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I make some simple observations about the calculation of weighted averages over energy of Minkowski
space spectral densities from weighted averages over time of Euclidean space correlation functions,
measured in lattice simulations. The correlator of two vector currents is used as an example, where it
appears that a determination of a weighted average of the spectral function near the rho pole at the five
percent level is possible from lattice simulations.
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Finding connections between theoretical calculations
done in Euclidean space and results of experiments done
in Minkowski space is a longstanding problem in many
areas of physics and involves many approaches. Lattice
studies of QCD and other related systems are no exception.
This short paper describes a simple technique for extracting
weighted averages over energy of Minkowski space spec-
tral densities from Euclidean space lattice correlation
functions. Examples are motivated by calculations of the
hadronic vacuum polarization contribution to the muon
anomalous magnetic moment aHVPμ (with Ref. [1] as my
primary reference), though there are obvious applications
to many similar processes [2].
Here, I introduce the quantities which are the subject

of this paper. In Euclidean space we have a correlation
function (x is a four-dimensional variable)

GEðxÞ ¼ hOEðxÞOEð0Þi ð1Þ

and its Fourier transform

ΠEðkÞ ¼
Z

d4xeikxGEðxÞ: ð2Þ

I have obviously suppressed indices on OE and ΠE [JμðxÞ,
Πμν, etc.]. I specialize to one dimension,

GEðtÞ ¼
X
x⃗

GEðt ¼ x0; x⃗Þ; ð3Þ

and write

ΠðQÞ ¼ ΠEðQ ¼ k0; k⃗ ¼ 0Þ; ð4Þ

with, of course,

GEðtÞ ¼
Z

∞

−∞

dQ
2π

e−iQtΠðQÞ; ΠðQÞ ¼
Z

∞

−∞
dteiQtGEðtÞ:

ð5Þ

Here, ΠðQÞ obeys a dispersion relation (subtracted once, in
the case of hadronic vacuum polarization) which connects
it to an integral of the spectral function ρðsÞ ¼ 2 ImΠðsÞ,
over positive Minkowski energy-squared s,

ΠðQÞ − Πð0Þ ¼ Q2

2π

Z
∞

0

ds
ρðsÞ

sðsþQ2Þ : ð6Þ

In turn, ρðsÞ is related to a total cross section via the optical
theorem. Combining Eqs. (5) and (6) gives the connection
between a Euclidean space correlation function defined at
Euclidean time t, GEðtÞ, and the spectral function,

GEðtÞ ¼
1

2π

Z
∞

0

dω½ω2ρðωÞ� expð−ωtÞ ð7Þ

(slightly abusing notation by expressing the spectral func-
tion as a function of ω rather than of s ¼ ω2).
Inverting Eq. (7) to predict ρðωÞ from GEðtÞ is a difficult

problem. However, it seems easy to compare a weighted
average of GEðtÞ to a weighted average of ρðωÞ,

ρ̂ðQ0Þ≡
Z

∞

0

REðQ0; tÞGðtÞdt ¼
Z

∞

0

dωρðωÞTðQ0;ωÞ

ð8Þ
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with the connection

TðωÞ ¼ ω2

2π

Z
∞

0

e−ωtREðQ0; tÞdt: ð9Þ

Note that Q0 is shorthand for possible tunable parameter(s)
in the weighting function. The most prominent present-
day example of such a connection is the calculation of the
hadronic vacuum polarization contribution for the anoma-
lous magnetic moment of the muon. The Euclidean
weighting function REðQ0; tÞ for aHVPμ is specified by a
QED calculation.
The point of this paper is to remark that one could

imagine doing the weighting with any function REðQ0; tÞ.
Each choice of REðQ0; tÞ amounts to its own (indirect)
comparison of theory [GEðtÞ] with experiment [ρðωÞ,
processed into ρ̂ðQ0Þ]. Families of related REðQ0; tÞ’s
can be combined into more extensive views of the spectral
function. For weighted integrals over the spectral function
of the vector current, all the technology for computing aHVPμ

is waiting to be used.
Some choices of RE are more interesting than others, and

a desirable goal would be to find an REðQ0; tÞ whose TðωÞ
is peaked around some energy range. To jump to the
conclusion, the dominant feature of an REðQ0; tÞ which
does that is a restriction to a range of t values
tmin < t < tmax; the overall shape of REðQ0; tÞ does not
seem to be important for the examples I display. And given
what is published about the precision of aHVPμ lattice results,
it seems possible to make a lattice determination of a
weighted average of ρðωÞ with enough accuracy to be
phenomenologically interesting. (I have in mind the few
percent tension in the ππ channel in the 0.6–0.9 GeV range
described in Ref. [1], between the KLOE experiment [3]
and other groups.)
I have not yet found a discussion of this approach in the

literature.
The idea described here is just a trivial variation on the

“coordinate space representation” for aHVPμ : There is an
implicit assumption that REðtÞ is a smooth function of t,
and replacing an integral over continuous t by a sum over a
set of discrete lattice points is no different than replacing
any continuous integral by a grid sum.
There is also a large amount of literature proposing

weighting functions TðωÞ through solutions to the “inverse
problem”: Given a GEðtiÞ defined at a set of discrete ti
values, various approaches have different criteria for
defining and constructing a weighted ρ̂. Often, no smooth-
ness assumptions go into the choice, and in fact the REðtiÞ’s
found in the literature are far from smooth. Recent
references (a very incomplete set for this vast field) include
Ref. [2], which uses the Backus-Gilbert method [4,5];
related work by Ref. [6]; and Chebyshev techniques by
Refs. [7–9]. What I am proposing might be more stable

than “inverse problem” techniques, but it probably cannot
produce TðωÞ’s with a strongly peaked structure.
Here, I will continue focusing on aHVPμ . There is a small

amount of literature associated with modifications to its RE.
The most prominent one is probably the “intermediate
window method” of Ref. [10]. It is a time-sliced version of
the aHVPμ weighting:

REðQ0; tÞ ¼ R
aμ
E ðQ0; tÞ½Θðt; tmin;ΔÞ − Θðt; tmax;ΔÞ� ð10Þ

where Θðt; t0;ΔÞ is a smoothed step function. Another
approach to weighting, called “finite energy sum rules,”
starts by writing a dispersion relation for a reweighted
ΠEðQÞ. For a discussion, see Refs. [11,12].
To set conventions, I am interested in the correlator of

two vector currents

ΠðqÞμν ¼
Z

d4xeiqxh0jJμðxÞJνð0Þj0i: ð11Þ

I remove the indices with a transverse projection,

Πμν ¼ ½qμqν − gμνq2�Πðq2Þ; ð12Þ

and then the spectral function ρðωÞ is proportional to
the discontinuity of Π across the real energy axis
[setting qμ ¼ ðω; 0⃗Þ]. It is also proportional to the R-ratio,
RðωÞ ¼ σðeþe− → hadronsÞ=σðeþe− → μþμ−Þ. The stan-
dard lattice vector-vector correlator contracts ρμν against

polarization vectors ϵiμϵ
j
ν where typically ϵiμ ¼ ð0; ϵ⃗iÞ is a

unit vector. This means that in Eq. (7), ρðωÞ ¼ RðωÞ=ð6πÞ
and

GEðtÞ ¼
X
i

Z
d3xhJiðx⃗; tÞJið0; 0Þi ð13Þ

where Jiðx; tÞ ¼ eqψ̄ðx; tÞγiψðx; tÞ for a quark of charge eq
(in units of the electric charge).
The two relevant pictures are shown in Fig. 1: the

familiar plot of the R-ratio in panel (a) and the expected
GEðtÞ in panel (b), computed using Eq. (7). “Experiment”
in these figures means the phenomenological model for
ρðωÞ from Ref. [13] (in black) and a compilation of RðωÞ
from a table in the Review of Particle Properties [14]
(points with error bars, in red). Of course, the question to
try to answer is the following: Given a calculation GEðtÞ,
what can one say about ρðωÞ?
This question is partially answered by the one theoretical

line in panel (b) of Fig. 1: The dashed line is the
contribution of a stable rho meson at 770 MeV with a
decay constant fV ¼ 0.25:

GV
EðtÞ ¼

ðhqim2
VfVÞ2

2mV
expð−mVtÞ: ð14Þ
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The quantity hqi is the expectation value of the quarks’
charges in the meson: ½2=3 − ð−1=3Þ�= ffiffiffi

2
p ¼ 1=

ffiffiffi
2

p
for the

rho, 1=
ffiffiffiffiffi
18

p
for the omega, 1=3 for the phi, and so on. Here,

GEðtÞ is flatter than GV
EðtÞ at very large t due to the

contribution of two-pion states with an invariant mass
smaller than the rho mass, and it is steeper than GV

EðtÞ at
small t due to the phi meson and to the flat high energy part
of RðωÞ. Nowhere does GV

EðtÞ saturate GEðtÞ.
I can rephrase the question as follows: Given a lattice

calculation of GEðtÞ, what can one say about ρðωÞ? Then,
there are more constraints. The large ω region, where
ω > 1=a and a is the lattice spacing, is contaminated by
lattice artifacts and is inaccessible to a lattice calculation.
Unfortunately, so is the small ω or large t region. The
reason for this is that the lattice signal becomes noisy. This
is a usual issue in lattice simulations [15–17]. The data in
Ref. [18] provide an example—see their Fig. 2. The
collaboration has data at lattice spacings between 0.15
and 0.06 fm. Their data are only usable out to distances
t ∼ 2.5 fm. This precludes, at least for the present time,
studies of ρðωÞ near threshold. This situation is well known
and documented in the aHVPμ literature [1].
Parenthetically, the vector correlator presents a some-

what special case compared to most lattice studies, where
the lightest state in (continuum) ρðωÞ is an isolated pole.
Then, simply going to large t gives a GEðtÞ which is
dominated by properties of the pole. Standard lattice
techniques (fits to exponentials) are more efficient at
producing high quality results than the proposal of weight-
ing GEðtÞ given here.
Lattice calculations are always done in finite volume, but

the desired prediction is of an infinite volume observable.
There are a variety of techniques for approaching the infinite
volume limit used in the aHVPμ literature [1]. Since the
proposal here is just to replace the weighing factor for
aHVPμ by one which exposes a different average over the

spectral function, dealing with the finite-to-infinite volume
extrapolation will involve the same kind of analysis as
for aHVPμ . I will continue the exposition assuming that this
has been done.
Thus, we are pushed back to the region of ω near the rho

mass. The physical rho meson is broad. Is it possible to say
anything about ρðωÞ for ω near mρ? This seems to be a
serious issue for aHVPμ determinations.
I divide up the contributions to GEðtÞ from different

energy intervals. See Fig. 2, which shows the fractional
contributions to GEðtÞ from different ω regions. Here ρðωÞ
is taken from the phenomenological model of Ref. [13].
What is noticeable is that there is a fairly wide region at

(a)

(b)

(c)

(d)

FIG. 2. Fractional contributions to GEðtÞ where ρðωÞ is taken
from the phenomenological model of Ref. [13]. The curves label
(a) 2mπ < ω < 4mπ , (b) 4mπ < ω < 6mπ , (c) 6mπ < ω < 8mπ ,
(d) 8mπ < ω < 10mπ .

(a) (b)

FIG. 1. (a) RðωÞ the R-ratio from the phenomenological model for ρðωÞ from Ref. [13] (in black) and from the table in the Review of
Particle Properties [14] (points with error bars, in red). (b) GEðtÞ from the phenomenological model for ρðωÞ from Ref. [13] (in black)
and from the table in the Review of Particle Properties [14] (red bands, overlapping the black line). The dashed line is the contribution
from a stable rho meson with fV ¼ 0.25.
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intermediate t where the region around the rho mass
contributes heavily. Of course, this can be seen in Fig. 1.
(This is basically just the phenomenon of vector meson
dominance.)

As an application of this remark, suppose that the
experimental ρðωÞ is not precisely known over some
energy range, that two experiments differ by a fraction
δρðωÞ=ρðωÞ. Assuming that the difference is confined to
some small region of ω, there will be a change in GEðtÞ
[constructed from Eq. (7) with each experimental ρðωÞ] of
δGEðtÞ=GEðtÞ ∼ fδρ=ρ where f is the fractional contribu-
tion of the ω region of ρðωÞ to GEðtÞ.
A simple example comes from modifying the model for

ρðωÞ from Ref. [13] over a range ωmin < ω < ωmax, by
multiplication by a weighting factor

wðωÞ ¼ 1þ a sin π
�

ω − ωmin

ωmax − ωmin

�
: ð15Þ

The fractional change in GEðtÞ is shown in Fig. 3 for the
choice ωmin ¼ 0.6 GeV, ωmax ¼ 0.9 GeV, a ¼ 0.05.
Notice the qualifier “assuming that the difference is

confined to some small region of ω.” The GEðtÞ at any t
value is built of contributions from all ω, and a measure-
ment of GEðtÞ at any t or for any range of t values does not
make an absolute prediction about ρðωÞ at any particular ω
value. However, lattice results could still be useful to
distinguish between the different experimental ρðωÞ’s.

FIG. 3. Fractional change in GEðtÞ from a five percent variation
in the phenomenological model for ρðωÞ of Ref. [13] over the
range 0.6–0.9 GeV, as described in Eq. (15).

(a) (b)

(c) (d)

FIG. 4. Contribution of 4mπ < ω < 6mπ to the integral of Eq. (8) for a power law REðtÞ ¼ ðt=t0Þn=n! with t0 ¼ 0.15 fm, for a range
tmin < t < tmax plotted versus tmin for tmax ¼ 1.2, 1.44, 1.8, 2.4, and 5 fm. (a) n ¼ 0, (b) n ¼ 2, (c) n ¼ 4, and (d) n ¼ 6.
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Figure 3 shows that a five percent variation in ρðωÞ
translates into a 2.7 percent variation in GEðtÞ over a fairly
wide range of t. I cannot write about uncertainties in either
GEðtÞ or ρðωÞ. Lattice data for GEðtÞ are typically highly
correlated, and it is almost impossible to estimate correlation
uncertainties in a lattice data set without access to it.
Similarly, the experimental data sets which give ρðωÞ are
highly correlated. But, 2.7 percent seems to be an easy target,
given that contemporary lattice measurements of aHVPμ are
well under a percent. It seems likely that lattice calculations
could determine ρðωÞ over the range 0.6–0.9 GeVat the five
percent level.
To do this in practice, we need aweighting function. There

seem to be many possible choices. But Figs. 2 and 3 indicate
that all that is significant for REðtÞ is that it be nonvanishing
for the region of t where the desired ω value makes a large
contribution toGEðtÞ, and that it be small elsewhere. Figure 2
shows possible ranges of t’s for different ω ranges. Two
choices of REðtÞ illustrate that claim.
First consider a family of power laws,

REðtÞ ¼
1

n!

�
t
t0

�
n

ð16Þ

for a range tmin < t < tmax. The t0 and the n! factor are just
rescalings, which are useful for plots across n or for
comparing weighted lattice data at different lattice spac-
ings. Figure 4 shows the contribution of 4mπ < ω < 6mπ

to the integral of Eq. (8). Each panel is for a particular n
value and shows a set of curves: Each curve is the fraction
of the integral from tmin to tmax from this ω range, varying
tmin at fixed tmax. A range of t in the range 1–2 fm gives an
integral where the contribution of the 4mπ < ω < 6mπ

region of ρðωÞ approaches 70 percent, essentially inde-
pendent of n. The curves extending out to tmax ¼ 5 fm
show the obvious result that the contribution of the
rho region to the integral becomes very small when taking
tmin > 2 fm.
This weighting, of course, has a hard cutoff in t. I have

also repeated the analysis for soft cutoffs as in Eq. (10).
There is little change in the result unless the smoothed step
function Θðt; tmin;ΔÞ becomes very broad.
Figure 5 shows the fractional change in the integral ρ̂

from the model weighting factor of Eq. (15), using the
power law weighting of Eq. (16). These curves all resemble
the sensitivity of GEðtÞ itself to a variation in ρðωÞ, as
shown in Fig. 3.

(a) (b)

(c) (d)

FIG. 5. Fractional change in the integral ρ̂ of Eq. (8) under a five percent variation in ρðωÞ for 4mπ < ω < 6mπ parametrized as in
Eq. (15), for a power law REðtÞ ¼ ðt=t0Þn=n! with t0 ¼ 0.15 fm, for a range tmin < t < tmax plotted versus tmin for tmax ¼ 1.2, 1.44, 1.8,
2.4, and 5 fm. (a) n ¼ 0, (b) n ¼ 2, (c) n ¼ 4, and (d) n ¼ 6.
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The conclusion to be drawn from these tests is that the
feature of the smearing function REðtÞ which is most
sensitive to a variation in ρðωÞ over a limited ω range is
the range of t values which the smearing function probes,
rather than its precise shape.
Figure 6 shows similar results for the smearing kernel

used for aHVPμ in its intermediate window guise, Eq. (10)
[but with a sharp cutoff tmin ≤ t ≤ tmax)]. The figures are
nearly identical to the ones for power law weighting. The
conclusion seems to be that a lattice calculation of GEðtÞ
with an accuracy of 2–3 percent (in the continuum limit, of
course) over the range of 1–2 fm can distinguish a five
percent variation in ρðωÞ in the rho region.
At this point I hope for an analysis by one of the lattice

groups using their own data sets. The idea I have presented

is trivial, but it also seems simple to implement. I think that
ρðωÞ (and related quantities) are interesting in and of
themselves, and that trying to extract features of ρðωÞ
which have nothing to do with aHVPμ from GEðtÞ could be a
useful project [19]. And, of course, identical weighting
techniques can connect other inclusive processes with
Euclidean correlators.

Questions at the end of a seminar by Finn Stokes at the
MIT Virtual Lattice Colloquium Series motivated this
paper. I would also like to thank Maarten Golterman
for correspondence and Chris Polly for encouragement.
This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of
High Energy Physics under Award No. DE-SC-0010005.
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