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An interpretation is given for elastic proton scattering at ultrahigh energies with impact-parameter
amplitude exceeding the black disk limit. It is shown that this scattering mode can arise due to the
contribution of an exceptional intermediate state that unites correlated partons of colliding protons at
ultrahigh energies into a single coherent system. The behavior of the real part of the amplitude in this mode
is discussed.
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I. INTRODUCTION

In recent years, there has been an increased interest in
diffraction processes at ultrahigh energies, see, e.g., [1–21].
Primarily, this is due to the expectation that elastic
scattering of protons at the LHC energies is approaching
preasymptotic. In this case, the scattering characteristics are
simplified and become largely independent of specific
details inherent in particular hadrons. On this background,
a discussion is unfolding about scenarios for the asymptotic
behavior of the elastic proton scattering.
According to widespread belief, it corresponds to the

black disk pattern, which is characterized by complete
absorption in the central region in the impact parameter
space [1–6]. Correspondingly, the elastic scattering in this
region is shadow, and real scattering is possible only at the
periphery. An approach to this mode is characterized by
a monotonous “blackening” of the central region and a
simultaneous increase in the amplitude up to the so-called
black disk limit. Simultaneously, more sharp edge of the
central region is formed, and its transverse size grows as
ln s. An important characteristic of the black disk limit is
the equality of elastic and inelastic scattering cross sections,
so that σel=σtot ¼ 1=2 at s → ∞.
However, lately an alternative point of view is gaining

more and more weight, related to the pattern of the black
ring at ultrahigh energies [8–21]. The size of the ring is also
growing as ln s, but inside the ring the absorption is
decreasing. Notwithstanding this the amplitude increases
in this region, reaching values exceeding the black disk
limit. The reason for this behavior is unclear. However, it is

allowed by the unitarity relation and confirmed by some
data fittings at

ffiffiffi
s

p ¼ 7–13 TeV [7,16–22] (in the TOTEM
analysis [22] see results depicted in Fig. 19). A character-
istic feature of this scenario is the accelerated growth of
the elastic scattering, which leads to σel=σtot exceeding
1=2 at s → ∞.
At the moment, both of the above scenarios are essen-

tially equal in terms of data description. This is explained
by the ambiguity in determining the impact-parameter
amplitude based on scattering data in view of the uncer-
tainty in the phase of the amplitude. In this regard, the most
reliable criterion for choosing between the scenarios is the
ratio σel=σtot. This criterion, however, only comes into play
when the edge effects are negligible and a truly asymptotic
regime is reached. The maximum energy for the cross-
sections measurement is provided by cosmic rays. The
corresponding measurements at

ffiffiffi
s

p ¼ 57 TeV [23] give
σel=σtot ¼ 0.31� 0.19. Unfortunately, this result is too
imprecise to make a definite conclusion, and it is not clear
whether the asymptotic region is actually reached at the
specified energy.
As a result, theoretical studies come to the fore.

Generally, they must explain the above scenarios and prove
the impossibility of one of them. However, only the first
scenario is clear so far. Namely, the black disk mode occurs
due to dropout of the protons from elastic scattering owing
to activation of inelastic channels in the head-on collisions.
The second scenario is still unclear. Moreover, at the
moment it has no unified appellation. In addition to the
aforementioned “black ring” a term “hollowness” is also
used, which means a decrease in blackness in the inner
region compared to the ring. In the pioneering works [8,9],
the emphasis was placed on the anomalous properties of the
amplitude. Namely, in view of the growth of its imaginary
part simultaneously with the decrease in the absorption,
the term “antishadow scattering” was proposed. Then the
same authors proposed the term “reflective scattering” [10],
focusing on the change by π of the phase shift of the
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amplitude in the region where it is anomalously large. In
this case, an analogy was used with the well known in
optics property of changing by π the phase of a reflected
wave at the boundary between two different media.
However, the same property of the amplitude (the charac-
teristic phase shift) and its anomalously large magnitude
may be associated with resonant behavior. On this basis, the
term “resonant disk mode” was proposed [7].
In our opinion, the last term is most suitable as it reflects

the essence of the phenomenon. In this work, we reveal its
physical content precisely as a resonance effect due to the
contributions of an exceptional intermediate state. Initially,
it does not have a definite spin and mass, but effectively
acquires them depending on the scattering conditions.
Moreover, this state can only arise at a sufficiently high
collision energy. The minimum energy is determined by the
energy of switching-on the mode of correlated motion of
the partons in ultrafast protons. This mode was previously
discussed in [24]. Justification of its emergence at ultrahigh
energies was given in [25], and its influence on the proton
properties was studied in [26].
In the next section, we consider the unitarity relation

and its solutions of the type of black and resonant disks
with smooth edges. Section III gives interpretation of
the resonant disk solution as a consequence of the con-
tribution of an intermediate state. In the final section, we
discuss the results.

II. SCATTERING AMPLITUDE AND
UNITARITY RELATION

The characteristics of the second scenario listed above
are in fact linked by the unitarity relation. At high energies
it has the form

Im hðs; bÞ ¼ jhðs; bÞj2 þHinðs; bÞ: ð1Þ

Here hðs; bÞ is the amplitude of elastic scattering in the
representation of impact parameter b. Hinðs; bÞ is the
overlap function, which represents the sum of inelastic
contributions. The unitarity condition requires Hin ≥ 0.
Then it follows from (1) that Hin ≤ 1=4, and therefore
0 ≤ Hin ≤ 1=4. Each term in (1) defines a profile function
for the total, elastic, and inelastic scattering, respectively.
Term-by-term calculation 4

R
d2b in (1) leads to the

identity σtot ¼ σel þ σin.
The general solution of (1) may be represented in the

eikonal parametrization,

hðs; bÞ ¼ 1

2i
½ηðs; bÞe2iδðs;bÞ − 1�: ð2Þ

Here δðs; bÞ is the phase shift and ηðs; bÞ is the parameter of
inelasticity or transparency. Both they are real, and η ≥ 0.
The ηðs; bÞ is directly related to the overlap function,

η2 ¼ 1 − 4Hin: ð3Þ

Hence, we have

0 ≤ ηðs; bÞ ≤ 1: ð4Þ

By virtue of (2), the imaginary and real parts of the
amplitude are

Im h ¼ 1 − η cosð2δÞ
2

; Re h ¼ η

2
sinð2δÞ: ð5Þ

So, Im h monotonically increases from ð1 − ηÞ=2 to
ð1þ ηÞ=2 with the growth of 2δ from 0 to π.
Among the solutions of (1), a special place is occupied

by those of the disk type, which are characterized by a
sharply limited scattering region. A special role among
them is assigned to purely imaginary solutions. Proceeding
from (5), one can specify two ways of zeroing Re h, the
η ¼ 0 and 2δ ¼ 0ðmod πÞ. In the former case, we get the
so-called black disk solution:

hðs; bÞ ¼ i
2
ΘðR − bÞ; Hinðs; bÞ ¼

1

4
ΘðR − bÞ; ð6Þ

σtot ¼ 2πR2; σel ¼ σin ¼ πR2; ð7Þ

σel=σtot ¼ 1=2: ð8Þ

In the latter case, we get solutions of the gray and resonant
disks:

hðs; bÞ ¼ i
2
ð1 ∓ η̂ÞΘðR − bÞ; ð9Þ

Hinðs; bÞ ¼
1 − η̂2

4
ΘðR − bÞ; ð10Þ

σtot ¼ 2πð1 ∓ η̂ÞR2; σel ¼ πð1 ∓ η̂Þ2R2; ð11Þ

σin ¼ πð1 − η̂2ÞR2; σel=σtot ¼ ð1 ∓ η̂Þ=2: ð12Þ

HereΘð…Þ is the Heaviside step function, R is the radius of
the disk beyond which there is no scattering (η ¼ 1, δ ¼ 0).
The η̂ is the transparency inside the disk. The signs ∓
correspond to the multiplicity of π. The “−” matches δ ¼ 0
and the gray disk, the “þ” does 2δ ¼ π and the resonant
disk. In the latter case, the Im h inside the disk, and also σel
and σtot, exceed those for the gray disk despite the
same Hin, and exceed those for the black disk of the same
size. These properties resemble a resonant behavior, and
this determines the name of the solution, although its nature
is not yet clear.
Actually, the above solutions play an auxiliary role since

physical solutions must satisfy the analyticity condition.
In a minimum, they should be smooth functions of s and b.
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An easy way to give smoothness is to assume that η̂ is a
smooth function. In the case of (9) with the “−” sign, this
allows us to direct 1 − η̂ to zero starting from some Rph,
where Rph is the physical effective radius. The R in this
case is a technical parameter tending to infinity.
(Practically, the Θ-functions are discarded and η̂ becomes
actual transparency.) So the amplitude hðs; bÞ and the
overlap function Hinðs; bÞ smoothly drop to zero outside
of Rph. The smoothed black disk is determined in this
approach as the limiting case of the smoothed gray disk
with 1 − η̂ reaching 1 inside the disk.
In the case of the resonant disk, i.e., solution (9) with the

“þ” sign, the above procedure cannot be directly imple-
mented as 1þ η̂ cannot be reduced to zero. The problem is
solved in stages. First, we assume that when b approaches
Rph from the inside, the η̂ smoothly drops to zero, so that
1þ η̂ is reduced to 1. Here Rph is the value of b for which
Im h ¼ 1=2. Since η̂ ¼ 0, in this point a smooth transition
from the δ ¼ π=2 mode to the δ ¼ 0 mode is possible, and
we assume this occurs. With a further increase in b, the η̂
starts to grow at the same rate as it decreased when
approaching Rph (this ensures the smoothness in the
neighborhood of Rph). After that, η̂ can grow at any rate,
providing drop of Im h to zero. Accordingly, the behavior
ofHin is as follows. Inside the disk, it is less than 1=4. As b
approaches Rph, the Hin rises to the limit of 1=4, and then
decreases to zero with a further growth of b. In view of the
quadratic dependence on η̂, the Hin is a smooth function of
b everywhere. So, the pattern of black ring surrounding the
hollowness is realized, see illustration in Fig. 1. In fact, this
behavior is a consequence of smoothness condition. Notice
that relations (11) and (12) for the cross sections cease to
hold if the contributions of the edge are not negligible.
In reality, however, the above smoothing still does not

approach the exact solution. The point is that the analyticity
requires the presence of a real part in the amplitude,
exponentially decreasing at large b [24]. In the case of a
smoothed black disk, this can be formally provided
by adding an appropriate real function to the amplitude
outside Rph. (Simultaneously, the overlap functionHin must
be changed outside Rph to provide the unitarity condition.)
In the case of resonant disk the situation is more compli-
cated, since the condition Im h > 1=2 does not exclude the

presence of nonzero Re h inside Rph. This can radically
change the behavior of Hin. In particular, if Re h ≠ 0 at
b ¼ Rph, then Hin does not reach the limit of 1=4.
Moreover, one can choose Re h such that Hin everywhere
monotonically decreases with increasing b, and no hollow-
ness appears [27]. So, the condition Im h > 1=2 does not
necessary entails the black-ring effect. Nevertheless, if Imh
exceeds the black disk limit, this phenomenon must be
explained anyway.

III. GENESIS OF THE RESONANT MODE

Above, we noted the analogy of exceeding the black
disk limit to the resonant behavior of the amplitude. To
develop the analogy, we make appropriate transformations
in formula (2). At first we write it as

hðs; bÞ ¼ ηðs; bÞ e
2iδðs;bÞ − 1

2i
−
1 − ηðs; bÞ

2i
: ð13Þ

Then we introduce the parameterization of the phase shift,

tan δðs; bÞ ¼ MΓ
M2 − s

: ð14Þ

HereM and Γ are some functions of s and b. As a result, the
amplitude takes the form

hðs; bÞ ¼ MηΓ
M2 − s − iMΓ

þ i
1 − η

2
: ð15Þ

If M were explicitly independent of s and the first term
in (15) would appear only at b ¼ ð2lþ 1Þ= ffiffiffi

s
p

, where l is
a positive integer, then (15) would represent resonance in l
wave with massM, width Γ, and the partial width ηΓ in the
two-proton channel. The last term in (15) would mean the
background contribution of nonresonant scattering.
Here it is appropriate to recall that ordinary resonances

arise in the amplitude due to the effect of intermediate
quasistationary states formed during particle collisions. The
phase shift δ plays a fundamental role. Its origin is caused
by the temporary capture of colliding particles by each
other near the quasistationary state and, therefore, a delay in
their passage of the interaction region [28,29]. In this case
formula (14) describes the behavior of δ when passing s

FIG. 1. The resonant disk solution of the unitarity relation with (a) sharp and (b) smoothed edge.
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near M2. The main features are the change by π when
passing through the whole resonance region, and by π=2 in
the very point of the resonance.
Of course, at ultrahigh energies, the ordinary resonances

are not observed. However, as a hypothesis, we can assume
the appearance at ultrahigh energies of an exceptional
intermediate state. Then, we could find the properties that it
must have in order for its contribution to the amplitude
steadily exceeds the black disk limit with increasing energy.
As a starting point, we assume validity of formula (14) for
the phase shift in the vicinity of resonance.
First we notice that at M2 ¼ s the phase shift (14)

takes the value δ ¼ π=2, and formula (15) turns into
h ¼ ið1þ ηÞ=2. Actually, this is an amazing result since
it reproduces the solution for the resonant disk.
Simultaneously its structure becomes clear; it includes
the contribution of the gray disk ið1 − ηÞ=2 and an addi-
tional contribution iη of resonant nature.
Based on this, we conclude that our exceptional state

should not have a fixed intrinsic mass, but its effective mass
should be formed depending on the scattering conditions.
The same should be the case with the spin of this state.
Namely, the mentioned parameters must take “running”
values M2 ¼ s and l ≃ b

ffiffiffi
s

p
=2, respectively (see below

how this can be). The contribution to the amplitude of such
a quasistationary state is resonant and regardless of specific
value of the energy falls exactly at the resonance point.
In turn, the width Γ and the partial width ηΓ of this state

must also depend on b and s. The exact form of this
dependence is generally unknown, but some details can be
deduced based on the above discussion on smoothing the
resonant disk solution. Namely, since the transparency η
decreases when b approaches Rph from the inside, the
partial width must decrease, as well. (Accordingly, the
fraction of the decays through inelastic channels must
increase, cf. Fig. 1). At b ¼ Rph, the transparency and the
partial width vanish. Correspondingly, the contribution to
the elastic amplitude of the above state disappears. In the
case of scattering beyond Rph, it does not appear at all, and
the tail of the smoothed disc is reproduced in this region.
Summing up, we emphasize the continuous dependence

of the parameters of the above state on the scattering
conditions. This prompts us to call the corresponding
resonance continuous.1 Below we consider a model explan-
ation of the origin and nature of this extraordinary state.

Actually, we associate its occurrence with the extraor-
dinary property of protons, which also appears with ultra-
high energies. The point is that the long-known “diffuse”
increase with the energy of the transverse sizes of protons
[24,31] is accompanied by an increase in their longitudinal
sizes (the quantum effect) [26]. The latter increase is due to
the permanent production of slow partons during the
splitting of fast ones and the increasing in characteristic
time of this process proportionally to the energy of the
protons. In general, the increase in the longitudinal sizes of
fast moving protons follows an increase in the longitudinal
size of their interaction region [32–36]. This leads to a
decrease in the volume density of the partons and, as a
result, to an increase in their coupling to each other.
Ultimately, this leads to the formation of a mode of
correlated motion of the partons [26]. In this mode, all
the partons are relativistic and the increase in the longi-
tudinal sizes of protons stops. Simultaneously, their expan-
sion in the transverse directions is accelerated, changing
from the diffuse law

ffiffiffiffiffiffiffiffi
ln s

p
to ln s [24–26]. The latter

property implies an increase in the growth rate of the slope
of the diffraction cone from ln s to ln2 s. Such a change is
indeed observed at the proton collision energy in the range
of 2–7 TeV [37,38]. Consequently, the change in the mode
of the partons motion must occur in this energy range.
Below we will deal with the property of partons in the

correlated motion mode, which is that they are very
strongly coupled to each other and, in fact, form a rarefied
cloud. In head-on collisions, the clouds overlap. However,
the aggregate cloud still remains rarefied in the overlap
region, see illustration in Fig. 2, and the partons of different
clouds are again strongly coupled. In general, this can lead
to an increase in the destruction of clouds and, accordingly,
to an increase in inelastic processes with increasing energy.
If no other processes occur (on the background of elastic
scattering), then the black disk pattern of scattering is
realized. However, there is an alternative scenario. Namely,
the correlated partons of different clouds can form a single
coherent system that can exist for some time. Actually, in
this case a quasistationary state arises, which after some
time delay can again decay into two protons. The spin and
mass of this state are determined by the impact parameter
and the collision energy, respectively. This means appear-
ance of a continuous resonance in the scattering amplitude.
In fact, the energy of the onset of the latter scenario must

exceed the energy of the formation of the correlated motion
mode in colliding protons. The point is that the total density
of the partons in the overlap region must be low enough,
and therefore their coupling strong enough to form a

(a) (b)

FIG. 2. (a) Each of the colliding ultrafast protons is represented as a rarefied cloud of very strongly coupled correlated partons [26].
(b) In head-on collisions, the aggregate cloud is rarefied in the overlap region.

1Note that continuous resonances are known phenomenon in
nonlinear dynamics, see, e.g., [30].
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unified coherent system. Presumably, it should approach
the density of partons in each of the protons when the mode
of correlated motion arises, since in this case the partons
of different clouds can become mutually correlated.
Fortunately, this condition may be satisfied at rather limited
energies due to appearance of a hollow inside the protons
during their rapid expansion in the transverse directions in
the mode of correlated parton motion [26]. (Do not confuse
the hollow inside fast protons with the hollow in the overlap
function.) To obtain a reliable estimate of the corresponding
energy, a more detailed model for the structure of the parton
clouds in fast protons is required. What is certain is that the
above-mentioned energy range of 2–7 TeV for the occur-
rence of the correlated motion mode, can be considered as
the lower bound for the energy of the onset of the resonant
scattering mode.2

Another nontrivial issue is an exit from the resonant
scattering mode with an increase in the impact parameter.
Recall that conditions of unitarity and analyticity require
that this exit be accompanied by an increase to the
maximum of inelastic contributions. In our model, the exit
occurs since the overlap region decreases with increasing b.
(In accordance with the above discussion, the overlap of
interior regions in protons with the reduced parton density
is important.) Really, as the overlap region decreases, the
influence of the partons from this region on the other
partons decreases. At a certain b ¼ Rph it becomes insuf-
ficient to transform the parton clouds into a single coherent
system. At the same time, the aggregate coupling of the
partons in the overlap region with the outer partons also
decreases. So, at a certain b the partons in the overlap
region, having received a strong strike, can no longer be
retained as part of colliding clouds. In this case the clouds
are inevitably destroyed, and this process becomes dom-
inant. The analyticity and unitarity require that this b be the
same as the above b ¼ Rph. In this case, the central region
in the impact parameter is surrounded by a ring, where the
parton clouds break down. Inside the ring, due to the
formation of a coherent system, the overlap function is
partially converted into the resonant contribution to the
amplitude.
In fact, this picture has an independent confirmation.

Namely, it was revealed [17] that the hollowness in the
overlap function must necessarily be the result of quantum
coherence in underlying processes (see also discussion
in [15]). In light of this, what we have proposed is a
microscopic justification for the formation of a coherent
intermediate system.
However, let us return to the discussion of the resonance

contribution to the amplitude. Above we considered the

case with a purely imaginary resulting amplitude. In the
general case, a real resonant contributions may also appear
if the resonant phase shift arises with a background,
δ ¼ δR þ δbg, where δR is given by (14). The origin of
the background is associated with an additional time delay
due to scattering outside the region of localization of the
intermediate state [28]. This implies that δbg is positive and
relatively small.
So, assuming δ ¼ δR þ δbg, we have

ηe2iδ − 1

2i
¼ e2iδbgη

e2iδR − 1

2i
þ ηe2iδbg − 1

2i
: ð16Þ

Substituting (14) for δR, we arrive at

hðs; bÞ ¼ e2iδbg
MηΓ

M2 − s − iMΓ
þ ηe2iδbg − 1

2i
: ð17Þ

The above formula confirms the disappearance of the
resonance with vanishing η. So, the exit from the resonant
mode is necessarily accompanied by the formation of the
black ring.
Putting M2 ¼ s, we get the actual amplitude in the

resonant region,

hðs; bÞ ¼ ηðs; bÞe2iðδbgþπ=2Þ − 1

2i
: ð18Þ

Its imaginary and real parts are

Im h ¼ 1þ η cosð2δbgÞ
2

; Re h ¼ −
η

2
sinð2δbgÞ: ð19Þ

Since δbg is small, we have cosð2δbgÞ > 0 and, therefore,
an amplification of imaginary part of the amplitude.
Simultaneously, the real part is negative and vanishes at
the boundary of the resonant region.
Immediately outside it, in accordance with the smooth-

ness condition, the amplitude is given by formula (2) with
δ ¼ δbg. So the imaginary part of the amplitude is below the
black disk limit, and its real part is positive. If we display
the behavior of the amplitude with increasing b on the
complex plane, then near Rph it will be represented by a
curve crossing the imaginary axis at the point i=2 from the
left-top to the right-down at the angle of 2δbg.

IV. DISCUSSION AND CONCLUSIONS

We have studied the elastic proton scattering at ultrahigh
energy in the mode with impact-parameter amplitude
exceeding the black disk limit. This mode was previously
predicted and allowed by experimental data, but its nature
remained unknown. We have explained it as resonant
scattering due to the contribution of an exceptional qua-
sistationary state, whose spin and effective mass are
determined continuously by the impact parameter and

2In the phenomenological approaches the latter energy, as a
rule, is not estimated (except [20], where it is

ffiffiffi
s

p
∼ 3 TeV).

Instead, the presence of resonant scattering mode at various
energies, starting from 7 TeV, is indicated [7,16–19,21,22].
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collision energy, respectively. The appearance of such a
state is possible at the energies exceeding the activation
energy of the correlated motion mode of the partons in very
fast protons. The latter energy, in turn, coincides with that at
which the growth rate of the slope of the diffraction cone
increases [25,26], which actually occurs in the region of
2–7 TeV [37,38]. The partons in the mentioned mode form
a rarefied cloud and are extremely strongly coupled to each
other. As a result, when the clouds overlap during head-on
collisions, either inelastic processes intensify, or a single
coherent system of correlated partons of different clouds
arises. The latter means the appearance of the quasista-
tionary state mentioned above.
In fact, both the inelastic processes and the resonant

scattering can occur simultaneously with a certain proba-
bility [in the sense of quantum superposition, cf. Eq. (15)].
What we insist on is that the latter process can take place
at ultrahigh energies. Unfortunately, it is very difficult to

detect it, since the main observed effect associated with
it appears at asymptotically high energies, see the
discussion in the Introduction. However, if the phe-
nomenon is possible, it should be studied as fully as
possible. In this article, we have taken a fundamental
step in this direction and proposed a plausible explan-
ation for its physical nature.
We hope that further development of this approach,

which would include a quantitative description of the
overlap of the parton clouds, could be the basis for a
numerical description of the scattering amplitude and help
determine which scenario is actually realized in the
asymptotic energy region, black or resonant disk. At this
stage, our analysis shows that if the resonant scattering
scenario is confirmed, this will be evidence for the
emergence of an exceptional quasistationary state in proton
collisions, which manifests itself in the scattering amplitude
as a continuous resonance.
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