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The impact of SUð3Þ center vortices on the Landau-gauge gluon propagator is calculated in the presence
of dynamical fermions and compared to the pure Yang-Mills case. The presence of dynamical fermions is
found to alter the behavior of the center vortex propagator when compared to the established pure-gauge
result. The gluon spectral representation is also explored from the center vortex perspective, where center
vortices are shown to exhibit clear signs of positivity violation, which is an indicator of confinement. Vortex
removal subsequently restores positivity, demonstrating the crucial role center vortices play in the
confinement of gluons.
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I. INTRODUCTION

The first step in any lattice calculation is to simulate the
ground state QCD fields that permeate the vacuum. These
fields give rise to the fundamental QCD features of
confinement and dynamical chiral symmetry breaking
resulting in dynamical generation of mass. Naturally, there
has been substantial effort from the community to deduce
what aspect of these fields gives rise to these features.
Techniques have been developed to identify topological
defects such as Abelian monopoles [1,2], instantons [3–6]
and center vortices [7–10] within these ground state fields
that present possible answers to this question. Center
vortices are of particular interest as they offer access to
the most fundamental mechanism that could underpin these
phenomena.
The center vortex picture of QCD has experienced a

renewed interest in recent years due to a host of lattice
results reinforcing their importance in an understanding of
the nonperturbative properties of QCD. The majority of
these studies have been performed in the context of pure-
gauge QCD, where the effects of fermion loops are omitted
from the lattice Monte Carlo procedure. These results have
shown that vortex removal results in a loss of dynamical
mass generation [11–13], loss of string tension [14,15] and
the suppression of the infrared landau gauge gluon propa-
gator [15,16]. Vortices alone have been capable of repro-
ducing the qualitative picture of nonperturbative QCD
through reproduction of the linear static quark potential

[14,17,18], an infrared dominated gluon propagator [16]
and the reintroduction of dynamical mass generation in the
low-lying hadron spectrum [13].
Despite the success of these results, there has been a

persistent quantitative discrepancy between center-vortex
results and those from the original gauge fields on which
the vortices are identified. This manifests in a variety of
ways, most notably in a lower string tension obtained from
the static quark potential [14,17,18], lower hadron masses
in the low-lying hadron spectrum [13] and in residual
infrared strength being retained by the vortex-removed
gluon propagator [16]. The origin of these discrepancies is
as-yet unknown, but they suggest a common property
present in existing vortex studies.
Recently, work has been done to examine the effect of

dynamical fermions on the structure of center vortices and
the corresponding impact on the static quark potential
[19,20]. These results showed for the first time a quanti-
tative agreement between vortex-only results and those
obtained from unmodified gauge fields. These results
motivate further exploration of the relationship between
center vortices and dynamical fermions. Here we continue
this line of investigation by calculating the Landau gauge
gluon propagator on vortex-modified configurations in the
presence of dynamical fermions.
We will also examine the gluon spectral density by

calculating the Euclidean correlator to determine the
presence or absence of positivity violation, as positivity
violation serves as an indicator of gluon confinement [21].
It is well understood that positivity violation in the gluon
and quark propagators is a necessary condition for light-
quark confinement [22]. As such, positivity violation
arising from center vortices serves as a strong indication
that the center vortex mechanism underpins the confine-
ment of physical particles.
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This paper is structured as follows. Section II outlines the
vortex identification procedure on the lattice and describes
the ensembles used in this work. Section III introduces the
gluon propagator and presents the results from our center-
vortex studies. Section IV discusses the notion of positivity
violation and presents results based on an examination of
the Euclidean correlator. Section V will summarize the
findings of this paper.

II. VORTEX IDENTIFICATION

The procedure of center vortex identification on the
lattice is now well established [16,23]. To identify the
“thin” lattice vortices that correspond to the center of
physical “thick” vortices [24,25], it is necessary to bring all
configurations in an ensemble into the maximal center
gauge. This is done by applying a gauge transformation
ΩðxÞ such that the functional

R ¼ 1

VNdimn2c

X
x;μ

jTrUΩ
μ ðxÞj2; ð1Þ

is maximized. This serves to bring every gauge link UμðxÞ
as close as possible to a center element of SUð3Þ, where the
group center is comprised of the three elements propor-
tional to the identity

Z3 ¼ exp

�
m
2πi
3

�
I; m ∈ f−1; 0;þ1g: ð2Þ

A more detailed description of the algorithm used to
perform this updating procedure can be found in Ref. [19].
Once fixed to maximal center gauge, a new ensemble is

constructed by projecting each link onto its nearest center
element. This center-projected configuration is known as
the vortex-only configuration, ZμðxÞ. From this construc-
tion, we also define the vortex-removed ensemble as
RμðxÞ ¼ Z†

μðxÞUμðxÞ. The result of this procedure is three
ensembles:
(1) Original, untouched (UT) fields, UμðxÞ.
(2) Vortex-only (VO) fields, ZμðxÞ.
(3) Vortex-removed (VR) fields, RμðxÞ.

We refer to the latter two collectively as the vortex-
modified ensembles. It is these three ensembles that we
study to determine the impact of center vortices.
For this work, we make use of three original (UT)

ensembles of 200 323 × 64 lattice gauge fields. Two of
these are (2þ 1) flavor dynamical ensembles from the
PACS-CS collaboration [26]. The heaviest pion mass of
701 MeVand lightest pion mass of 156 MeVare chosen to
provide the greatest range of masses to best see the impact
of center vortices as the physical point is approached. The
third ensemble is pure Yang Mills, and provides a reference
point to previous studies. This pure-gauge ensemble has
been tuned to have a similar lattice spacing as the

dynamical ensembles so that finite volume effects should
be similar across all ensembles used in this work. A
summary of the ensemble parameters is provided in Table I.

III. GLUON PROPAGATOR

A. Definition

In the continuum, the momentum-space Landau gauge
gluon propagator is of the form

Dab
μνðqÞ ¼

�
δμν −

qμqν
q2

�
δabDðq2Þ; ð3Þ

where Dðq2Þ is the scalar gluon propagator. On the
lattice, the scalar propagator for p2 ≠ 0 is calculated by
considering [16]

Dðp2Þ ¼ 2

3ðn2c − 1ÞV hTrAμðpÞAμð−pÞi; ð4Þ

where nc ¼ 3 is the number of colors, V is the lattice
volume and AμðpÞ is calculated via the discrete
Fourier transform of the midpoint definition of the gauge
potential [27],

Aμðxþ μ̂=2Þ ¼ 1

2i
ðUμðxÞ −U†

μðxÞÞ

−
1

6i
TrðUμðxÞ − U†

μðxÞÞ þOða2Þ: ð5Þ

As the gauge fields used in this analysis are generated using
the Oða2Þ-improved Iwasaki action [28], the tree-level
behavior of the gluon propagator is improved by making
the substitution [29–31]

pμ → qμ ¼
2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

�
pμa

2

�
þ 1

3
sin4

�
pμa

2

�s
; ð6Þ

where pμ are the usual lattice momentum variables

pμ ¼
2πnμ
aNμ

; nμ ∈
�
−
Nμ

2
;
Nμ

2

�
; ð7Þ

and Nμ is the lattice extent in the μ direction. The tree-level
continuum scalar propagator is then given by Dðq2Þ ¼ 1

q2.

This choice of momentum variables reduces the sensitivity

TABLE I. A summary of the lattice ensembles used in this
work [26].

Type a (fm) β κu;d mπ (MeV)

Pure gauge 0.100 2.58 � � � � � �
Dynamical 0.102 1.9 0.13700 701
Dynamical 0.093 1.9 0.13781 156
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of the gluon propagator to finite lattice spacing effects at
large momenta [32].
The perturbative scalar propagator is defined as

Dðq2Þ ¼ Zðq2Þ
q2 . For the remainder of this section we will

focus on the renormalization functionZðq2Þ ¼ q2Dðq2Þ.We
then renormalize Zðq2Þ in the momentum space subtraction
(MOM) scheme [33,34] on the untouched configurations by
enforcing the condition that ZUTðμ2Þ ¼ 1 at the largest
available momentum on all ensembles, μ ¼ 5.5 GeV. This
is performed via determination of a constant ZUT

3 satisfying

ZUT
bareðμ2Þ
ZUT
3

¼ ZUTðμ2Þ ¼ 1: ð8Þ

Renormalizing the vortex-modified results requires more
careful consideration, as there is no a priori method by
which it should be performed. Specifically, the problem
arises from the absence of a perturbative expectation for the
vortex-only propagator. The vortex-removed results are
expected to encapsulate the high-momentum behavior, and
as such one can reasonably expect that the MOM scheme
method would apply to these ensembles. However, the
vortex-only results are dominated by infrared strength and a
decay to 0 at high momentum. Hence, a multiplicative
renormalization based on a perturbative expectation does
not apply.
To approach this renormalization issue, we present two

sets of results. The first set will display all propagators from
an ensemble divided by ZUT

3 as determined via the MOM
scheme described in Eq. (8). This allows us to readily
compare the vortex-modified propagators across all
ensembles.
Based on the findings of Ref. [16], we also consider

renormalizing the vortex-modified propagators via a best-
fit approach. To do this, we consider taking a linear
combination of the vortex-only and vortex-removed bare
renormalization functions, ZVO

bareðq2Þ and ZVR
bareðq2Þ, respec-

tively, such that the “reconstructed” propagator

Zreconðq2Þ ¼ ζVOZVO
bareðq2Þ þ ζVRZVR

bareðq2Þ
ZUT
3

ð9Þ

is fit to ZUTðq2Þ via a linear least-squares fit. Here, ζVO and
ζVR are fit parameters defined such that the renormalized
vortex-modified propagators are

ZVOðq2Þ ¼ ζVO

ZUT
3

ZVO
bareðq2Þ; ð10Þ

ZVRðq2Þ ¼ ζVR

ZUT
3

ZVR
bareðq2Þ: ð11Þ

Fitting the reconstructed propagator is subject to the
constraint

Zreconðμ2Þ ¼ ZUTðμ2Þ ¼ 1; ð12Þ

so that the MOM scheme is replicated in the fit. This
reduces the fit to a single parameter, as we can constrain
e.g., ζVR to be

ζVR ¼ ZUT
3 − ζVOZVO

bareðμ2Þ
ZVR
bareðμ2Þ

: ð13Þ

Once a fit is found, the renormalization defined in Eqs. (10)
and (11) is applied such that the reconstructed propagator is
simply given by the sum

Zreconðq2Þ ¼ ZVOðq2Þ þ ZVRðq2Þ: ð14Þ

As we shall see, this fitting approach is appealing as it
produces excellent agreement between the pure-gauge
untouched propagator and the reconstructed propagator
as defined in Eq. (9).

B. Results

We first present the pure-gauge calculation of the scalar
propagator, with all results renormalized using the
untouched renormalization constant, ZUT

3 . The results from
the three ensembles, UT, VO and VR are shown in Fig. 1.
As expected, these results agree with those of Ref. [16],
with the untouched propagator defined by an infrared peak
and an ultraviolet plateau to tree level. The vortex-modified
counterparts qualitatively capture these two features, with
the vortex-only propagator featuring an infrared peak,
whereas the vortex-removed results retain the ultraviolet
plateau. However, there is still significant infrared strength

FIG. 1. Pure-gauge gluon propagator as calculated on the
untouched (green), vortex-removed (orange) and vortex-only
(purple) ensembles. All propagators a renormalized by applying
the renormalization constant found by applying the MOM scheme
to the untouched propagator. A black line at Zðq2Þ ¼ 1 is used to
show the asymptotic behavior.
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present in the vortex-removed propagator, which indicates
that some long-range physics remains in the vortex-
removed ensemble.
We now consider the dynamical ensemble with the

heaviest pion mass. We plot the gluon propagator calcu-
lated on this ensemble in Fig. 2. We observe that even at
this unphysically large pion mass, the impact on the
propagator is significant. Qualitatively, the propagators
retain the same features as described for the pure-gauge
sector; however the untouched propagator is noticeably
screened, as is to be expected from the introduction of
dynamical fermions [21]. The vortex-only propagator also
exhibits screening, which is a heretofore unseen effect.
Furthermore, the infrared enhancement of the vortex-
removed propagator is significantly reduced when com-
pared to the pure-gauge results shown in Fig. 1, and now
displays behavior completely consistent with the perturba-
tive expectation. These two changes indicate a noticeable
shift in the behavior of the center vortices under the
introduction of dynamical fermions.
The story is similar for the results of the lightest pion

mass, shown in Fig. 3. Screening effects are further
enhanced in the untouched propagator as the pion mass
is reduced, although it is difficult to observe any change in
screening in the vortex-only propagator. To aid in this, we
plot a comparison of the vortex-only propagators across all
three ensembles in Fig. 4. Here we can clearly see the
presence of screening upon introduction of dynamical
fermions. Between the two dynamical ensembles, screen-
ing effects are slightly enhanced as the pion mass
decreases; however, the effect is very subtle. The vortex-
removed propagator also retains the suppression of infrared
enhancement found at mπ ¼ 701 MeV. Given that the
behavior of the vortex-modified propagators is so similar
between the two pion masses, it appears that the mere
presence of dynamical fermions plays a substantial role in

altering center vortex structure and the manner in which
they generate the gluon propagator.
An interesting trend in the results presented in Figs. 1–3

is the fact that the vortex-removed results exceed the
untouched results at high momentum with the same
renormalization constant applied. It is well understood that
a larger renormalization constant is necessary to account for
increased roughness in an ensemble [35]. Given that the
vortex removal process represents a significant change in
the texture of the gauge field, it appears that such roughness
has been induced in the vortex-removed fields. This finding
supports the need for more detailed consideration of the
renormalization of the vortex-modified propagators.
We now repeat the above presentation but with the

second renormalization method applied, as defined at the
end of Sec. III A. The pure-gauge results are presented in

FIG. 2. mπ ¼ 701 MeV gluon propagator. The data scheme is
as described in Fig. 1.

FIG. 3. mπ ¼ 156 MeV gluon propagator. The data scheme is
as described in Fig. 1.

FIG. 4. The vortex-only propagators from all three ensembles.
Screening is distinctly visible as we transition from pure-gauge to
dynamical gauge fields.
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Fig. 5. The shape of the propagators is naturally the same as
before,with the interesting addition from the renormalization
method being the reconstructed propagator. Herewe observe
good agreement between the untouched and reconstructed
propagators. This indicates that the additional degree of
freedom in the renormalization method is to some extent
encapsulating themanner inwhich the untouched propagator
is partitioned into its vortex-modified components.
The dynamical ensembles with this renormalization

method applied, presented in Figs. 6 and 7, show a reduced
agreement between the untouched and reconstructed propa-
gators relative to the pure gauge results. The significance of
this disagreement is unknown, and represents another
interesting shift in behavior when transitioning from

pure-gauge to dynamical QCD. The fit constants as
described in Eqs. (8) and (9) are presented in Table II.
When comparing the vortex-only propagators with this

new renormalization scheme we observe that screening
effects remain apparent, as is evident from Fig. 8.
Furthermore, it is also possible to see a distinct increase
in screening behavior as we transition from the heavy to
light pion mass. This suggests that perhaps this renorm-
alization method is more representative of the relative
contributions of the vortex-only and vortex-removed propa-
gators to the untouched propagator.
In summary, the vortex-modified propagators undergo

significant changes in behavior upon the introduction of
dynamical fermions. Residual infrared strength present in
the pure-gauge vortex-removed propagator is suppressed in
full QCD. The vortex-only propagators effectively capture
screening effects manifesting as suppressed infrared
enhancement, indicating that the long-range behavior of
the vortex-only fields mirrors their untouched counterparts.
Best-fit renormalization provides further insight into the
structure of these vortex fields, where we find that the sum
of vortex components reconstructs the original propagator
to a fair degree. This further supports the idea that the
vortex-only and vortex-removed propagators embody a
splitting of the vacuum into long- and short-range strength,
respectively.

FIG. 6. mπ ¼ 701 MeV gluon propagator. The data scheme is
as described in Fig. 5.

FIG. 7. mπ ¼ 156 MeV gluon propagator. The data scheme is
as described in Fig. 5.

FIG. 5. Pure-gauge gluon propagator. All propagators are
renormalized by applying the renormalization method described
at the end of Sec. III A. The “recon” data (red) is an attempted
reconstruction of the original propagator by summing the vortex-
only and vortex-removed propagators.

TABLE II. The MOM scheme renormalization constants, ZUT
3 ,

as well as the fitted renormalization constants defined in Eq. (9).

Ensemble ZUT
3 ζVO ζVR

Pure gauge 7.112 0.5543 0.8985
mπ ¼ 701 MeV 9.316 0.6916 0.8251
mπ ¼ 156 MeV 11.51 0.5834 0.8780
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IV. POSITIVITY VIOLATION

A. Discussion

For an arbitrary two-point functionDðx − yÞ to represent
correlations between physical particles in the sense of a
Wightman quantum field theory [36], it is necessary by the
Osterwalder-Schrader axioms [37] for Dðx − yÞ to satisfy

Z
d4xd4yf�ð−x0;xÞDðx − yÞfðy0; yÞ ≥ 0; ð15Þ

for a suitable complex test function f. If this axiom is
satisfied, then the scalar propagator defined in Eq. (4) has
spectral representation

Dðp2Þ ¼
Z

∞

0

dm2
ρðm2Þ
p2 þm2

; ð16Þ

with ρðm2Þ ≥ 0, known as the Källen-Lehmann
representation.
To investigate the behavior of the spectral representation,

we consider the Euclidean correlator, CðtÞ, obtained by
taking the Fourier transform of Dðp0; 0Þ as defined in
Eq. (16) such that

CðtÞ ¼ 1

2π

Z
∞

−∞
dp0

Z
∞

0

dm2
ρðm2Þ
p2
0 þm2

e−ip0t: ð17Þ

Extending the p0 integral to the complex plane and
employing the residue theorem, one arrives at

CðtÞ ¼
Z

∞

0

dme−mtρðm2Þ: ð18Þ

Clearly if CðtÞ < 0 for any t then ρðm2Þ is not positive
definite, and we say that positivity has been violated. This
implies that there is no Källen-Lehmann representation as

defined in Eq. (16), and as such the propagator does not
represent a correlation between physical states. Hence, the
states do not appear in the physical spectrum. In the context
of the gluon propagator, this can be taken as an indication
that gluons are confined.
On the lattice [33], the Euclidean correlator, CðtÞ, is

given by the discrete Fourier transform of the temporal
component of Eq. (4),

ClatðtÞ ¼
1

Nt

XNt−1

nt¼0

e−2πint=NtDðq4ðntÞ2Þ; ð19Þ

where Nt is the lattice extent in the temporal direction and
q4 is the lattice momentum described in Eqs. (6) and (7).
As Dð0Þ is associated with the lowest frequency mode of
the propagator, it is a dominant term in Eq. (19). As such,
it is essential to ensure that finite volume effects are
accounted for.
On the lattice, finite volume effects alter the tensor

structure of the propagator given in Eq. (3) such that it has
the general form [33]

Dab
μνðqÞ ¼

�
δμν −

hμνðqÞ
fðq2Þ

�
δabDðq2Þ; ð20Þ

where fðq2Þ → q2 and hμν → qμqν for large qμ, but
f−1ðq2Þ is finite at q ¼ 0. We define

h̃μνðqÞ ¼
hμνðqÞ
fðq2Þ ; ð21Þ

and note that in the infinite volume limit,

h̃μμðqÞ ¼ f−1ðq2ÞhμμðqÞ;
¼ qμqμ

q2
;

¼ q2

q2
→ 1 as q2 → 0:

However, on a finitevolume lattice,f−1ðq2Þ cannot approach
infinity. Since qμ can take the value of 0 and f−1ðq2Þjq2¼0 is

finite, h̃μμ ¼ 0 for qμ ¼ 0 in a finite volume. Thus, the
extraction of the scalar propagator Dð0Þ from the lattice
propagator requires a normalization different from that
of Eq. (4).
This change in normalization can be implemented by

noting that the quantity

�
δμν −

qμqν
q2

�
; ð22Þ

changes in the finite volume of the lattice to

FIG. 8. The vortex-only propagators from all three ensembles.
The best fit renormalization method produces a greater distinction
between vortex-only propagators compared to Fig. 4.
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ðδμν − h̃μνðqÞÞ: ð23Þ

For qμ ≠ 0, setting μ ¼ ν and summing provides

X
μ

�
δμμ −

qμqμ
q2

�
¼ 4 − 1 ¼ 3: ð24Þ

But for qμ ¼ 0 on the lattice, h̃μνð0Þ ¼ 0 and

X
μ

ðδμμ − h̃μμðqÞÞ ¼ 4: ð25Þ

This results in

Daa
μμð0Þ ¼ 4ðn2c − 1ÞDð0Þ; ð26Þ

as opposed to

Daa
μμðqÞ ¼ 3ðn2c − 1ÞDðqÞ; q ≠ 0: ð27Þ

To verify the validity of this factor we explore the
behavior of the ratio of off-diagonal to diagonal propagator
components for qμ ¼ 0, i.e., ratios of the form

Dμνð0Þ
Dρρð0Þ

¼ h̃μνð0Þ
1 − h̃ρρð0Þ

; μ ≠ ν; ð28Þ

where ρ is not summed. As h̃μν ≈ 0, this ratio provides
direct access to h̃μν relative to the Kronecker delta of 1.
The values of these ratios calculated on the pure-gauge

untouched configurations are shown in Fig. 9. It is clear that
these ratios are consistent with 0 at 1σ, indicating that both
the diagonal and off-diagonal components of h̃μν are small
relative to 1. These results are corroborated by the other
ensembles used in this work. This determination justifies
the use of a factor of 4 instead of 3 in calculating the scalar
propagator at zero momentum to address the impact of the
finite volume.

B. Results

With this understanding developed, it is now possible to
calculate CðtÞ as defined in Eq. (19). The results for the
pure-gauge ensembles are shown in Fig. 10. As expected
[21], the untouched correlator shows clear signs of pos-
itivity violation. Interestingly, the vortex-only correlators
also exhibit robust positivity violation. The positivity
violation present in the vortex-removed result at large
distances is consistent with the observations made in
Fig. 1, where residual infrared strength in the vortex-
removed gluon propagator is apparent. Thus, the separation
of perturbative and nonperturbative physics through vortex
modification is imperfect in the pure gauge sector.
The results from the dynamical ensembles, shown in

Figs. 11 and 12 demonstrate an interesting change in

FIG. 9. A plot of the 0-momentum ratio of the off-diagonal to
diagonal tensor gluon propagator as described in Eq. (28). We
observe that the majority of values are consistent with zero,
indicating that the lattice correction function h̃μν → 0 as q → 0.

FIG. 10. Pure-gauge Euclidean correlator. Shown are the results
from the untouched (green), vortex-removed (orange) and vortex-
only (purple) ensembles. A dashed line at CðtÞ ¼ 0 is provided to
aid in observing positivity violation.

FIG. 11. mπ ¼ 701 MeV Euclidean correlator. Data is as
described in Fig. 10.
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behavior. Here we observe a similar robust violation of
positivity in the vortex-only results as observed on the pure-
gauge ensemble. However, the untouched results show a
lesser degree of positivity violation, especially on the
lightest pion mass ensemble shown in Fig. 12. Note
however that violation is still present at large times.
As with the gluon propagator results in the previous

section, the most striking change is in the vortex-removed
correlator. In this sector we now observe consistency with
positivity. This supports the interpretation of the positivity
violation in the vortex-removed pure-gauge results as being
related to the residual nonperturbative infrared strength in
the gluon propagator. As this residual strength is signifi-
cantly diminished on the dynamical ensembles, we now see
that the residual q2 dependence in the VR renormalization
function may be purely perturbative in origin. In this case,
vortex modification has been successful in separating
perturbative and nonperturbative physics.
In summary, vortex-only configurations exhibit signifi-

cant positivity violation, as would be expected of a
confining infrared-dominated theory. Conversely, the vor-
tex removed configurations show a loss of this positivity
violation, admitting the possibility that they do support a
spectral representation of the propagator constructed from
perturbative gluon interactions. These results provide addi-
tional support for the fact that center vortices encapsulate
the confining aspects of QCD.

V. CONCLUSION

Calculations of the behavior of center vortices in the
presence of dynamical fermions are new, and each

calculation provides further insight into the fascinating
shift that center vortices appear to undergo upon the
introduction of dynamical fermions. Here we have found
that center vortices in the presence of dynamical fermions
are effective in capturing the nonperturbative physics of
QCD. Moreover, vortex removal appears to also be far
more effective at removing the infrared strength of the
propagator.
In regards to positivity violation, we establish the

known result that unmodified lattice ensembles give rise
to positivity violation in the Euclidean correlator [21]. We
then determined that both with and without the presence
of dynamical fermions there is clear evidence that vortex-
only ensembles exhibit significant positivity violation.
On our pure-gauge ensemble, the vortex-removed
correlator showed slight positivity violation at long dis-
tances, but on both dynamical ensembles this effect
vanished. In full QCD, center-vortex modification of
the ground-state vacuum fields appears to provide an
effective separation of perturbative and nonperturbative
physics. These results present evidence that center vor-
tices in the QCD ground-state vacuum fields provide the
origin of confinement.
The results presented here add to the growing number of

investigations into the impact of dynamical fermions on
center vortices. We find marked differences between the
pure-gauge and dynamical case, which implores further
study. The origin of these disparities is currently unknown,
and further work into the geometric structure of center
vortices in full QCD is planned. It is clear that there is an
intimate relationship between dynamical fermions and
center vortices, and that this relationship has significant
implications for the QCD vacuum.
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