrons in the hybrid-RI/MOM scheme.
This result is connected to lots of special cases. For
example, when z;, — oo, by design, the nonhybrid scheme
is recovered. When z, — 0, the self-renormalization
scheme is obtained. Our analysis suggests that one cannot
use self renormalization to all range of z and some
modification of the scheme at small z is needed. When
the parameters pX = 0 and p%z; < 1, the hybrid-R/MOM
scheme coincides with the hybrid-ratio scheme times the
charge of the PDF. We have also discussed the subtlety

|

related to the commutativity of Fourier transform and e
expansion in the MS scheme.
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APPENDIX A: FOURIER TRANSFORM OF
SINGULAR FUNCTIONS

We demonstrate the equivalence of the one step (i.e.,
performing the kernel computation in momentum space)
and two step (i.e., performing the kernel computation in
coordinate space first then Fourier transforming it to the
momentum space) matching in this Appendix.

We need to show that two operations, the Fourier
transformed and e expansion, commute when acting on
the following function

f(z) = (|zlu)*T(=e),

arising from the integrals in Eq. (21) [11]. The renormal-
ization scale u is added to keep f(z) dimensionless for
NoNZero €.

(A1)

1. Performing the Fourier transform first

The Fourier transform of f(z) yields

Flx) = / % ot p(z) = (2_”> *Tle+3) 1

o P’ VI |xe

with ¢ = zp?. We can further € expand the factor 1/|x|!'+2
by multiplying it by a test function g(x) then performing an
integration [159],

(A2)

| ax ot = [ v im0+ [ vz (o) - l0)

1 1\ [0.1]
= / dx (——é(x) + (—> )g(x) + O(e), (A3)
0 2€IR X +(0)
oo 1 o 1 ) 1
1 dxmg(x) =/, dme(“’) + : dxﬁ@@) — g(0))
/md s (5 (Y g + 0t (A4)
= X — — - X €).
1 2€UV X2 X X +(0) I
Putting them together, we have
0 1 1 1 1 1\ 0.1 1 [1.e0]
I(jCZ)e‘ = —2—5 X —25+ —> <_> + <_> + 0(6) (AS)
X €1R 2€UV X X X +(0) X +(c0)

Therefore, the ¢ expansion of Eq. (A2) becomes
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9= (%
e o ) ()
G (T () el
e 3o ) e )
s3]
0,1 1,00 -1,0 —o0,—1
BB () o

In the MS to MS matching kernel shown in Eq. (25), neither ey nor ez appears because the ey dependent UV divergent
term is removed by renormalization, while the ejg dependent IR divergent term should not contribute to the matching kernel
since the IR divergence of the PDF and the quasi-PDF cancel in the matching kernel. As a result, we obtain the following
contribution in the matching kernel,

7o = [re=m(%5) | [p0 -5 (o (3) + o (-3)]
(@)t G () + () L vew )

2. Performing the ¢ expansion first

zﬂ> *Tie 1) 0(x )= 0

After the ¢ expansion,

£ = = 1 (crp— Iz + O(e), (A8)

€IR

where the eg pole is canceled by the PDF IR singularity in the coordinate space-matching kernel. The Fourier transform of
In z? does not converge. Hence strictly speaking, performing the e expansion before Fourier transform is not well defined.
Nevertheless, it was rewritten as the derivative of a power and computed in Ref. [5],

dzp* e d /dzpZ -
_ A ix 1 202,0E) — | A Lixzpt (52,2 ,ve\N
/Zn'e n(Zue™) dn 27 ¢ (Fper) 2=0

_ [1<u> P TEe1/2) ]
g\ p? ) U(=n) V&  |x|"™]],

— F(). (A9)

Hence Egs. (A7) and (A9) coincide, indicating that Fourier transformation and € expansion commute. However, writing
In z? as a power’s derivative is similar to undoing the e expansion. Hence the agreement is perhaps not a strict test of the
commutativity of the two operations.

It is worth noting that Ref. [5] did not obtain the same result for the integral as Eq. (A9). Hence the commutativity of
Fourier transformation and e expansion was not obtained in that work. This is due to the following ambiguity in the integral.
By separating the logarithm into two terms, we have
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dzp dzp* .. [(ZuPert dzp*
— - plXzp 1 2,2 TE) — — — exp 1 —_ xzp 1 K2
/27re n(@u’er) /2ﬂ'e " 27 ¢ !
~ 1/1 1 1 1
=fx)-nK?|= (56— st{—=1)1 AlO
Fox) = In 2 \x? X +(—x)2 X (A10)

with K a constant. Hence the integral has a § function  first case is the ambiguity in the kernel shown in Eq. (A10),
ambiguity at infinite |x|. Although we argue in the next  which has the structure

subsection that these ¢ functions do not contribute in the

matching formula. It is something worth noticing.

11 1 1 1
SC(E) == |56~ st—-=1]1. All
3. & function at infinite & © 2 [52 <§> " (=¢)?° ( fﬂ (ALD)

In this section we show the & functions at infinite |£| in
the kernel actually do not contribute in the matching. The  Its contribution to the matching is
|

%w(g)q(y) :ﬂli%i leyzyx [5(Y ﬂ) +5<———ﬂ>] (y) = lirqg[q(ﬁx) +q(=px)] =0, (A12)

p—0

where in the last equality we have used the fact that the net quark number [ dxg(x) is finite, therefore, x[g(x) + g(—x)]
x* with @ > 0 as x — 0. Note that Ref. [5] also asserted that these § functions do not contribute to matching because
limy_+ Bq(px) = 0. However, this is not satisfied when the sea quarks have infinite number of quarks and antiquarks but

with the net quark number to be zero, which is the case from global fits. But Eq. (A12) only requires the net quark number in
the hadron is finite.
The second case is the plus function at infinite ||

sc@=(3) " +(-3) (A13)
- \¢ +(0) ) t(co)

whose contribution to the matching is

e 500 e o [5G oA

B Odyy 3 xdyy
[T a0) / S0 (A14)

where we have used lim,_, o+ £ g’ﬁ [q(px) + q(—px)] « p%In B — 0 with a > 0. So for the plus function of Eq. (A13), we
only need to keep the 1/|£| part. The delta-function part can be dropped without any effect in the matching.

4. Derivation of Eq. (35)
To derive from Eq. (34) to Eq. (35), we have the integral

+o0 P2z ei(g—l)sza CF3
o 27 27 2 y2z2

Chybrid-ratio _ Cratio — ‘/_ ) (AIS)

which is not well defined for the integration near z — co. We use the regulator introduced in Eq. (A9) and rewrite
0(|z/y| — z;) = 1 —0(z, — |z/y]) to separate the original integral into two. The first integral is similar to Eq. (A9). The
second integral yields,
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+0o Py e 2P d /+|y|szZa’z e [\
— e Zln—— (0 —|z — | ixPz
/—oo 2 nYZZ?( (== l2/51) ) . 21 y2z2

n=0
L fsi(ylPax) 1) P sin(IyIPzzs(x—%))+Sin(|y|Pzzs(x+%))
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The two integrals yield the combined result,
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where we have used the following identity to form the plus function
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