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Semi-inclusive J=ψ production in electron-proton collisions is a promising process to study gluon
transverse momentum distributions (TMDs) at the future electron-ion collider (EIC). In this article, we
improve on previous studies of the cos 2ϕ azimuthal asymmetry that arises from the linear polarization
of gluons inside unpolarized protons by including TMD evolution. We find that in the TMD regime the
asymmetry grows monotonically with increasing transverse momentum of the outgoing J=ψ , in contrast to
tree level calculations with Gaussian TMDs. Our predictions for the asymmetry at the EIC can become very
large at larger x, Q, and transverse momenta, even larger than the positivity bound. This problem stems
from the very small b region and implies a range of validity of TMD factorization that is more restricted
than usually expected. We also include an estimate of the nonperturbative uncertainty from the large b
region and we conclude that it is smaller than the largest source of uncertainty, which stems from the choice
of color octet long-distance matrix elements.
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I. INTRODUCTION

Transverse momentum dependent parton distributions
functions (TMDs) describe the transverse momentum dis-
tribution of quarks or gluons inside protons, or hadrons in
general. For small longitudinal momentum fraction x the
gluons dominate, but hardly anything is known yet about the
gluon TMDs experimentally. Many theoretical proposals
have been put forward that could potentially be used for
extractions of gluon TMDs by investigating transverse
momentum spectra and azimuthal asymmetries for bound
and open heavy quark production, both in lepton-proton and
in proton-proton collisions. This is because heavy quarks are
very sensitive to the gluon content of hadrons, as they are
predominantly produced from gluons and not intrinsi-
cally present in hadrons at small momentum fractions.
Furthermore, some quarkonium states, like the J=ψ , are
relatively straightforward to detect and numerous events can
be collected. Therefore, quarkonium production can been
considered as a main tool to extract gluon TMDs and many
studies have appeared about this topic already [1–13].

One aspect of gluon TMDs that is especially of interest is
that noncollinear gluons inside an unpolarized proton can
be linearly polarized [14]. This manifests itself in scattering
processes through azimuthal asymmetries as pointed out
in [1,15,16]. These are the QCD analogs of the QED
asymmetries that were recently observed in ultraperipheral
heavy ion collisions at the Relativistic Heavy Ion Collider
(RHIC), where linearly polarized photons from the collid-
ing gold nuclei produce electron-positron pairs with cos 2ϕ
and cos 4ϕ azimuthal asymmetries [17]. In order to
measure these effects for gluons, the future U.S.-based
electron-ion collider (EIC) is well suited, especially using
heavy quarkonium production processes. In semi-inclusive
electroproduction of a heavy quarkonium state, such as a
J=ψ vector meson, the linear gluon polarization manifests
itself through a cos 2ϕ azimuthal asymmetry [7,10,11].
This observable is the main subject of this paper. Other
promising processes are single or double quarkonium
production at the LHC, where the linear gluon polarization
manifests itself through cos 2ϕ and cos 4ϕ azimuthal
asymmetries [12,18]. The advantage of the EIC is that
only one TMD is involved, whereas in proton-proton
collisions always a convolution of two TMDs is probed.
Semi-inclusive electroproduction of a heavy quarkonium

state at small transverse momentum is expected to be
describable within TMD factorization, just like semi-
inclusive deep inelastic scattering (SIDIS) for light hadron
production and the Drell-Yan (DY) process [19–21]. This is
thanks to the presence of a large energy scale, the photon
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virtuality Q, which allows us to factorize the cross section
description in a perturbative short-distance part that can be
expanded in orders of the strong coupling constant αs and a
nonperturbative long-distance part that is expressed in
terms of TMDs. TMDs have to be modeled, calculated
using lattice QCD, or extracted from experimental data.
The TMD factorization description allows us to incorporate
the scale evolution, commonly referred to as TMD evolu-
tion. This in turn allows us to improve on predictions and
subsequent extractions.
In this article, we include TMD evolution effects at

leading order in αs in a similar way as discussed in [10,22].
In this way, we obtain more realistic estimates for the
transverse momentum spectrum and the associated azimu-
thal asymmetry for semi-inclusive J=ψ production in
unpolarized electron-proton collisions for EIC kinematics.
The results depend on the perturbative Sudakov factor,
which has not yet been derived for this specific process.
The one of [23] obtained from a matching calculation
seems applicable only to light hadron production, as it has
been demonstrated for pp → ηcX [24] and for open heavy
quark pair production in ep collisions [25] that there are no
double logarithms associated with heavy quark production.
Here we will implement the result of [24], which leads to
considerably larger asymmetry values than when following
[23]. There will also be considerable dependence on how
the region of very small b (∼1=Q) is treated, indicating the
need for matching to the collinear expression earlier than
usually expected, i.e., at transverse momentum values
below Q=2. All this will be addressed in detail.
In this study there is significant uncertainty from the

nonperturbative contributions. Although no model for the
gluon TMDs will be assumed, there is uncertainty from
the nonperturbative Sudakov factor in the TMD evolution
expressions, as well as from the nonperturbative formation
of the bound quarkonium state from a produced heavy
quark pair. The latter is usually described within non-
relativistic QCD (NRQCD) [26]. The NRQCD framework
involves another factorization: a separation of the pertur-
bative short-distance contributions (expanded in αs)
from the nonperturbative long-distance matrix elements
(LDMEs). The relative importance of the various LDMEs is
estimated by means of the heavy quark-antiquark relative
velocity v in the bound-state rest frame in the limit v ≪ 1,
by the velocity scaling rules. Typically, charmonium states
have v2 ∼ 0.3, whereas bottomonium states have v2 ∼ 0.1,
which are considered small enough to expand in.
In TMD factorization the formation of the bound

quarkonium state from a produced heavy quark pair has
to be incorporated by introducing shape functions (SFs)
[27,28] that can be viewed as describing the transverse
momentum smearing that arises in the final-state hadroni-
zation process. It also describes the formation of a colorless
hadronic state by emission of soft-gluon radiation. The SFs
are related to the LDMEs of NRQCD, although the relation

is not yet known in detail (the relation for large transverse
momenta can be obtained from matching in the way
described in [23]). In this paper we will only consider
the leading order relation, which means that we only
consider color octet (CO) SFs and LDMEs. In the process
ep → e0½QQ̄�X at leading order (LO) in αs the heavy
quark-antiquark will be in a CO state and CO LDMEs will
dominate. Beyond LO also color singlet (CS) LDMEs will
contribute, but as we will see, the uncertainty in the
prediction from the uncertainty of the CO LDMEs is too
large to necessitate inclusion of higher order corrections.
As mentioned, another source of uncertainty is from the
nonperturbative part of the TMD evolution expressions, for
which we will estimate a reasonable range. Given these
uncertainties, we can draw only qualitative conclusions on
the dependence of the asymmetry on transverse momentum
and how that differs from earlier results in the literature
[7,10,11]. Nevertheless, the results are promising regarding
future measurements of the asymmetry at the EIC, as it
could become quite large.
The paper is organized as follows. In Sec. II, we briefly

review the TMD description of the process and introduce
the SFs. In Sec. III, we explain the TMD evolution
formalism that is employed for the numerical evaluations.
Especially, we discuss the explicit form of the nonpertur-
bative in more detail. In Sec. IV, we present our results on
the azimuthal cos 2ϕ asymmetry and finally conclude and
discuss our findings in Sec. V.

II. J=ψ PRODUCTION WITHIN TMD
FACTORIZATION

A. Leading order TMD description of the process

We study the semi-inclusive process

eðlÞ þ pðPhÞ → eðl0Þ þ J=ψðPÞ þ X; ð1Þ

and we consider all particles to be unpolarized. The
kinematic variables for this process are given by

xB ¼ Q2

2Ph · q
; y ¼ Ph · q

Ph · l
; z ¼ Ph · P

Ph · q
; ð2Þ

with q ¼ l − l0 and q2 ¼ −Q2. The partonic subprocess
contributing to this reaction at LO in αs is γ�ðqÞ þ gðpÞ →
QQ̄½n�ðPÞ, with n ¼2Sþ1 Lð8Þ

J . The spectroscopic notation
denotes that the produced QQ̄ pair will form a bound
quarkonium state with spin S, orbital angular momentum L,
and total angular momentum J. This transition from the
QQ̄ pair to a bound quarkonium state is commonly
described in terms of NRQCD LDMEs. At this LO only
the CO configuration, indicated with the superscript (8),
will contribute. At order α2s also CS states contribute.
Although the CS contribution is suppressed relative to the
CO by a perturbative coefficient of the order αs=π,
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according to the NRQCD scaling rules the relevant CO
LDMEs h0jOJ=ψ

8 ð1S0Þj0i and h0jOJ=ψ
8 ð3PJÞj0i with J ¼ 1,

2, 3 are suppressed compared to h0jOJ=ψ
1 ð3S1Þj0i by a

factor of order v3 and v4, respectively [29]. Taken together,
the CO configuration is enhanced with respect to the CS by
a factor v3π=αs which for the smallest Q value that we
consider in this paper (Q ¼ 3 GeV) is around 2 and grows
with increasing Q. Furthermore, it is known that, at large z,
the CS term becomes negligible [30], and z is fixed to 1 in
our analysis. For these reasons we solely consider CO
contributions.
The reference frame for this process is chosen such that

both the virtual photon from the electron and the incoming
proton move along the ẑ axis. The azimuthal angle ϕT
of the quarkonium transverse momentum is defined with
respect to the lepton scattering plane, i.e., ϕl ¼ ϕl0 ¼ 0.
Moreover, the scattered electron has a scattering angle θ
defined in this plane. In Fig. 1 a schematical setup of the
reaction is shown. Because z ¼ 1,

x ¼ xB

�
1þM2

Q2

�
; ð3Þ

where M denotes the J=ψ mass. In TMD factorization the
differential cross section is schematically written as

dσ ∼
Z

dx d2pT δ
4ðpþ q − PÞLðl; qÞΓgðx;pTÞ

×Aðq; pÞA�ðq; pÞ; ð4Þ

where p2
T ¼ −p2

T denotes the transverse component of the
gluon momentum, L is the leptonic tensor, Γg is the gluon
correlator, and A is the partonic scattering amplitude.
Subsequently, the correlator is parametrized at leading
order in terms of two TMDs [14], with fg1ðx;pTÞ, the
unpolarized gluon distribution and h⊥g

1 ðx;pTÞ, the linearly
polarized gluon distribution. To ensure we can apply TMD
factorization, only the kinematic region is considered
in which the transverse momentum PT of the J=ψ is
small compared to the virtuality of the photon Q. Usually
PT < Q=2 is considered as the range of validity for the

TMD region, but we will see that this is too optimistic in the
present case.
Without taking into account smearing effects in the

transition from the QQ̄ pair to a bound quarkonium state,
the cross section is written in terms of TMDs and NRQCD
LDMEs as (see e.g., [10], where qT ≡ PT)

dσðJ=ψÞ
dxBdyd2qT

¼N
�
Afg1ðx;q2

TÞþ
q2
T

M2
h

Bh⊥g
1 ðx;q2

TÞ cos ð2ϕTÞ
�
; ð5Þ

with the normalization factor

N ¼ ð2πÞ2 α2αse2c
yQ2MðM2 þQ2Þ ;

where eQ is the fractional electric charge of the quark
and Mh the mass of the proton. The explicit forms of the
prefactors are

A ¼ ½ð1 − yÞ2 þ 1�Aγ�g→J=ψ
UþL − y2Aγ�g→J=ψ

L ; ð6Þ

B ¼ ð1 − yÞBγ�g→J=ψ
T ; ð7Þ

where y is the inelasticity and the superscripts U þ L, L,
and T refer to the specific polarization of the photon [1,31].
Employing heavy quark spin symmetry relations [26], one
finds in terms of CO LDMEs [10],

Aγ�g→J=ψ
UþL ¼ h0jOJ=ψ

8 ð1S0Þj0i

þ 12

Nc

7M2 þ 3Q2

M2ðM2 þQ2Þ h0jO
J=ψ
8 ð3P0Þj0i; ð8Þ

Aγ�g→J=ψ
L ¼ 96

Nc

Q2

ðM2 þQ2Þ2 h0jO
J=ψ
8 ð3P0Þj0i; ð9Þ

Bγ�g→J=ψ
T ¼ −h0jOJ=ψ

8 ð1S0Þj0i

þ 12

Nc

3M2 −Q2

M2ðM2 þQ2Þ h0jO
J=ψ
8 ð3P0Þj0i: ð10Þ

FIG. 1. Visualization of the azimuthal angle ϕT , the scattering angle θ, and the lepton and hadron scattering planes for the process
eðlÞ þ pðPhÞ → eðl0Þ þ J=ψðPÞ þ X.
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Taking into account evolution in the above result for the
cross section requires consideration of the more general
TMD factorization expression including SFs.

B. Smearing effects and shape functions

As mentioned, the TMD factorized expressions have to
take into account final-state smearing effects that are
encoded in the SF Δ½n� [27,28]. This nonperturbative
hadronic quantity describes the transition from the QQ̄
pair to a bound quarkonium state, not only the formation of
the bound state, but also the soft-gluon radiation required
to produce a final-state hadron in the CS state, which

generally will change the momentum of the quarkonium.
Including the SFs in the cross section becomes

dσðJ=ψÞ
dxB dy d2qT

¼ N
�X

n

A½n� C½fg1Δ½n��

þ 2
X
n

B½n� C½wh⊥g
1 Δ½n�

h � cos ð2ϕTÞ
�
; ð11Þ

where we have introduced the transverse momentum
convolutions

C½fg1Δ½n��ðx;q2
TÞ ¼

Z
d2pT

Z
d2kT δ

2ðpT þ kT − qTÞfg1ðx;p2
TÞΔ½n�ðk2

TÞ; ð12Þ

C½wh⊥g
1 Δ½n�

h �ðx;q2
TÞ ¼

Z
d2pT

Z
d2kTδ

2ðpT þ kT − qTÞwðpT;kTÞ h⊥g
1 ðx;p2

TÞΔ½n�
h ðk2

TÞ; ð13Þ

with the transverse momentum dependent weight function

wðpT;kTÞ ¼
1

2M2
hq

2
T
½2ðpT · qTÞ2 − p2

Tq
2
T �: ð14Þ

The SF can be thought of as a generalization of the LDMEs
in collinear factorization. It is expected that the shape
functions are proportional to the LDMEs, also beyond LO,

Δ½n�
ðhÞðk2

TÞ≡ h0jOðnÞj0iΔðhÞðk2
TÞ; ð15Þ

for some universal SFs Δðk2
TÞ and Δhðk2

TÞ that could in
principle be unequal. In absence of smearing Δðk2

TÞ ¼
Δhðk2

TÞ ¼ δ2ðkTÞ, the convolutions reduce to products of a
LDME with a gluon TMD and Eqs. (5)–(10) are recovered.
This is the simplification we will adopt, but only after
including effects from TMD evolution.
The process under investigation has an azimuthal

asymmetry

hcos 2ϕTi ¼
R
dϕT cos 2ϕT dσR

dϕT dσ
¼

P
nB

½n� C½wh⊥g
1 Δ½n�

h �P
nA

½n� C½fg1Δ½n�� :

ð16Þ

Adopting Eq. (15), this becomes

hcos 2ϕTi ¼
P

n B
½n�h0jOðnÞj0iP

n A
½n�h0jOðnÞj0i · R ¼ B

A
· R; ð17Þ

where A and B are given in Eqs. (6) and (7), and

R ¼ C½wh⊥g
1 Δh�

C½fg1Δ�
: ð18Þ

Before continuing, we make a few remarks on the prefactor
B=A. It turns out that B=A depends very strongly on the
specific set of LDMEs adopted. Also, since jhcos 2ϕTij ≤
1 and jRj ≤ 1, the LDMEs must be such that jB=Aj ≤ 1
and A ≥ 0, which are important constraints to impose
on LDME extractions at the EIC. These constraints are
not satisfied by the Butenschoen-Kniehl (BK) set for
Q2 ≲ 2.5M2, but that seems a problem of applying
LDMEs that were obtained from a next-to-leading order
analysis in a LO analysis. Finally, we note that B=A
vanishes in the limit y → 1 when the virtual photon is
longitudinally polarized and maximizes when y → 0.

III. TMD EVOLUTION IMPLEMENTATION

Beyond tree level, the TMDs and SFs become scale
dependent which governs the TMD evolution [32].
Implementing TMD evolution is more easily done in
impact parameter space, where convolutions become sim-
ple products. In general, we can write

dσðJ=ψÞ
dxB dy d2qT

¼
Z

d2bTe−ibT ·qT ŴðbT; QÞ þOðq2
T=Q

2Þ;

ð19Þ

where bT is the conjugate of momentum qT . Ŵ consists of
three factors,

ŴðbT; QÞ ¼ Âðx;bT ; ζA; μÞB̂ðbT ; ζB; μÞHðQ; μÞ: ð20Þ
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Here H denotes the hard part, Â and B̂ are the Fourier
transformed TMD and SF, respectively, μ is the renorm-
alization scale, and ζA=B are the rapidity variables. The
latter arises due to the required regularization of light cone
divergences from lightlike Wilson lines [32], although in
this case there are no such divergences associated with the
SF [24,27]. The natural choice to minimize large loga-
rithms in ζA=B will be ζA ¼ Q2; ζB ¼ 1, similar to as in [33]
for open heavy quark pair production in electron-proton
collisions.

The Fourier transforms of fg1, h
⊥g
1 , and Δ½n�

ðhÞ are defined
as follows:

f̂g1ðx;b2
TÞ≡

Z
d2pT eibT ·pT fg1ðx;p2

TÞ; ð21Þ

ĥ⊥g
1 ðx;b2

TÞ≡
Z

d2pT
ðbT ·pTÞ2− 1

2
b2
Tp

2
T

b2
TM

2
h

eibT ·pT h⊥g
1 ðx;p2

TÞ;

ð22Þ

Δ̂½n�
ðhÞðb2

TÞ≡
Z

d2kT eibT ·kT Δ½n�
ðhÞðk2

TÞ: ð23Þ

In terms of these functions the convolutions can be
written as

C½fg1Δ½n�� ¼
Z

∞

0

dbT
2π

bT J0ðbTqTÞf̂g1ðx;b2
TÞ Δ̂½n�ðb2

TÞ;

ð24Þ

C½wh⊥g
1 Δ½n�

h �¼−
Z

∞

0

dbT
2π

bT J2ðbTqTÞĥ⊥g
1 ðx;b2

TÞΔ̂½n�
h ðb2

TÞ;

ð25Þ

where we suppressed the dependence on ζ and μ.
The TMDs obey the Collins-Soper and renormalization

group equations with respect to the scale parameters ζ and
μ [32]. These equations can be used to evolve the TMDs
from high to low scales [32,34],

Âðx; bT ; ζ; μÞ ¼ e−SAðbT ;ζ;ζ0;μ;μ0Þ Âðx; bT ; ζ0; μ0Þ; ð26Þ

with Sudakov factor SA,

SAðbT ; ζ; ζ0; μ; μ0Þ

¼ −
1

2
K̂ðbT ; μ0Þ ln

ζ

ζ0

−
Z

μ

μ0

dμ0

μ0

�
γðαsðμ0Þ; 1Þ −

1

2
γKðαsðμ0ÞÞ ln

ζ

μ02

�
: ð27Þ

While the renormalization scale μ in the hard scattering part
H should be set to μ ∼Q to avoid large logarithms of μ=Q,

the TMDs should be evaluated at much lower scale in order
to avoid large logarithms of μ=Mh or μ=ΛQCD. Instead of
selecting a fixed, low (but still perturbative) scale for the
TMDs, it is common to take

ffiffiffiffiffi
ζ0

p
∼ μ0 ∼ μb ≡ b0=bT and

make sure in the calculation that μb ≤ Q. The Sudakov
factor then expresses the resummation of logarithms
in μb=Q.
In leading order in αs the perturbative expression for the

above Sudakov factor can be written as [32,34]

SAðbT ;Q;μbÞ

¼1

2

CA

π

Z
Q2

μ2b

dμ02

μ02
αsðμ0Þ

�
ln
Q2

μ02
−
�
11−2nf=CA

6

��
þOðα2sÞ:

ð28Þ

Adopting the scale μ ∼Q in the SF is also expected to
lead to large logarithms in Q=μb, which should also be
resummed. This can again be done using a renormalization
group equation, leading to a contribution to the overall
Sudakov factor at the single log level. It can be incorporated
by changing SA into

SAðbT ;Q; μbÞ

¼ 1

2

CA

π

Z
Q2

μ2b

dμ02

μ02
αsðμ0Þ

�
ln
Q2

μ02
−
�
11 − 2nf=CA

6
þ BCO

��

þOðα2sÞ: ð29Þ

The constant BCO from the soft-gluon radiation is not
derived for the current process yet. However, since
ΔðhÞðk2

TÞ in Eq. (15) is expected to be universal, we take
for the present case of CO J=ψ production BCO ¼ 1 as
obtained in pp → ηcX for CO ηc production [24]. This is
also consistent with recent results presented in [35] obtained
within the soft-collinear effective theory formalism.
Including the one-loop running of αs, one can preform

the μ integral explicitly,

SAðbT ;Q;μbÞ

¼−
1

2

36

33−2nf

�
ln
Q2

μ2b
þ ln

Q2

Λ2
QCD

ln

�
1−

ln ðQ2=μ2bÞ
ln ðQ2=Λ2

QCDÞ
�

þ
�
11−2nf=CA

6
þBCO

�
ln

�
ln ðQ2=Λ2

QCDÞ
ln ðμ2b=Λ2

QCDÞ
��

þOðα2sÞ:

ð30Þ

Note that SA is spin independent and thus the same for all
convolutions.
We note that the perturbative Sudakov factor for our

process is quite different from the one of [23], where it is
assumed that the SF also leads to a factor SA given in
Eq. (28), like for TMD fragmentation functions. This leads
to a larger Sudakov factor and as a consequence to more
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Sudakov suppression. We then find smaller values for the
asymmetry, but the shape of the asymmetry is quite similar.
The above perturbative expression for the Sudakov

factor is valid in the region b0=Q ≤ bT ≤ bT;max. The
lower limit is the point beyond which μb becomes larger
thanQ, such that the Sudakov integral flips sign. The upper
limit marks the point where perturbation theory starts to
fail, which is not exactly known. It is common to take
bT;max ¼ 0.5 or 1.5 GeV−1 in phenomenological analyses.
The two limits to the bT integration are implemented in

different ways. One way to ensure b0=Q ≤ bT is to consider
the replacement [22]

μb → μ0b ¼
Qb0

QbT þ b0
ð31Þ

in the Sudakov factor, which effectively boils down to a
different resummation: in logarithms of μ0b=Q rather than
μb=Q. For consistency this is then also the scale one should
use in the TMDs and SFs. In this way the perturbative
expression for SA is valid for all bT ≤ bT;max. Often a
slightly different replacement is considered [36]

μb → μ̃0b ¼
b0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ b20=Q
2

p : ð32Þ

However, we will use the μ0b replacement for our predic-
tions. We will comment on this choice below.
Different ways to ensure that bT ≤ bT;max in the pertur-

bative expression have been employed, but the most
common one is the b�T method [37],

b�TðbTÞ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðbT=bT;maxÞ2
q : ð33Þ

This is introduced in the following way:

ŴðbTÞ≡ Ŵðb�TÞe−SNP ; ð34Þ

where for Ŵðb�TÞ one can always use the perturbative
expression for the Sudakov factor and the nonperturbative
Sudakov factor SNP makes up for the difference to the real
ŴðbTÞ. This factor can only be extracted from data and is in
principle different for different convolutions. In addition,
SNP depends on the prescriptions used to separate the
perturbative and nonperturbative components inside the
convolution. There are different parametrizations used in
the literature, but typically it is chosen to be a Gaussian.
In general, it is Q dependent and of the form [37]

SNPðbT ;QÞ¼ ln

�
Q
QNP

�
gðbTÞþgTMDðbTÞþgSFðbTÞ; ð35Þ

where QNP is a parameter with the dimension of mass that
typically is chosen to be (near) the smallest scale at which
perturbation theory is expected to be valid; of course, any
change in QNP can be compensated for by a change in the
other terms. The specific form of SNP will be discussed in
the next section. General constraints are that expð−SNPÞ
should be unity at bT ¼ 0, and it should smoothly vanish
at large bT , in order to exclude contributions from (far)
outside the proton. It also guarantees convergence of the
convolutions.
Implementing both (31) and (33) should be done in the

right order, i.e.,

μb → μ0b ¼
Qb0

QbT þ b0
→ μ0b� ¼

Qb0
Qb�T þ b0

; ð36Þ

or similarly for μ̃0b. In this way one ensures that SAð0Þ ¼ 0.
This is also the scale that one should adopt in the TMDs
and SFs.
If we take all the above into account, the convolutions

read

C½fg1Δ½n�� ¼
Z

∞

0

dbT
2π

bT J0ðbTqTÞe−SAðb
�
T ;Q;μ0

b� Þe−SNPðbT ;QÞ f̂g1ðx; b�TÞΔ̂½n�ðb�TÞ; ð37Þ

C½wh⊥g
1 Δ½n�

h � ¼ −
Z

∞

0

dbT
2π

bT J2ðbTqTÞe−SAðb
�
T ;Q;μ0

b� Þe−SNPðbT ;QÞ ĥ⊥g
1 ðx; b�TÞΔ̂½n�

h ðb�TÞ; ð38Þ

where we suppressed the dependence on the scale
ffiffiffi
ζ

p ¼ μ ¼ μ0b� in the TMDs and SFs. At this perturbative scale, the bT
dependence of the TMDs and SFs can be calculated. For the TMDs these “perturbative tails” are [38]

f̂g1ðx; bT ; μ2b; μbÞ ¼ fg=Pðx; μbÞ þOðαsÞ þOðbTΛQCDÞ; ð39Þ

ĥ⊥g
1 ðx; bT ; μ2b; μbÞ ¼ −

αsðμbÞ
π

Z
1

x

dx0

x0

�
x0

x
− 1

��
CAfg=Pðx0; μbÞ þ CF

X
i¼q;q̄

fi=Pðx0; μbÞ
�
þOðα2sÞ þOðbTΛQCDÞ: ð40Þ
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One sees that both expressions are determined by the
collinear distributions fi=P, but start at different orders in

αs, the reason being that there is no collinear version of h
⊥g
1 .

The leading order perturbative transverse momentum tail
of Δ̂½n� has been studied in [23], where it is observed that the
tail of Δ½n�

h would require a study at higher order in αs.
However, the Fourier transformed functions, i.e., the per-
turbative small-b expressions of the SFs, both start at order
α0s , in contrast to the TMDs discussed above. This order α0s
contribution stems from the small transverse momentum
part, irrespective of whether it is the simple Δðk2

TÞ ¼
Δhðk2

TÞ ¼ δ2ðkTÞ expression or more realistic smeared-
out versions of Δðk2

TÞ and Δhðk2
TÞ. Given the uncertainty in

the αs corrections to the tails of the SFs, here we will simply
adopt the LO description in terms of the LDMEs.
In this section we have discussed all perturbative ingre-

dients to perform TMD evolution numerically at leading
order in αs. In order to make numerical predictions we need
to discuss the nonperturbative Sudakov factor in greater
detail. As this factor is unknown for gluons, we need to
estimate the uncertainty this introduces in the predictions.

A. Nonperturbative Sudakov
factor and error estimation

A parametrization for SNP was obtained from fits to low
energy SIDIS data as well as higher energy DYand Z boson
production data [34]

SNPðbT ;QÞ ¼
�
g1 ln

Q
2QNP

þ g2

�
1þ 2g3 ln

10xx0
x0 þ x

��
b2T;

ð41Þ
with g1¼0.184GeV2, g2¼0.201GeV2, g3¼−0.129GeV2,
x0 ¼ 0.009, QNP ¼ 1.6 GeV, and bT;max ¼ 1.5 GeV−1.
We take this expression as our starting point for two fixed
small x values and Casimir scaled (i.e., multiplied by a
factor CA=CF) in order to apply to gluons,

SNPðbT ;QÞ ¼
�
A ln

Q
QNP

þ BðxÞ
�
b2T; with

A ¼ CA

CF
g1 ¼ 0.414 GeV2: ð42Þ

The B-term can be thought of as related to the intrinsic
transverse momentum of the TMDs, which generally is x
dependent. By Fourier transforming a simple Gaussian
dependence for fg1ðx;p2

TÞ ∝ exp½−p2
T=hp2

Ti�, we obtain B ≈
hp2

Ti=4 (at Q ¼ QNP). Of course, the B-term is not neces-
sarily the same for the h⊥g

1 ðx;p2
TÞ convolution, but for

simplicity we do not distinguish between these cases.
Matching Eqs. (41) and (42) for the x values that we will
consider yields the specific B values shown in Table I.
To perform an error estimate and to assess the impor-

tance of SNP for the size of the convolutions and

asymmetry, we will vary A within the extreme limits
following a previous study [12], instead of taking the
one quoted in Eq. (42). The idea is that one expects the
expð−SNPÞ term to be non-negligible (here defined as being
larger than 10−3) anywhere between bT;max and the charge
radius of the proton. If the expð−SNPÞ term becomes
negligible around bT;max already, then there will be hardly
any nonperturbative contribution outside the perturbative
regime, which is not realistic. On the other hand, one does
not expect significant contributions beyond the charge
radius of the proton, offering a generous upper bound.
To implement this range, we define a value bT;lim such that
at large Q, where the A-term is dominant and the B-term
can be neglected, exp½−SNP� becomes negligible, i.e.,
∼10−3. Considering bT;lim as the diameter, since it is
conjugate to qT , r is defined as the characteristic radius
r ¼ bT;lim=2 that can be thought of as the range over which
the interactions occur from the center of the proton. For
three values of bT;lim or r we determined the A values at
Q ¼ 12 GeV, which are shown in Table I. Note that A ¼
0.414 GeV2 from Eq. (42) lies roughly in the middle of
this range.
We will include the B-term in SNP as it is needed for

smaller Q values and large bT;lim values. This is illustrated
in Fig. 2: the product exp½−SA� exp½−SNP� at Q ¼ 3 GeV
receives large perturbative contributions from SA at large
bT , all the way up to or even beyond the proton radius. This
results in an upward bump at small qT in the convolutions,

in particular in C½wh⊥g
1 Δ½n�

h �. Moreover, at small Q the limit
of B → 0 can result in a violation of the positivity bound for

the convolutions: C½wh⊥g
1 Δ½n�

h � ≤ C½fg1Δ½n��. For larger Q
values, the curves with and without the B-term lie increas-
ingly closer to each other, as expected.

IV. NUMERICAL PREDICTIONS FOR THE
AZIMUTHAL ASYMMETRY

For the numerical calculations we can use different
sets of extractions of CO LDMEs for the J=ψ case.

TABLE I. Values of the parameters A and B used in SNP. Top:
the A values are shown along with the corresponding bT;lim and r
determined at Q ¼ 12 GeV. Bottom: the B values are shown
determined by x.

bT;lim ðGeV−1Þ r½fm ∼ 1=ð0.2 GeVÞ� AðGeV2Þ
2 0.2 0.80
4 0.4 0.20
8 0.8 0.05

x BðGeV2Þ
10−1 0.456
10−2 0.521
10−3 0.715
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These values are obtained from fits to Tevatron, RHIC, and
LHC data and are summarized in Table II. Most of these
results are obtained from next-to-leading order analyses,
except for the Sharma-Vitev (SV) set, which is based on a
leading order calculation. The mass of the J=ψ (M) and the
charm quark (mc) are taken to be 3.1 and 1.4 GeV,
respectively.
The perturbative tails of the TMDs in terms of the

collinear quark and gluon parton distributions functions
(PDFs) are computed by using the MSTW2008LO PDF
set [43]. Furthermore, we employ one-loop running of αs.
To determine the QCD scale we matched αs to the PDF
set: αsðMZÞMSTW2008LO ⇒ ΛQCD ¼ 0.255 GeV. For com-
putations with Q ¼ 3GeV < mb ≈ 4–5 GeV, we use
nf ¼ 4 instead of 5.
As an illustration of the typical features of the TMD

evolution of the convolutions qTC½f⊥g
1 Δ½n��, qTC½wh⊥g

1 Δ½n�
h �,

and their ratio, in Fig. 3 we show the results for one
particular LDME, namely h0jOJ=ψ

8 ð1S0Þj0i from Chao-
Ma-Shao-Wang-Zhang (CMSWZ). Results are shown for
a range of Q values of relevance to the EIC, Q ¼ 3, 6, 12,

20, and 30 GeV, and for three different values of x: 10−3,
10−2, and 10−1. Although x ¼ 10−1 lies outside the gluon
dominated region and we do not include the contribution
from quark TMDs, we include this case for illustration
purposes in order to see the results for higher Q values. At
the two smaller x values the contribution from the collinear
quark PDF to the tail of h⊥g

1 in Eq. (40) is non-negligible,
therefore, we do include that.
We observe that the qT-spectrum broadens and the

estimated uncertainty band from the unknown nonperturba-
tive contributions becomes smaller with increasingQ, as one
would expect. All curves are shown for qT < Q=4 in order
to ensure that the positivity bound is respected. For most
curves this restriction is sufficient, except for x ¼ 10−1 the
restriction qT < Q=4 is not enough for the higher Q values.
Therefore, we cut off at an even lower qT when making
azimuthal asymmetry predictions for x ¼ 10−1.
In our computations the ratio of convolutions R violates

the positivity bound within what is usually expected to be
the range of validity of TMD factorization qT < Q=2, as
shown in Fig. 4. This problem originates from the very
small b region. This is clear from Fig. 4, where we compare
the results for the two ways to ensure that bT ≥ b0=Q in
the perturbative Sudakov factor that we discussed earlier:
μb → μ0b or μb → μ̃0b. The region where the asymmetry
starts to become sensitive to how the very small b region
is treated roughly corresponds to the region where the
positivity bound is violated. As far as we know this is the
first instance of an azimuthal asymmetry to display
sensitivity to the very small b region well within what is
commonly considered the TMD region. Since the replace-
ment μb → μ0b leads to slightly smaller asymmetries,

FIG. 2. bT times the product of the Sudakov factors as a function of bT for Q ¼ 3 and 20 GeV, which shows the importance of the
extra B-term in SNP at small Q and large bT;lim, suppressing the unwanted contributions at large bT . Here bT;max ¼ 1.5 GeV−1 and B at
x ¼ 10−3 is used.

TABLE II. Numerical values of the LDMEs for J=ψ production
in units of 10−2 GeV3.

h0jOJ=ψ
8 ð1S0Þj0i h0jOJ=ψ

8 ð3P0Þj0i=m2
c

CMSWZ [39] 8.9� 0.98 0.56� 0.21
SV [40] 1.8� 0.87 1.8� 0.87
BK [41] 4.5� 0.72 −0.54� 0.16
BCKL [42] 9.9� 2.2 0.49� 0.44
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we adopt that choice in what follows, but for qT < Q=4 that
choice does not really matter.
Returning to the discussion of Fig. 3, generally the

maxima of the convolutions increase toward smaller Q,
except for the small Q cases. For qTC½fg1 Δ� this can be
understood from the significant relative decrease in

magnitude of the perturbative fg1 tail for smaller Q values
in combination with the Sudakov factors, where the B-term
is then of large influence. The decrease of qTC½wh⊥g

1 Δh� is,
on the other hand, predominantly due to the Sudakov
factors as the perturbative h⊥g

1 tail at these x values stays
approximately constant with varying Q.
The differences in behavior of the two convolutions

depends on various factors: the differences between the
tails of the TMDs, the Sudakov factors, and the type of
Bessel function. The product of the tail with the Sudakov
factors will go to zero at large bT and the presence of h⊥g

1 in
a convolution contributes to reducing the magnitude of the
integrand and to bT broadening. The h⊥g

1 tail is naturally
suppressed by order αs in comparison to the fg1 tail.
However, αsðμ0b� Þ is growing with bT , up to its upper
value ≈αsðb0=bT;maxÞ, and the h⊥g

1 tail can become larger in
comparison with the fg1 tail at large bT . This effect becomes
more pronounced for smaller x.
The consequence of the bT broadening is that more

damped oscillations of the J0 Bessel function in C½fg1Δ�
occur before the integrand becomes zero. Each additional
oscillation in the integrand brings the convolution closer to
zero and more oscillations fit in a given bT range when qT
increases. Therefore, C½fg1Δ� with smaller Q decreases

FIG. 3. The convolutions [using h0jOJ=ψ
8 ð1S0Þj0i from CMSWZ] times qT and the ratio of the convolutions R as a function of qT for

different values of Q with x ¼ 10−3 (left), x ¼ 10−2 (middle), and x ¼ 10−1 (right) using bT;lim ¼ ½2∶8� GeV−1.

FIG. 4. R as a function of qT , using μ0b� and μ̃0b� . The dashed
boundary line denotes the bT;lim ¼ 2 GeV−1 computation and the
solid boundary line denotes the bT;lim ¼ 8 GeV−1 computation.
The dashed horizontal black line denotes the positivity bound.
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faster. The situation is different for C½wh⊥g
1 Δh� that con-

tains the J2 Bessel function. This function starts its damped
oscillation at zero and goes up. The consequence is that the
bT integrals benefit from unsuppressed intermediate bT
values. This results in a peak maximum before large bT
oscillations will bring the convolution down toward zero in
a similar way as for C½fg1Δ�. This point is at smaller qT for
smaller Q taking into account the bT broadening of the
Sudakov factors. Another crucial difference is that the
envelope of J2 tends slower toward zero than the J0 one
with increasing bT . The consequence is that C½wh⊥g

1 Δh�
falls slower than C½fg1Δ�. Hence, R and the azimuthal
asymmetry always grow with qT , but more slowly for
larger Q. In addition, as the large bT values in C½wh⊥g

1 Δh�
are less suppressed than in C½fg1 Δ�, the azimuthal asym-
metry and C½wh⊥g

1 Δh� are more sensitive to the changes
in SNP.
Varying x in the computations changes the convolutions.

First, we notice that the overall magnitude of the con-
volutions is smaller for larger x, because the collinear gluon

PDF is less prominent at larger x. On the other hand, the
magnitude of R becomes higher for large Q, but lower for
small Q when increasing x in the range of chosen values.
Second, the shape of the perturbative TMD tails is different,
in particular the fg1 tail is broader in bT for larger x. On top
of that, the B-term in SNP is smaller, as can be seen in
Table I. Together, the broader bT integrands make these
convolutions go faster to zero for larger x. This explains the
behavior of the magnitude of R and that the azimuthal
asymmetry becomes less straight at x ¼ 10−1, especially
visible for larger Q.
After these general qualitative observations, we

present predictions for the azimuthal asymmetry at the
EIC, shown in Figs. 5–8, using the LDMEs from Table II
and s ¼ Q2=ðxByÞ for two

ffiffiffi
s

p
values,

ffiffiffi
s

p ¼ 45 andffiffiffi
s

p ¼ 140 GeV, commonly considered for the EIC. We
present only results using the CMSWZ and SV LDMEs

values, because h0jOJ=ψ
8 ð3P0Þj0i from the BK set is

negative, which can lead to negative cross sections for
certain values of Q when used in our LO expressions, and

FIG. 5. The azimuthal asymmetry as a function of qT forQ ¼ 3 GeV and for the CMSWZ and SV LDMEs. Left is for
ffiffiffi
s

p ¼ 140 GeV
and x ¼ 10−3. Right is for

ffiffiffi
s

p ¼ 45 GeV and x ¼ 10−2.

FIG. 6. The azimuthal asymmetry as a function of qT for x ¼ 10−2 using the CMSWZ (left) and SV (right) LDMEs for various Q
values that are kinematically allowed.
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the values of Bodwin-Chung-Kim-Lee (BCKL) are very
similar to the CMSWZ values, but with larger errors. In
general, the asymmetry is (much) larger when using the
CMSWZ set compared to the SV set, especially at small Q.
TMD evolution predicts the azimuthal asymmetry to grow
with qT as discussed previously, and we see that the choice
of LDMEs is of large influence in the predictions. This
results in an uncertainty in the predictions that is larger than
that due to SNP. In the plots we restrict to the central values
of the LDME fits, but of course, taking into account the
uncertainties in these values would broaden the bands
further, such that the bands for CMSWZ and SV start to
overlap more, giving rise to a large range of possible
asymmetry values at the EIC. Asymmetries anywhere
between 1% and 20% may thus be expected at the EIC,
which seem feasible to measure. Improved constraints on
the LDMEs, and more generally on the TMD shape
functions, can very likely be obtained in this way.

V. DISCUSSION AND CONCLUSIONS

We have discussed the process of semi-inclusive electro-
production of J=ψ ’s. Although the initial proton and electron

beams and the final-state J=ψ are all unpolarized, there is an
effect from the linear polarization of gluons inside unpo-
larized protons. It gives rise to a cos 2ϕT azimuthal asym-
metry for which we obtained predictions for EIC kinematics.
We have included the effect of TMD evolution in order to
obtain more realistic estimates. In contrast to a leading order
Gaussian TMD model prediction [7], we find that the
azimuthal asymmetry grows monotonically in the TMD
regime, more in line with the predictions from the gener-
alized partonmodel approach with additional gluon radiation
[44], except that the magnitude can be much larger by as
much as an order of magnitude depending on the LDME
set considered. Of course, the asymmetry cannot grow
beyond 1, therefore, the expectation is that a maximum will
be reached outside the TMD region. We found the latter
region to be significantly smaller than usually expected. For
this particular process and asymmetry our computations
indicate that a bound of qT < Q=4 is required in order to
respect the positivity bound and to not become sensitive to
very small b values in the TMD region.
Larger and monotonically rising asymmetries have also

been obtained in [10] for the McLerran-Venugopalan

FIG. 7. The azimuthal asymmetry as a function of qT for x ¼ 10−1 using the CMSWZ LDMEs.

FIG. 8. The azimuthal asymmetry as a function of qT for x ¼ 10−1 using the SV LDMEs.
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model including nonlinear evolution x, showing decreasing
asymmetries with decreasing x values. In our results the x
dependence of the asymmetries is less systematic in the
EIC kinematic range, as it depends on the considered Q
value and on the LDMEs. Especially SV at Q ¼ 3 GeV
does not follow the observed trends and is exceptionally
small due to a cancellation of the S- and P-wave LDMEs in
Eq. (10) at Q2 near M2.
In our calculation we have restricted to leading order

expressions for the small-bT expressions for the TMDs
and the SFs. Assuming universality of the SFs we have
adopted a perturbative Sudakov factor that was derived for
pp → ηcX [24], where there is no double logarithm
associated with the SF of the heavy quarkonium state,
only a single logarithm. The prefactor of the latter still
needs to be confirmed by direct computation. Especially
the absence of a double logarithmic contribution from the
heavy quarkonium state reduces the amount of Sudakov
suppression and brings the violation of the positivity bound
down to smaller values of qT .
We have estimated the uncertainty from the nonpertur-

bative Sudakov factor and found that the uncertainty in the
CO LDMEs forms the dominant source of uncertainty.
In some cases this resulted in an order of magnitude

uncertainty in the predicted asymmetry. In [45] it is pointed
out how one can use the polarization of the J=ψ or the
comparison to open heavy quark pair production to reduce
this uncertainty through measurements at the EIC, but
given this uncertainty, going to the next order in αs in the
TMD evolution calculation will not lead to much more
precise predictions at the current stage. Nevertheless, the
conclusion from our numerical study is that asymmetries
are expected to be measurably large, especially at the larger
center of mass energy of 140 GeV.
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