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We reanalyze the anomalous angular distribution of lepton pairs produced in a pion-induced Drell-Yan
process by taking into account the Glauber gluon effect in the kT factorization theorem. Compared to the
previous study, we adopt the realistic parton distribution functions (PDFs) for a proton from the Coordinated
Theoretical-Experimental Project on QCD and for a pion from the xFitter, include the QCD evolutions of the
strong coupling and the PDFs, and integrate the differential cross section over the kinematic regions for the
NA10, E615 and COMPASS experiments. These improvements then allow rigorous confrontations of
theoretical results with the data. It is shown that the lepton angular distribution and the violation of the
Lam-Tung relation measured in all the above experiments can be well accommodated with a single Glauber
phase. We illustrate the Glauber effect in the geometric picture for a Drell-Yan process, and its distinction
from the conventional Boer-Mulders mechanism. The observables are pointed out, which can be used to
discriminate the two proposals, when data become more precise.
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The anomalous angular distribution of lepton pairs
produced in a pion-induced Drell-Yan process has been
a long-standing puzzle. To explain this anomaly, we write
the relevant differential cross section as [1,2]

1

σ

dσ
dΩ

¼ 3

4π

1

λþ 3

�
1þ λ cos2 θ þ μ sin 2θ cosϕ

þ ν

2
sin2 θ cos 2ϕ

�
; ð1Þ

with dΩ≡ d cos θdϕ, where θ (ϕ) is the polar (azimuthal)
angle of one of the leptons in the Collins-Soper (CS) frame
[3]. We consider the process at an intermediate lepton-
pair invariant mass Q, to which the virtual photon contri-
bution dominates over the Z boson one. The coefficients λ
and ν are supposed to obey the Lam-Tung (LT) relation δ≡
2νþ λ − 1 ¼ 0 [2] at a low lepton-pair transverse momen-
tum qT , which has been shown to hold largely under
perturbative corrections [4,5] and under parton-transverse-
momentum and soft-gluon effects [6,7]. Though the LT
relation was verified experimentally in the proton-proton and
proton-deuteron Drell-Yan processes [8], significant viola-
tion in the pion-induced ones was observed by the NA10 [9]
and E615 [10], and recently by COMPASS [11]: the
substantial deviation from δ ¼ 0 clearly increases with qT .

The above anomaly has stimulated extensive theoretical
investigations on its origin, which mainly resort to non-
perturbativemechanisms [12–22]. For example, the vacuum
effect proposed in [12,13] causes the transverse-spin corre-
lation between colliding partons, and the Boer-Mulders
(BM) functions [16] introduce the spin-transverse-momen-
tum correlation of a parton in an unpolarized hadron. As
pointed out in [19], the vacuum effect is flavor blind, so it is
difficult to differentiate the pion-proton and proton-proton
processes. The proposal based on the BM functions can
differentiate these two processes, because a colliding
antiquark is a valence parton in a pion, but a sea parton
in a proton [23]. Note that the BM functions resolve the
violation of the LTrelation by increasing the coefficient ν in
Eq. (1) without changing λ. Our resolution [21] relies on
infrared Glauber gluons appearing in the kT factorization
theorem for complicated QCD processes [24,25], whose
effect might be significant due to the unique role of a pion
as a Nambu-Goldstone (NG) boson and a qq̄ bound state
simultaneously [26]. The Glauber effect can modify the
perturbative results of both λ and ν, and account for the LT
violation observed in the pion-induced Drell-Yan process.
An antiproton is not a NG boson, so its associated Glauber
effect is expected to be weak, and the LT relation should be
respected. It was thus suggested that examining the LT
relation in a proton-antiproton Drell-Yan process at low qT
could discriminate the two mechanisms [21]: if violation is
(not) observed, our (BM) proposal is irrelevant.
In this paper, we will elaborate the proposal based on

the Glauber gluon effect, and confront it with the data,
especially the preliminary COMPASS data [11], for the
pion-induced Drell-Yan process. The purpose of our
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previous study [21] was to demonstrate the phenomeno-
logical impacts of the Glauber effect, and to estimate the LT
violation at fixed rapidity y and lepton-pair invariant
mass Q. This is the reason why naive models for the
parton distribution functions (PDFs) of a proton and a pion
were employed in the factorization formulas to evaluate
the angular coefficients. Hence, the theoretical results
presented in [21] might not be compared with the data
seriously. In the present work, we will adopt the realistic
PDFs for a proton from the CTEQ (CT18) [27] and for a
pion from the xFitter [28]. The latter are similar to those
from the JAM [29]. We will also implement the QCD
evolutions of the strong coupling αs in the hard kernels
involved in the factorization formulas and of the PDFs, and
integrate the differential cross sections over the kinematic
regions considered in different experiments. As observed
in [30,31], the theoretical outcomes for the three angular
coefficients are sensitive to the variation of Q actually. The
above improvements then allow rigorous confrontations of
our results for low qT spectra with the data. It will be shown
that the Glauber effect enhances both λ and ν in the
perturbation theory [32,33], and leads to a better agreement
with the NA10 data [9]. The perturbative results for μ
remain small under the Glauber effect, and match the data
within experimental uncertainties. We then make predic-
tions for the E615 [10] and COMPASS [11] measurements
with the same Glauber effect, and confirm that the observed
LT violation is also accommodated.
It has been found [33] that the contribution to the

aforementioned Drell-Yan processes from the qq̄ (quark-
antiquark) channel is more important than from the qg
(quark-gluon) channel. For instance, the former contributes
more than 80% of the total cross section for the COMPASS
kinematics [30]. This observation is reasonable, since the
region with large parton momentum fractions dominates
in fixed-target experiments, where gluonic partons have
smaller distributions. Besides, currently available data are
not precise enough for determining the sea and gluon
distributions unambiguously [28]. It has been verified that

the coefficients λ and ν are rather insensitive to resumma-
tion effects [32] and to next-to-leading-order (NLO) cor-
rections at small qT ≤ 3 GeV [30,32], which we are
focusing on. Therefore, we will confine ourselves to the
leading order (LO), i.e., OðαsÞ qq̄ contribution without
the resummation in the investigation below. Note that
tungsten was used in all the experiments involving pions
[9–11], but we will not take into account nuclear effects as
in [32]. The LO parton-level diagrams for the scattering
q̄ðp1Þ þ qðp2Þ → l−ðk1Þ þ lþðk2Þ þ gðk3Þ in the pion-
proton Drell-Yan process, where the variables in the
parentheses label the parton momenta with k3 ¼ p1 þ p2 −
k1 − k2, are displayed in Fig. 1. The momentum p1 (p2)
with the dominant plus (minus) component is carried by the
valence antiquark (quark) in the pion (proton). The explicit
expressions of the corresponding hard kernels are referred
to [7,34–38].
We first briefly review the appearance of infrared

Glauber divergences in radiative corrections to Fig. 1. It
is obvious that the low qT spectra of lepton pair productions
in a Drell-Yan process meet the necessary conditions for the
existence of Glauber gluons: the kT factorization theorem
is the appropriate theoretical framework for the low qT
spectra, in which the dependence on parton transverse
momenta should be kept; a final-state parton is required to
balance the lepton-pair qT, so at least three partons
participate the hard scattering; the lepton-pair momentum
q ¼ k1 þ k2 is restricted in a finite phase space, such that
the final-state parton is not fully inclusive in kinematics,
and the Glauber divergences in various diagrams do not
cancel exactly. We stress that a final-state parton is needed
to help balance qT , as qT is about few GeV, the region
where the LT violation is significant. The intrinsic trans-
verse momenta of the initial-state partons alone are insuf-
ficient to sustain such qT . According to the elucidation in
[21,24,25,39], radiative gluons emitted by a spectator line
in the pion (like a rung gluon that can be exchanged
between the two antiquarks of the momentum p1 in Fig. 1),
and attaching to lines in other subprocesses produce

(c)(b)(a)

FIG. 1. LO diagrams for q̄ðp1Þ þ qðp2Þ → l−ðk1Þ þ lþðk2Þ þ gðk3Þ in the pion-proton Drell-Yan process, where the variables in the
parentheses label the parton momenta.
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Glauber divergences. For the diagrams in Fig. 1, the
Glauber divergences are extracted from the attachments
to the quark of the momentum p2 in the proton, to the gluon
of the momentum k3, and to the vertical quark lines [39].
Note that a Glauber gluon, different from an ordinary soft
gluon, gives rise to an imaginary infrared logarithm. To get
a real cross section, at least two Glauber gluons are present,
which may be located on the same side or on the opposite
sides of the final-state cut. It has been shown that the
infrared divergences from these two types of gluon allo-
cations do not cancel exactly in the kT factorization
theorem [25], and that the imaginary Glauber logarithms
can be factorized into a universal nonperturbative phase
factor to all orders in αs at low qT [39].
The transverse momentum lT of a Glauber gluon flows

through the parton-level hard kernels represented by the
two vertical quark lines in Fig. 1 [39]. The two vertical
quarks in Fig. 1(a) have small invariant masses in the
positive rapidity region of the lepton pair, and those in
Fig. 1(b) have small invariant masses in the negative
rapidity region. However, the two vertical quarks in
Fig. 1(c) cannot have small invariant masses simultane-
ously: the quark on the left-hand (right-hand) side of the
final-state cut has a small (large) invariant mass, as the
lepton pair is produced with positive rapidity. This differ-
ence in the hard kernels, as the differential cross section is
integrated over the rapidity, renders the net Glauber effect
from the two sides of the final-state cut suppressed for
Fig. 1(c) compared to those for Figs. 1(a) and 1(b). To
elaborate the above statement, we quote the factorization
formula in the impact-parameter space for a Drell-Yan
process with Glauber gluon exchanges [39]Z

d2bld2brd2b0ld
2b0re−iSðblÞHðbl − b0

l;br − b0
rÞeiSðbrÞ

×Φπðb0
l;b

0
rÞe−iqT ·ðbl−br−b0

lþb0
rÞ…; ð2Þ

where only the relevant factors are shown explicitly, and the
exponentials e�iS organize the Glauber gluons to all orders
in αs. In the presence of the Glauber gluons that carry
transverse momenta, both the Fourier-transformed hard
kernel H and transverse-momentum-dependent (TMD)
pion PDF Φπ depend on two impact parameters. That is,
the partons on the left-hand (labeled by the subscripts l) and
right-hand (labeled by the subscripts r) sides of the final-
state cut have different transverse coordinates.
It is easy to see from Eq. (2) that both the arguments

bl − b0
l and br − b0

r can be large, when the two vertical
quarks have small invariant masses as they do in Figs. 1(a)
and 1(b). Namely, bl (br) is different from b0

l (b
0
r), and takes

a value in a wide range, so there is no strong cancellation
between the Glauber factors e−iSðblÞ and eiSðbrÞ from the two
sides of the final-state cut. When one of the vertical quarks,
say, the one on the right-hand side of the final-state cut has a
large invariant mass, the region with small br − b0

r, i.e., with

br ≈ b0
r dominates. For a finite qT of order 1 GeV, the

Fourier factor in Eq. (2), exp½−iqT · ðbl − br − b0
l þ b0

rÞ�≈
exp½−iqT · ðbl − b0

lÞ�, enforces the condition that bl cannot
be very different from b0

l. It turns out that both bl and br are
restricted in the support of b0

l and b0
r for Φπðb0

l;b
0
rÞ defined

by the transverse extent of the pion. The cancellation
between e−iSðblÞ and eiSðbrÞ then becomes stronger, explain-
ing why the net Glauber effect is minor for Fig. 1(c). Below,
we will neglect the Glauber effect on Fig. 1(c), and assume
that Figs. 1(a) and 1(b) acquire an additional factor cosS
[21]. The Glauber phase S is proportional to the product of
αs and an infrared logarithm, if computed in the perturbation
theory. The expansion of the Glauber factor cos S in powers
of αs reflects the fact that an odd number of Glauber gluons
does not contribute to a real cross section. Because the
Glauber phase is of nonperturbative origin, and its explicit
expression is unknown, we simply treat S as a constant,
which parametrizes the Glauber effect averaged over
the impact parameters, i.e., over the internal transverse
momenta. The complexity of the analysis is thus greatly
reduced by avoiding the lengthy convolution in Eq. (2). The
simplified factorization formulas with the average Glauber
phase S are derived in detail in the Appendix.
It has been pointed out [40] that a Glauber factor, despite

being universal once the kT factorization is established,
generates different effects in different processes. The
reason is that a Glauber factor makes its impact through
the convolution with other subprocesses, including TMD
hadron wave functions. As demonstrated in [40], the pion
(ρ meson) TMD wave function with a weak (strong) falloff
in a parton transverse momentum leads to significant
(moderate) Glauber effects on two-body hadronic B meson
decays. This observation is consistent with the dual role of
a pion as a massless NG boson and as a qq̄ bound state,
which requires a tighter spatial distribution for its leading
Fock state. The Glauber effect has been introduced to
resolve several puzzling data in two-body hadronic heavy
flavor decays into pions, such as the abnormally large
B0 → π0π0 and π0ρ0 branching ratios [41–43], the very
different direct CP asymmetries in the Bþ → π0Kþ and
B0 → π−Kþ decays [44,45], and the difference between the
D0 → πþπ− and KþKþ branching ratios that exceeds the
expected SU(3) symmetry breaking [46–48]. It has been
elaborated recently that the data of the D → ππ and πK
branching ratios reveal prominent Glauber effects [48].
We start with the differential cross section for the pion-

proton Drell-Yan process,

dσ
dQ2dydq2TdΩ

¼ N
s2

�
H0ðQ2; y; q2TÞ þHλðQ2; y; q2TÞcos2θ

þHμðQ2; y; q2TÞ sin 2θ cosϕ

þ 1

2
HνðQ2; y; q2TÞsin2θ cos 2ϕ

�
; ð3Þ
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where the normalization constant N is irrelevant to the evaluations of the angular coefficients, and s is the center-of-mass
energy squared. The functions Hi, i ¼ 0, λ, μ and ν, are written as the convolutions of the hard kernels Ĥi with the pion
PDF ϕπ and the proton PDF ϕP at the scale μ ¼ Q,

HiðQ2; y; q2TÞ ¼
αsðQ2Þ
Q2

Z
dx1dx2ϕπðx1; Q2ÞĤiðx1; x2; Q2; y; q2TÞϕPðx2; Q2Þ

× δ

�
x1x2 − ðx1e−y þ x2eyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ q2T

p
ffiffiffi
s

p þQ2

s

�
: ð4Þ

The δ function, arising from the on-shell condition k23 ¼ 0,
specifies the relation between the parton momentum
fractions x1 and x2. It has been checked that the alternative
choice μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ q2T

p
yields very similar results even at

LO [32]. The angular coefficients in Eq. (1) and the LT
violation δ are defined by

λ; μ; ν; δ ¼
R
dQ2dyHλ;μ;ν;δðQ2; y; q2TÞR
dQ2dyH0ðQ2; y; q2TÞ

; ð5Þ

where the factorization formula for Hδ is similar to Eq. (4)
with the hard kernel Ĥδ. We point out that ν is more
sensitive to the changes of PDFs than λ, and that μ is equal
to zero, when the pion and proton PDFs have the same
functional form [21].

To present the expressions of the LO hard kernels Ĥi,
we first choose the parton and lepton momenta in the CS
frame as

p1 ¼ E1ð1;− sin θ1; 0; cos θ1Þ;
p2 ¼ E2ð1;− sin θ1; 0;− cos θ1Þ;
k1 ¼ kð1; sin θ cosϕ; sin θ sinϕ; cos θÞ;
k2 ¼ kð1;− sin θ cosϕ;− sin θ sinϕ;− cos θÞ; ð6Þ

where E1 and E2 are the parton energies, k is the lepton
energy, and θ1 is the angle between the momentum p1 and
the z axis. In terms of the kinematic variables in Eq. (6), Ĥi
from the qq̄ channel modified by the Glauber factor
cos S read

Ĥ0¼
�
E1

E2

þE2

E1

��
1

sin2θ1
þ1

2

�
þðcosS−1Þ

��
2E1E2

k2
cos2θ1−

E1

E2

−
E2

E1

��
1

sin2θ1
−
1

2

�
þ
�

k
E1

þ k
E2

−2

�
2

sin2θ1

�
; ð7Þ

Ĥλ ¼
�
E1

E2

þ E2

E1

��
cot2θ1 −

1

2

�
þ ðcos S − 1Þ

��
E1

E2

þ E2

E1

− 2

��
cot2θ1 −

1

2

�
þ E1E2

k2
cos2θ1 − 1

�
; ð8Þ

Ĥμ ¼
�
E2

E1

−
E1

E2

�
cot θ1 þ ðcos S − 1Þ

�
E1 − E2

k
þ E2

E1

−
E1

E2

�
cot θ1; ð9Þ

Ĥν ¼
�
E1

E2

þ E2

E1

�
− ðcos S − 1Þ

�
2E1E2

k2
cos2 θ1 −

E1

E2

−
E2

E1

�
; ð10Þ

Ĥδ ¼
2ðcos S − 1Þ

sin2θ1

�
E1 − k
E2

þ E2 − k
E1

−
�
E1E2

k2
cos2θ1 − 1

�
ð1þ sin2θ1Þ

�
; ð11Þ

where those pieces multiplied by cosS − 1 arise from
Figs. 1(a) and 1(b). It is seen that the hard kernel Ĥδ for
LT violation δ vanishes as S ¼ 0. Compared to [21], an
overall factor 1= sin2 θ1, which depends on the lepton-pair
invariant mass Q, has been included. This factor was
neglected before, since it cancels in the ratios for defining
the angular coefficients at fixed Q. Here, we will integrate
the differential cross section over kinematic variables in
order to confront our results with the data rigorously.

We then transform the kinematic variables E1, E2, k, and
θ1 in the CS frame to those in the center-of-mass frame of
the colliding hadrons via [21]

k ¼ Q
2
; sin θ1 ¼

qTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ q2T

p ;

E1 ¼
e−y

cos θ1
x1P0

1; E2 ¼
ey

cos θ1
x2P0

2; ð12Þ
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with the pion and proton energies P0
1 ¼ P0

2 ¼
ffiffiffi
s

p
=2, and

obtain the hard kernels Ĥiðx1; x2; Q2; y; q2TÞ. It is found that
sin θ1 is proportional to the lepton-pair transverse momen-
tum qT , i.e., to the boost of the CS frame relative to the
center-of-mass frame. The constraint on the gluon energy
k03 > 0 together with the on-shell condition k23 ¼ 0 favors
the region of large momentum fractions,

ey
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ q2T

p
−Q2=

ffiffiffi
s

p
ffiffiffi
s

p
− e−y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ q2T

p ≤ x1 ≤ 1; ð13Þ

for an intermediate Q, which dominates in fixed-target
experiments.
We calculate the angular coefficients to be compared

with the NA10 data [9], adopting the PDFs for a proton
from the CT18 [27] and for a pion from the xFitter [28].
The integrations in Eq. (5) are performed over the range
Q ≥ 4 GeV for the pion beam energy Eπ ¼ 286 GeV, over

Q ≥ 4.05 GeV for Eπ ¼ 194 GeV, and over Q ≥ 4 GeV
for Eπ ¼ 140 GeV with the bottomonium region
8.5 GeV ≤ Q ≤ 11 GeV being excluded [32]. The cut
0 ≤ xπ ≤ 0.7 is also implemented with

xπ ¼
1

2

 
xF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4Q2

s

r !
; ð14Þ

xF being the Feynman variable. The variable xπ corre-
sponds to the parton momentum fraction x1, and xF
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4Q2=s

p
) is proportional to the longitudinal momen-

tum (energy) of the lepton pair in the limit k3 → 0 in the
center-of-mass frame of the colliding hadrons. The physical
ranges of Q and y for a given qT are those, in which x1 and
x2 take values between 0 and 1. The combination of the
above kinematic constraints leads to the ranges

1

2

�
b −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4

p �
≤ ey ≤

1

2

�
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4

p �
; Q2 ≤ 0.7s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4q2T
ð1 − 0.72Þs

s
;

1

2

�
b −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4

p �
≤ ey ≤

1

2

�
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4

p �
; 0.7s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4q2T
ð1 − 0.72Þs

s
≤ Q2 ≤ s − 2

ffiffiffi
s

p
qT;

a ¼ 0.72s −Q2

0.7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðQ2 þ q2TÞ

p ; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
Q2 þ q2T

r �
1þQ2

s

�
: ð15Þ

Equation (15) implies that the allowed range of y shrinks
with Q2, and y → 0 as Q2 approaches its upper bound
s − 2

ffiffiffi
s

p
qT .

The dependencies of the angular coefficients λ and ν
on the Glauber phase S for the pion beam energy
Eπ ¼ 194 GeV and the lepton-pair transverse momentum
qT ¼ 2.5 GeV under the cuts in Eq. (15) are displayed in
Fig. 2. It is found that the values of λ and ν at S ¼ 0, i.e., the

perturbative results without the Glauber effect, reproduce
those in [30,32]. Namely, the simplification made in our
calculation, i.e., considering only the LO qq̄ channel, is
justified. It is interesting to see that the Glauber effect
enhances both λ and ν, and the deviation from the LT
relation 2νþ λ − 1 ¼ 0 is then induced. As emphasized
before, this feature differentiates our resolution to the LT
violation from the one based on the BM functions, which
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FIG. 2. Dependencies of the angular coefficients (a) λ and (b) ν on the Glauber phase S for the pion beam energy Eπ ¼ 194 GeV and
the lepton-pair transverse momentum qT ¼ 2.5 GeV with the cuts in Eq. (15).
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increases only ν. Therefore, separate comparisons of
theoretical predictions with future precise data of λ and
ν is likely to discriminate the two proposals. We observe
that our results of ν are more sensitive to the variation of the
Glauber phase than those of λ, and that the NA10 data for ν
are more precise than for λ (and also more precise than the
E615 and COMPASS data). We thus fix S ¼ 0.8 by
collating Fig. 2(b) and the NA10 data for ν at Eπ ¼
194 GeV and qT ¼ 2.5 GeV, and employ this single input
to make predictions for all other quantities. With S ¼ 0.8,
the perturbative values of λ are enhanced by 10%, which is
not as strong as obtained in our previous naive estimate
[21], and those of ν are enhanced by a factor of 2. We
simply vary the Glauber phase to S ¼ 0.7 and S ¼ 0.9 to
assess the theoretical uncertainties, which are about 5% for
λ and 15% for ν. It is noticed that the angular coefficient μ
remains tiny [21]: it takes the value μ ¼ −0.028 for S ¼ 0.8
and qT ¼ 2.5 GeV, which is consistent with the NA10
data, and much smaller than the experimental errors. We
will not present the results of μ hereafter.
The changes of the angular coefficients λ and ν, and

the violation δ≡ 2νþ λ − 1 of the LT relation with the

lepton-pair transverse momentum qT for the Glauber phase
S ¼ 0.8 under Eq. (15) are exhibited in Fig. 3. We focus on
the low qT ≤ 3 GeV region, for which the kT factorization
theorem is more appropriate, and the Glauber effect
is expected to be significant. Note that the curve of ν in
Fig. 3(b) will go below the data for Eπ ¼ 194 GeV, if S is
set to 0.7, and those will go above the data for Eπ ¼ 286
and 140 GeV, if S is set to 0.9. This check supports our
choice S ¼ 0.8, which improves the overall agreement with
the NA10 data [9] of λ and ν for the three different pion
beam energies Eπ as indicated in Fig. 3. The decrease of λ
with qT is moderated a bit and the increase of ν with qT is
strengthened by the Glauber effect, such that the measured
LT violations δ are well accommodated. We point out
that all the functions HiðQ2; y; q2TÞ decrease with qT , but
HνðQ2; y; q2TÞ decreases more slowly under the Glauber
effect, explaining the large enhancement of ν. This feature
will be illustrated in the geometric picture near the end of
this paper. We have confirmed that the perturbative results
for δ, corresponding to S ¼ 0, vanish at LO, and coincide
with the horizontal axes in Fig. 3. The NLO results for δ,
being negative and nearly zero with magnitudes smaller
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FIG. 3. Dependencies of λ, ν, and the LT violation δ≡ 2νþ λ − 1 on the lepton-pair transverse momentum qT , and their comparisons
with the NA10 data [9] for the pion beam energies (a) Eπ ¼ 286 GeV, (b) Eπ ¼ 194 GeV, and (c) Eπ ¼ 140 GeV.
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than 0.1 in the region qT ≤ 3 GeV [30], still deviate from
the data obviously. We remind that the ascent of the curves
for δ in Fig. 3 should not extend to the high qT region,
where the collinear factorization holds, and the Glauber
effect is supposed to diminish. In fact, the LT violation
δ < 0with an opposite sign has been observed at high qT of
Z boson production in proton-proton collisions [49]. As to
the dependence on the pion beam energy, we find that the
results of λ (ν) increase (decrease) with Eπ for fixed qT , so
those of δ decrease with Eπ .
The kinematic cuts 4.05 ≤ Q ≤ 8.55 GeV, 0.2 ≤ xπ ≤ 1

and 0 ≤ xF ≤ 1 were implemented in the E615 experiment
with the pion beam energy Eπ ¼ 252 GeV [10]. We
perform the integrations in Eq. (5) over the ranges of y
and Q accordingly,

1

2

�
cþ

ffiffiffiffiffiffiffiffiffiffiffiffi
c2þ4

p �
≤ ey ≤

1

2

�
bþ

ffiffiffiffiffiffiffiffiffiffiffiffi
b2−4

p �
; asQ2 ≤ 0.22s;

1≤ ey ≤
1

2

�
bþ

ffiffiffiffiffiffiffiffiffiffiffiffi
b2−4

p �
; asQ2 > 0.22s;

c¼ 0.22s−Q2

0.2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðQ2þq2TÞ

p : ð16Þ

The predicted qT spectra of the angular coefficients λ and ν,
and the LT violation δ for the Glauber phase S ¼ 0.8 under
Eq. (16) are shown in Fig. 4, whose behaviors are close to
those in Fig. 3. The discussions of the Glauber effect on
those qT spectra also proceed similarly. Our predictions
for ν and δ are slightly lower than the E615 data [10],

but the consistency is still satisfactory, after the sizable
experimental errors are considered. In particular, the
deviation from the LT relation, i.e., from the horizontal
axis in the third plot, is roughly accounted for by the
Glauber effect.
At last, we make predictions for the COMPASS

measurements with the pion beam energy Eπ ¼190GeV.
The corresponding cuts 4.3GeV≤Q≤8.5GeV and
xF ≥ −0.1 [11] lead to the range of y,

1

2

�
dþ

ffiffiffiffiffiffiffiffiffiffiffiffi
d2þ4

p �
≤ey≤

1

2

�
bþ

ffiffiffiffiffiffiffiffiffiffiffiffi
b2−4

p �
; d¼ −0.1

ffiffiffi
s

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þq2T

p :

ð17Þ

The dependencies of λ, ν and δ on qT , displayed in Fig. 5,
are similar to those derived in the previous cases. A careful
look at Figs. 3(b) and 5 with the approximately equal pion
beam energies reveals that the values of λ (ν) in the former
are lower (higher) than in the latter. This difference may be
attributed to the slightly lower Q region that the NA10
measurements have probed. The behaviors of these angular
coefficients in various bins of Q, investigated in [30],
concur the above tendency. Though the preliminary
COMPASS data [11] are not yet precise enough, the
general features remain the same: the decrease (increase)
of λ (ν) with qT is milder (stronger) than expected by the
perturbation theory [30], and the observed δ, i.e., the
deviation from the horizontal axis in the third plot, is
significant. The same Glauber phase also improves the
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FIG. 4. Dependencies of λ, ν, and the LT violation δ on the lepton-pair transverse momentum qT , and their comparisons with the E615
data [10] for the pion beam energy Eπ ¼ 252 GeV.
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FIG. 5. Dependencies of λ, ν, and the LT violation δ on the lepton-pair transverse momentum qT , and their comparisons with the
COMPASS data [11] for the pion beam energy Eπ ¼ 190 GeV.
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agreement between the theoretical results and the
COMPASS data for λ, ν and δ simultaneously.
We also present our predictions for the dependencies

of λ, ν and δ on the lepton-pair rapidity y in Fig. 6 and on
the Feynman variable xF in Fig. 7 for the COMPASS
kinematics. In the former case the definitions of the angular
coefficients,

λ; μ; ν ¼
R
dQ2dq2THλ;μ;νðQ2; y; q2TÞR
dQ2dq2TH0ðQ2; y; q2TÞ

; ð18Þ

are adopted, for which Eq. (17) can be converted into the
allowed ranges of qT and Q straightforwardly. In the latter
case the set of variables Q, y and qT has to be changed to
the set of Q, y and xF first. The phase space covers the
full range of qT ¼ ½0.4; 3.0� GeV basically within y ¼
½−0.1; 1.1� (xF ¼ ½0; 0.7�), explaining why stable regions
exist in y (xF) for λ, ν and δ as shown in Fig. 6 (Fig. 7).
Since all the functions HiðQ2; y; q2TÞ in Eq. (3) decrease
with qT as stated before, the contributions to the angular
coefficients are dominated by qT < 1 GeV. It is then easy
to understand the value of λ about 0.95 and the small values
of ν and δ around 0.04 in both figures, which are close to
those for qT < 1 GeV in Fig. 5. The quick descents of ν
and δ near the high ends of y and xF, where the range of qT
shrinks toward small qT , also match the results in Fig. 5.
It is instructive to examine whether the angular coef-

ficients modified by the Glauber effect obey the positivity
constraints on the rotation-invariant observables [50,51],
which are defined in terms of the angular coefficients.
Two SO(3) invariants survive in the present case with only
virtual photon contributions [51],

U2¼
λ2þ3μ2þ3ν2=4

ð3þλÞ2 ; T¼ðλþ3ν=2Þð2λ2þ9μ2−3λνÞ
ð3þλÞ3 :

ð19Þ

To compute the angular coefficients in the above expres-
sions, we integrateHi in Eq. (3) overQ2, y and q2T , and then
take their ratios. Considering the NA10 kinematics for
the pion beam energy Eπ ¼ 194 GeV, and performing the
integration over the range of qT ¼ ½0; 2.5� GeV, we find
that the values of μ and ν are quite small, and λ is close to
unity. They thus lead to U2 ¼ 0.062 and T ¼ 0.031, which
satisfy the positivity constraintsU2 ≤ 1=4 and −1=8 ≤ T ≤
3=8 [51], respectively. In addition to the SO(3) invariants,
one can consider the SO(2) invariants [51], which are given,
in terms of the same angular coefficients, by

Ix ¼
1þ λ − ν

3þ λ
¼ 0.498; Iy ¼

1þ λþ ν

3þ λ
¼ 0.501;

Iz ¼
1 − λ

3þ λ
¼ 0.002;

Ixx ¼
1

4
ðIx − 1Þ2 − ðλþ ν=2Þ2

ð3þ λÞ2 ¼ 0.001;

Iyy ¼
1

4
ðIy − 1Þ2 − ðλ − ν=2Þ2 þ 4μ2

ð3þ λÞ2 ¼ 0.001;

Izz ¼
1

4
ðIz − 1Þ2 − ν2

ð3þ λÞ2 ¼ 0.249: ð20Þ

The above results also respect the constraints 0 ≤
Ix; Iy; Iz ≤ 1 and 0 ≤ Ixx; Iyy; Izz ≤ 1=4 [51].

0.2 0.4 0.6 0.8

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8

0.02

0.04

0.06

0.08

0.0 0.2 0.4 0.6 0.8

0.02

0.04

0.06

0.08

FIG. 7. Dependencies of λ, ν, and the LT violation δ on the Feynman variable xF for the COMPASS kinematics.
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In particular, Iy is identical to the invariant F ¼ ð1þ
λ0Þ=ð3þ λ0Þ introduced in [52] with the angular coefficient

λ0 ¼
λþ 3ν=2
1 − ν=2

; ð21Þ

in the privileged frame [53]. The numerator and the
denominator of λ0 are expressed as the convolutions of
the PDFs with the hard kernels�
E1

E2

þ E2

E1

�
1

sin2θ1

þ ðcos S − 1Þ
sin2θ1

�
E1

E2

þ E2

E1

− 2

�
E1E2

k2
sin2θ1 þ 1

�
cos2θ1

�
;

ð22Þ

and�
E1

E2

þE2

E1

�
1

sin2 θ1

−
ðcosS− 1Þ
sin2 θ1

�
E1 − 2k

E2

þE2 − 2k
E1

−
2E1E2

k2
cos2 θ1 þ 4

�
;

ð23Þ

respectively. As expected, we recover λ0 ¼ 1 as the LT
relation holds [53], i.e., as the Glauber phase S vanishes.
The geometric approach developed in [53–56] has

provided a transparent illustration of how higher-order
corrections in the perturbation theory give rise to the
LT violation. The argument starts from the lepton pair
production in a quark-antiquark annihilation process,
which obeys the angular distribution 1þ cos2 θ0 with θ0
being the polar angle of a lepton relative to one of the
colliding quarks in the rest frame of the lepton pair [57].
Only when an on-shell quark and an on-shell antiquark
annihilate, does the produced lepton pairs obey this simple
distribution. Therefore, the geometric picture applies better
to the region with qT being much lower than other hard
scales like Q, in which the colliding quarks stay on shell
approximately after radiating collinear gluons. The angle θ0
is then related to θ and ϕ in the CS frame through [54,55]

cos θ0 ¼ cos θ cos θ1 þ sin θ sin θ1 cosðϕ − ϕ1Þ; ð24Þ

with θ1 (ϕ1) being the polar (azimuthal) angle of the
colliding quark referred to above in the CS frame. The
angle θ1 has the same meaning as that in Eq. (6), and
ϕ1 ¼ 0 at LO, i.e., for the OðαsÞ diagrams in Fig. 1. The
angular coefficients λ and ν are expressed in terms of θ1
and ϕ1 as

λ ¼ 2 − 3A0

2þ A0

; ν ¼ 2A2

2þ A0

; ð25Þ

with the functionsA0¼hsin2θ1i andA2¼hsin2θ1cosð2ϕ1Þi,
where the averages are performed over an event sample,
i.e., over the corresponding differential cross section.
As stated in [54], the dependence on the azimuthal angle

ϕ1 of the quark plane is caused by transverse momenta
of radiative gluons, which can be achieved at Oðα2sÞ.
Certainly, the values of θ1 at OðαsÞ and at Oðα2sÞ may
differ too, but this difference does not affect the reasoning
below. The inequality A2 ≤ A0 due to cosð2ϕ1Þ ≤ 1 then
breaks the LT relation, yielding a negative violation δ. The
predicted negative δ [30], contrary to the experimental
indication of the pion-induced Drell-Yan processes at low
qT , hints that the LT violation might originate from a
nonperturbative mechanism. The BM function, as a TMD
PDF, invokes the correlation between the spin of the
colliding quark and its transverse momentum, which
modifies the perturbative results of ν, but not those of λ.
Hence, it represents an additional contribution to the
geometric picture, in which the colliding quarks are
unpolarized. This is the reason why the BM mechanism
can stimulate a positive δ at Oðα0sÞ by breaking the
azimuthal symmetry of the lepton pair distribution, which
fits the data of the pion-induced Drell-Yan processes. Note
that the sign of δ is not a prediction of the BM proposal, but
a fit from the data.
The Glauber gluon effect on the LO results, different from

the above known contributions, can also be elaborated in
terms of the geometric picture. The necessary rung gluon
emission on the pion side in Fig. 1(a), being mainly collinear,
tends to decrease the antiquark energy and to lower the
lepton-pair invariant mass Q. The azimuthal angle ϕ1 of the
quark plane remains tiny under the collinear gluon emission.
For a given qT , it implies that the mechanism tends to
enlarge θ1, and thus decreases the coefficient λ and increases
ν in Eq. (25). A Glauber gluon then injects a transverse
momentum into the colliding quarks, rendering them off
shell and spacelike. The produced lepton pairs will follow a
modified angular distribution ϵþ cos2 θ0 with the parameter
ϵ < 1 being attributed to the spacelike virtuality of the
quarks. This modified distribution can be derived trivially by
computing the differential cross section for the annihilation
q̄þ q → l− þ lþ with off-shell initial quarks. The insertion
of Eq. (24) leads to a smaller denominator 2ϵþ A0 in
Eq. (25), such that the net effect makes a minor impact on λ,
but a strong enhancement of ν. The above simple reasoning
elucidates the results in Fig. 2, and the positive deviations δ
derived in our analysis. We remark that both nontrivial ϵ and
ϕ1 can be induced at Oðα2sÞ for high qT in the geometric
approach, and this complicated case deserves a thorough
discussion.
In this paper, we have demonstrated that the Glauber

gluon effect, having been employed to resolve the several
puzzles in the heavy quark decays, can explain the violation
of the LT relation in the pion-induced Drell-Yan processes.
The Glauber phase S ∼ 0.8 is the only free parameter in our
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formalism, which was fixed by the NA10 data for the
angular coefficient ν with a higher precision. This phase
was then used to predict the coefficient λ and the LT
violation 2νþ λ − 1, which were shown to accommodate
all the data from the NA10, E615 and COMPASS experi-
ments. Compared to the previous study, we have adopted
the realistic PDFs for a proton from the CT18 and for a pion
from the xFitter, included the QCD evolutions of the strong
coupling and the PDFs, and integrated the differential cross
section over the kinematic region considered in the above
measurements. We have argued that the Glauber effect may
be significant in pion-induced processes due to the unique
role of a pion as a NG boson and a qq̄ bound state, and
illustrated it in the geometric picture. The distinctions from
the perturbative and BM mechanisms have been stressed,
and measuring the lepton pair distribution in the proton-
antiproton Drell-Yan process at low qT can discriminate the
different resolutions for the LT violation. Precise data of
the coefficient λ can also serve the purpose, for which the
perturbative and BM results stay below those from the
Glauber effect. It is mentioned that the angular distribution
of the lepton pairs in the proton-antiproton Drell-Yan
process produced at the Z pole by the CDF [58] satisfies
the LT relation in the lowest bin of qT ¼ 0–10 GeV. It will
be an important measurement [59] for exploring the
internal structures of hadrons and for understanding the
correlation of colliding partons in Drell-Yan processes. If
the Glauber effect associated with a pion turns out to
be crucial, it should be included in the extraction of the
TMD pion PDF from the data of pion induced Drell-Yan
processes.

We thank W. C. Chang, T. J. Hou, Y. S. Lian, and J. C.
Peng for useful discussions. This work was supported by
the National Science Council of Republic of China under
Grant No. NSC-101-2112-M-001-006-MY3.

APPENDIX: AVERAGE GLAUBER PHASE

In this Appendix, we explain how to take the average of
the Glauber phase S for Figs. 1(a) and 1(b), and how this
operation simplifies the corresponding factorization for-
mulas. We quote Eq. (29) of Ref. [39] for the factorization
of one Glauber gluon exchange on the left-hand side of the
final-state cut in Fig. 1(a),

Tð1Þ
L ≈ −i

g2

ð2πÞ2
Z

d2lT
l2T þm2

g
Hðp1T − lT − qT;p1T − qTÞ

×Φπðp1T − lT;p1TÞ…; ðA1Þ

where the kinematic variables have been modified to
coincide with those in this work, and … represents other
factors not explicitly shown. The first argument of the hard
kernel H (the TMD pion PDF Φπ) denotes the transverse
momentum of the virtual (valence) quark on the left-hand
side of the final-state cut, and the second arguments denote

those on the right-hand side of the cut. Equation (A1)
indicates that the transverse momentum lT of the Glauber
gluon flows through the hard kernel H, and that an infrared
divergence is generated from the region lT → 0 to be
regularized by a gluon mass mg. The intrinsic transverse
momentum p1T in the pion is small, and lower than 1 GeV
typically. Since the lepton-pair transverse momentum qT is
about few GeV, at which the LT violation is significant, the
integrals over lT and p1T in the dominant Glauber region
depend on qT weakly.
We then apply the approximation Hðp1T − lT − qT;

p1T − qTÞ ≈HðqTÞ by neglecting the smaller lT and
p1T , and Fourier transform Eq. (A1) into the impact-
parameter space,

Tð1Þ
L ≈

Z
d2bld2brΦπðbl;brÞ½−iSðblÞ�HðqTÞeip1T ·ðbl−brÞ…;

ðA2Þ

with the one-loop Glauber factor [39]

SðbÞ ¼ g2

ð2πÞ2
Z

d2lT
l2T þm2

g
e−ilT ·b ¼ g2

2π
K0ðbmgÞ; ðA3Þ

K0 being the modified Bessel function. Because the two
virtual quarks carry the same transverse momentum under
the approximation, a single argument qT for H is enough.
The addition of one Glauber gluon to the right-hand side
of the final-state cut, and the extension of the factorization
for Glauber gluons to all orders lead to

dσ
dQ2dydq2TdΩ

≈
Z

d2bld2br

Z
d2k3T
ð2πÞ2 Φπðbl;brÞe−iSðblÞHðqTÞeiSðbrÞ

×Φpðbl − brÞeiðqTþk3T Þ·ðbl−brÞ; ðA4Þ

which can be deduced straightforwardly by following
the steps in Sec. III of Ref. [39]. Briefly speaking, the δ
function δ2ðp1T þ p2T − qT − k3TÞ for the momentum con-
servation is integrated over p1T, such that eip1T ·ðbl−brÞ in
Eq. (A1) produces two Fourier factors e−ip2T ·ðbl−brÞ and
eiðqTþk3TÞ·ðbl−brÞ. The former brings the TMD proton PDF
Φp into the impact-parameter space after the integration over
p2T , givingΦpðbl − brÞ. The latter has been kept inEq. (A4).
The Fourier factor eiðqTþk3TÞ·ðbl−brÞ does not vary much

with bl − br in the region governed by the TMD proton
PDF, for qT þ k3T is as small as the intrinsic transverse
momenta. This insensitivity allows the introduction of a
constant Glauber factor eiS ≡ hei½SðbrÞ−SðblÞ�i, which is
computed as an average over the impact parameters bl
and br. Noticing that only the real part cosS contributes to
the differential cross section, we rewrite Eq. (A4) as

HSIANG-NAN LI PHYS. REV. D 106, 014029 (2022)

014029-10



dσ
dQ2dydq2TdΩ

≈ cos S
Z

d2bld2br

Z
d2k3T
ð2πÞ2 Φπðbl;brÞHðqTÞΦpðbl − brÞeiðqTþk3TÞ·ðbl−brÞ: ðA5Þ

The integration of eik3T ·ðbl−brÞ over k3T yields
ð2πÞ2δ2ðbl − brÞ, which is then integrated over bl to arrive
at eiqT ·ðbl−brÞ ¼ 1 and Φpðbl − br ¼ 0Þ ¼ ϕp, i.e., the
proton PDF appearing in Eq. (4). At last, Eq. (40) in
Ref. [39], i.e.,

R
d2brΦπðbr;brÞ ¼ ϕπ , which relates a two-

parameter PDF to the corresponding standard PDF, is

implemented, and Eq. (A5) reduces to the factorization
formula in Eq. (4).
For the addition of Glauber gluons to Fig. 1(b), we

simply replaceHðqTÞ in Eq. (A2) byHðk3TÞ, and Eq. (A5)
becomes

dσ
dQ2dydq2TdΩ

≈ cos S
Z

d2bld2br

Z
d2k3T
ð2πÞ2 Φπðbl;brÞHðk3TÞΦpðbl − brÞeiðqTþk3T Þ·ðbl−brÞ: ðA6Þ

The integration over k3T then transforms Hðk3TÞ
into Hðbl − brÞ in the impact-parameter space. The
large scale in the hard kernel, being of order of Q,
requires bl ≈ br, such that Φπðbl;brÞ ≈Φπðbr;brÞ and

Φpðbl − br ≈ 0Þ ≈ ϕp. The variable change b0
l ¼ bl − br

and the integration of Hðb0
lÞeiqT ·b

0
l over b0l return HðqTÞ.

At last, the integration of Φπðbr;brÞ over br gives ϕπ , and
we are again led to the factorization formula in Eq. (4).
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