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We study the leading-twist time-reversal even transverse momentum-dependent parton distribution
functions (TMDs) of light and heavy vector mesons, i.e., the ρ, J=ψ and ϒ. We employ the leading Fock-
state light front wave functions (LF-LFWFs) of ρ and J=ψ fromour recent study, and supplementwithϒ’s LF-
LFWFs. These LF-LFWFs are extracted from dynamically solved Bethe-Salpeter wave functions. The vector
meson TMDs are then studiedwith the light front overlap representation at leading Fock-state. All the obtained
TMDs are nonvanishing and evolvewith current quarkmass, in particular the tensor polarized TMDs f1LT and
f1TT which undergo a sign flip. The ρ TMDs are compared with other model studies and agreement is found,
aside from f1LT and f1TT . Finally, the collinear PDFs of vector mesons are studied. The ρ’s valence PDFs
f1;vðxÞ and g1L;vðxÞ are evolved to the scale of 2.4 GeV, with their first three moments compared to the lattice
QCD prediction. The qualitative behavior of tensor polarized PDF f1LLðxÞ in ρ at large x is also discussed.
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I. INTRODUCTION

Multidimensional imaging of hadrons has excited a lot
of interest for the last several decades. The transverse
momentum-dependent parton distributions (TMDs), in this
connection, provide an important extension to the one-
dimensinal parton distribution functions (PDFs) by incor-
porating the transverse motion of the partons and spin-orbit
correlations [1–4]. The TMDs of the pion and nucleonwhich
are spin-0 and spin-1=2, respectively, have thus received
extensive studies fromphenomenologicalmodels [5–10] and
lattice QCD [11–14]. Experimentally, they can be studied
with theDrell-Yanor semi-inclusive deep-inelastic scattering
(SIDIS) processes [15–20].
Meanwhile, the parton distributions of spin-1 particle has

also been studied in the literature. Starting with the one-
dimensional case, a new PDF, i.e., the tensor polarized PDF
bq1ðxÞ (the superscript q refers to quark), emerges in spin-1
target at leading twist [21]. It is interpreted as the difference
between unpolarized quark distribution function in Λ ¼ 0
and jΛj ¼ 1 targets, where the Λ is the helicity. The sum

rule
R
dx½bq1ðxÞ − bq̄1ðxÞ� ¼ 0 thus holds, as the total

valence quark in Λ ¼ 0 and jΛj ¼ 1 targets should be
equal [22,23]. The tensor structure function b1ðxÞ of the
deuteron is then measured by HERMES Collaboration, and
found to be nonzero at low xðx < 0.1Þ [24]. In the three-
dimensional case, the TMDs and TMD fragmentation
functions of spin-1 target are introduced [25]. The Soffer
bound is then generalized to the case of spin-1 and
positivity bounds on TMDs and TMD FFs are obtained
[26]. While no experimental measurement on spin-1 TMDs
is available at present, theoretical study can provide insight
into the 3D structure of spin-1 particles in the momentum
space. The ρ meson TMDs have thus been studied with the
Nambu–Jona-Lasinio (NJL) model [27] and light front
models [28], and some photon TMDs are studied with the
basis light front quantization (BLFQ) approach [29].
In this work, we study the TMDs of both light and heavy

vector mesons, i.e., ρ, J=ψ andϒ. Among them, the ρmeson
is constituted from light quarks, with its mass mostly
generated by the dynamical chiral symmetry breaking of
QCD at low energy [30,31]. The J=ψ and ϒ, on the other
hand, gain their masses mostly from the current quark mass
generated by the Higgs mechanism. Meanwhile, the parton
motion within ρ is highly relativistic, while in the J=ψ andϒ
it is much slower and nonrelativistic, in particular in the ϒ.
By studying the TMDs of light and heavy vector mesons
simultaneously, one can investigate the TMDs in both the
relativistic and nonrelativistic limit, as well as the dynamical
chiral symmetry breaking effect in shaping them.
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There are generally two approaches to calculate the
vector meson TMDs, i.e., the covariant approach and the
light front approach. The former calculates the covariant
Feynman diagrams, such as in [27], and the latter resorts to
overlap representations in the light front QCD. Both
approaches have their own advantages. For instance, the
covariant approach could circumvent the direct calculation
of higher Fock-state light front wave functions (LFWFs),
which has been a hard task in practice. On the other hand,
the light front overlap representation approach gives a
direct parton picture in terms of the LFWFs. The parton and
parent hadron polarization can be read off explicitly, along
with the orbital angular momentum (OAM) transfer among
them [7]. Meanwhile, positivity bounds can be conven-
iently derived in the light front approach, and hence
automatically satisfied in light front model studies
[26,32]. In this work, we utilize the light front overlap
representation at leading Fock-state approximation and
study the vector meson TMDs at leading twist.
The LF-LFWFs of vector meson employed in this study

are extracted from their covariant Bethe-Salpeter (BS) wave
functions. The basic idea is to project the BS wave
functions on to the light front [33–35]. It has been
demonstrated with the pseudoscalar mesons [10,36,37]
and then generalized to the case of vector mesons [38].
Based on the dynamically solved BS wave functions, which
accumulated lots of success in hadron study within the
Dyson-Schwinger equations (DSEs) formalism [39–45],
the parton distribution amplitude [46–48], generalized
parton distributions (GPDs) and TMDs of pseudoscalar
mesons [49,50] are further studied. Exclusive process is
also studied, e.g., without introducing any new parameters,
the ρ and J=ψ LF-LFWFs are put into the color dipole
model study of diffractive vector meson productions in
e − p collisons, and agreement is found with data from
HERA [38]. In this work, we extend our study to vector
meson TMDs. Since the light and heavy vector mesons can
be studied consistently in the DSEs, we also include the ϒ
meson. As we will show, the ϒ is well dominated by the
leading Fock-states, and therefore provides a benchmark
for TMDs in the nonrelativistic limit, which has not been
reported in the literature before.
This paper is organized as follows. In Sec. II we

introduce the BSE-based LF-LFWFs of vector mesons
and supplement with the ϒ case. We then recapitulate
the definition of vector meson TMDs and their overlap
representation in Sec. III. The TMDs of heavy and light
vector mesons are reported in Sec. IV, where comparison
will be made with other model studies. The collinear PDFs
will also be studied. Finally, we summarize in Sec. V.

II. VECTOR MESON LF-LFWFS FROM
BETHE-SALPETER WAVE FUNCTIONS

The extraction of vector meson LF-LFWFs from BS
wave functions has been introduced with detail in [38].

Here, we recapitulate the formalism. In light front QCD, the
leading Fock-state expansion of a vector meson reads

jMiΛ ¼
X
λ;λ0

Z
d2kT
ð2πÞ3

dx

2
ffiffiffiffiffi
xx̄

p δijffiffiffi
3

p

×ΦΛ
λ;λ0 ðx; kTÞb†f;λ;iðx; kTÞd†g;λ0;jðx̄; k̄TÞj0i: ð1Þ

The ΦΛ
λ;λ0 is the LF-LFWF of meson with helicity Λ

and quark (antiquark) with spin λ (λ0). The Λ ¼ 0;�1
and λ ¼↑ or ↓, which will be denoted as ↑¼ þ and ↓ ¼ −
for abbreviation in the following. The i and j are color
indices. The kT ¼ ðkx; kyÞ is the transverse momentum of
the quark with flavor f, and k̄T ¼ −kT for antiquark with
flavor g. The longitudinal momentum fraction carried
by quark is x ¼ kþ=Pþ, with x̄ ¼ 1 − x for antiquark.
The light cone four-vector of this paper is defined as
A� ¼ 1ffiffi

2
p ðA0 � A3Þ and AT ¼ ðA1; A2Þ.

The vector meson LF-LFWFs can be extracted from their
covariant Bethe-Salpeter wave functions with [38]

ΦΛ
λ;λ0 ðx; kTÞ ¼ −

1

2
ffiffiffi
3

p
Z

dk−dkþ

2π
δðxPþ − kþÞ

× Tr½Γλ;λ0γ
þχMðk; PÞ · ϵΛðPÞ�: ð2Þ

The χMμ ðk; PÞ is the BS wave function in the momentum
space and the ϵΛðPÞ is the meson polarization vector. The
Γ�;∓ ¼ I � γ5 and Γ�;� ¼∓ ðγ1 ∓ iγ2Þ project out corre-
sponding quark-antiquark helicity configurations.1 The
trace is taken over Dirac, color, and flavor spaces. An
implicit color factor δij is associated with Γλ;λ0 . The flavor
index yields unity as we will consider ρþ (ud̄), J=ψðcc̄Þ,
and ϒðbb̄Þ in this work.
The ΦΛ

λ;λ0 ðx; kTÞ’s can be further expressed with six
independent scalar amplitudes ψðx; k2TÞ’s [51,52], i.e.,

Φ0
�;∓ ¼ ψ0

ð1Þ; Φ0
�;� ¼ �kð∓Þ

T ψ0
ð2Þ; ð3Þ

Φ�1
�;� ¼ ψ1

ð1Þ; Φ�1
�;∓ ¼ �kð�Þ

T ψ1
ð2Þ;

Φ�1∓;� ¼ �kð�Þ
T ψ1

ð3Þ; Φ�1∓;∓ ¼ ðkð�Þ
T Þ2ψ1

ð4Þ; ð4Þ

with kð�Þ
T ¼ kx � iky. For the unflavored vector meson

(J=ψ or ϒ) that has charge parity, further constraints can be
found [38]

ψΛ
ðiÞðx; k2TÞ ¼ ψΛ

ðiÞð1 − x; k2TÞ; ð5Þ

except

1Γ�;∓ ¼ I � γ5 refers to Γþ;− ¼ I þ γ5 and Γ−;þ ¼ I − γ5,
which is by taking the sign in the same row simultaneously. This
notation applies throughout this paper.
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ψ1
ð2Þðx; k2TÞ ¼ −ψ1

ð3Þð1 − x; k2TÞ: ð6Þ

This reduces the number of independent scalar amplitudes
to five. Note that the LF-LFWFs can also be classified by
their quark-antiquark OAM projection along the z-axis,
which is denoted by lz [52]. The angular-momentum
conservation in the z-direction enforces Λ ¼ λþ λ0 þ lz.
Based on Eqs. (3) and (4) the lz can be 0, �1, and �2,
which are s-, p-, and d-wave LF-LFWFs, respectively.
The ρ0 and J=ψ LF-LFWFs have been presented in [38].

They are based on BS wave functions under rainbow-ladder
truncation. In this case, one does not discriminate between
ρ0 and ρ� BS wave functions, so the ρ0 LF-LFWFs applies
to ρþ as well. In this work, we supplement with the ϒ
meson LF-LFWFs, which is obtained in the same way
as J=ψ . Since ϒ is significantly heavier than J=ψ , it
could help zoom into the nonrelativistic limit. The three-
dimensional plots of LF-LFWFs for ρþ, J=ψ and ϒ can be
found in the Appendix.
The interaction model and parameters [31,53] are

required at the step of solving the quark gap equation
and vector-meson BS equation. The setup in this work
follows exactly that in [38] for ρþ and J=ψ . The bottom
quark was incorporated later in [54] for the study of ηb.
Aside from the interaction model, the current quark mass
we employed is mu=d ¼ 5 MeV, mcðmcÞ ¼ 1.33 GeV, and

mbðmbÞ ¼ 4.30 GeV. The calculated meson mass and
leptonic decay constants are listed in Table. I. Note that
the vector meson leptonic decay constants can be calculated
using the BS wave function χμðq;PÞ with [31]

fVmV ¼
Z

Λ dq4

ð2πÞ4 Tr½γ · χðq;PÞ�; ð7Þ

and meanwhile reproduced using the LF-LFWF ϕΛ¼0
�;∓ with

fV ¼
ffiffiffi
6

p Z
1

0

dx
Z

Λ d2kT
ð2πÞ3 ϕ

Λ¼0
�;∓ðx; k2TÞ; ð8Þ

as Eq. (7) and Eq. (8) are actually equivalent given Eq. (2).

III. DEFINITION AND OVERLAP
REPRESENTATION OF VECTOR MESON TMDS

The TMDs of spin-1 hadrons are defined in connection
with the transverse momentum-dependent quark correla-
tion function

ΘðΛÞS
βα ðx; kTÞ ¼

Z
dz−d2zT
ð2πÞ3 eiðxPþz−−kT ·zT Þ

× ShP;Λjψ̄αð0Þψβðz−; zTÞjP;ΛiS: ð9Þ

Here the P is the four-momentum of the hadron with
PT ¼ 0, and xPþ and kT are the longitudinal and transverse
momentum carried by the parton. The S ¼ ðST; SLÞ is the
spin quantization axis, and Λ ¼ 0;�1 is the hadron’s spin
projection on S.2 The formal definition of TMDs also
contains a gauge link connecting the quark fields, which
arises from the gluons, to ensure the gauge invariance
[59,60]. Here, we approximate it to be unity for the study of
T-even TMDs as other model studies [8,9,28,61].
At leading twist, there are nine time-reversal even TMDs

entering the parametrization of ΘðΛÞS
βα ðx; kTÞ, i.e., [25,27]

1

2
TrD½γþΘðΛÞSðx; kTÞ� ¼ f1ðx; k2TÞ þ SLLf1LLðx; k2TÞ þ

SLT · kT
mV

f1LTðx; k2TÞ þ
kT · STT · kT

m2
V

f1TTðx; k2TÞ; ð10Þ

1

2
TrD½γþγ5ΘðΛÞSðx; kTÞ� ¼ Λ

�
SLg1Lðx; k2TÞ þ

kT · ST
mV

g1Tðx; k2TÞ
�
; ð11Þ

1

2
TrD½−iσþiγ5ΘðΛÞSðx; kTÞ� ¼ Λ

�
SiTh1ðx; k2TÞ þ SL

kiT
mV

h⊥1Lðx; k2TÞ þ
1

2m2
V
ð2kiTkT · ST − SiTk

2
TÞh⊥1Tðx; k2TÞ

�
; ð12Þ

with

TABLE I. Calculated masses and decay constants of pseudo-
scalar and vector mesons based on model setup of [38,54]. All
units are in GeV. The second and fourth row are based on
PDG data [55], with lattice QCD results explicitly indicated by
references.

π ηc ηb ρ J=ψ ϒ

m 0.131 2.92 9.40 0.72 3.09 9.48
mexp 0.138 2.98 9.39 0.78 3.10 9.46
f 0.090 0.270 0.476 0.141 0.300 0.460
fexp =lQCD 0.092 0.279 [56] 0.489 [57] 0.156 0.294 0.459 [58]

2Note that the Λ in Sec. II is defined in the helicity basis, i.e., setting S ¼ ð0; 0; 1Þ.
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SLL ¼ ð3Λ2 − 2Þ
�
1

6
−
1

2
S2L

�
; ð13Þ

SiLT ¼ ð3Λ2 − 2ÞSLSiT; ð14Þ

SijTT ¼ ð3Λ2 − 2Þ
�
SiTS

j
T −

1

2
S2Tδ

ij

�
; ð15Þ

The functions f, g, and h denote the quark polarization for
being unpolarized, longitudinally polarized and trans-
versely polarized respectively. The lower index 1 denotes
leading twist, and the T and L refers to the hadron

polarization. There are three tensor polarized TMDs
f1LL, f1LT and f1TT that are specific to spin-one hadron.
The overlap representation of vector meson TMDs in

terms of LF-LFWFs have been given by authors in [28],
with more details in [26,27]. Introducing the quantity

Aλ0qΛ0;λqΛðx; kTÞ ¼
1

2ð2πÞ3
X
λq̄

ΦΛ0�
λ0q;λq̄

ðx; kTÞΦΛ
λq;λq̄

ðx; kTÞ;

ð16Þ

the vector meson TMDs overlap representation reads [28]

f1ðx; k2TÞ ¼
1

3
ðAþ0;þ0 þ A−0;−0 þ Aþþ;þþ þ A−þ;−þ þ Aþ−;þ− þ A−−;−−Þ; ð17Þ

g1Lðx; k2TÞ ¼
1

2
ðAþþ;þþ − A−þ;−þ − Aþ−;þ− þ A−−;−−Þ; ð18Þ

g1Tðx; k2TÞ ¼
mV

2
ffiffiffi
2

p
k2T

ðkðþÞ
T ðAþþ;þ0 − A−þ;−0 þ Aþ0;þ− − A−0;−−Þ þ kð−ÞT ðAþ0;þþ − A−0;−þ þ Aþ−;þ0 − A−−;−0ÞÞ; ð19Þ

h1ðx; k2TÞ ¼
1

2
ffiffiffi
2

p ðAþþ;−0 þ A−0;þþ þ Aþ0;−− þ A−−;þ0Þ; ð20Þ

h⊥1Lðx; k2TÞ ¼
mV

2k2T
ðkðþÞ

T ðA−þ;þþ − A−−;þ−Þ þ kð−ÞT ðAþþ;−þ − Aþ−;−−ÞÞ; ð21Þ

h⊥1Tðx; k2TÞ ¼
m2

Vffiffiffi
2

p
k4T

ððkðþÞ
T Þ2ðA−þ;þ0 þ A−0;þ−Þ þ ðkð−ÞT Þ2ðAþ0;−þ þ Aþ−;−0ÞÞ; ð22Þ

f1LLðx; k2TÞ ¼ Aþ0;þ0 þ A−0;−0 −
1

2
ðAþþ;þþ þ A−þ;−þ þ Aþ−;þ− þ A−−;−−Þ; ð23Þ

f1LTðx; k2TÞ ¼
mV

2
ffiffiffi
2

p
k2T

ðkðþÞ
T ðAþþ;þ0 þ A−þ;−0 − Aþ0;þ− − A−0;−−Þ þ kð−ÞT ðAþ0;þþ þ A−0;−þ − Aþ−;þ0 − A−−;−0ÞÞ; ð24Þ

f1TTðx; k2TÞ ¼
m2

V

2
ffiffiffi
2

p
k2T

ððkðþÞ
T Þ2ðAþþ;þ− þ A−þ;−−Þ þ ðkð−ÞT Þ2ðAþ−;þþ þ A−−;−þÞÞ: ð25Þ

To comply with the leading Fock-state truncation in
Eqs. (17)–(25), we rescale our BSE-based LF-LFWFs so
that they normalize to unity, for both Λ ¼ 0 and Λ ¼ �1
vector mesons respectively i.e.,

1 ¼
X
λ;λ0

Z
1

0

dx
Z

dk2T
2ð2πÞ3 jΦ

Λ;ðreÞ
λ;λ0 ðx; kTÞj2: ð26Þ

The rescaled LF-LFWFs ΦΛ¼0;ðreÞ
λ;λ0 ¼ N1ΦΛ¼0

λ;λ0 and

ΦΛ¼�1;ðreÞ
λ;λ0 ¼ N2ΦΛ¼�1

λ;λ0 . The ðN1; N2Þ are (1.49,1.72),
(1.07,1.09), and approximately (1.0,1.0) for ρ, J=ψ and

ϒ respectively. The decreasing N1 and N2 indicate the
reduction of potential higher Fock-state contributions from
light to heavy mesons. In this way, the vector mesons are
approximated as a pair of bounded effective quark and
antiquark at certain hadronic scale on the light front. In
heavy meson this approximation is good, as the higher
Fock-states are suppressed. For light meson as ρ, it is less
good yet we explore its predictions and compare with other
model studies.
Most TMDs are stable in profile under the rescaling

procedure, which can be seen from their overlap repre-
sentation. For instance, in Eqs. (18), (21), (25), the g1L, h⊥1L
and f1TT only contain overlapping LF-LFWFs of Λ ¼ �1,
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so these TMDs change by an overall factor N2
2 after

rescaling. Similarly, the g1T , h1, h⊥1T , and f1LT , take
overlaps between LF-LFWFs of Λ ¼ 0 and Λ ¼ �1, so
they get an overall factor N1N2. The f1 and f1LL, however,
do not have an overall factor. The f1 is the average of the
unpolarized TMDs of Λ ¼ 0 and Λ ¼ �1meson. Since N1

and N2 do not differ much (15% at most in ρ), the profile of
f1 does not change much either. The f1LL, however, is the
difference between the unpolarized TMDs of Λ ¼ 0 and
Λ ¼ �1. The cancellation end up being rather sensitive to
N1=N2, and f1LL can change dramatically under the
rescaling procedure. This is demonstrated in Fig. 1 for
the case of J=ψ . This indicates that f1LL demands careful
treatment on higher Fock-state effects, and the rescaling
procedure could bring large uncertainties in this respect.
We therefore leave f1LLðx; k2TÞ out in this work (for most of
the study) and focus on the rest of the TMDs.
Finally, we remark that in real QCD, the rigorous

definition of TMDs contains two scales, i.e., the renorm-
alization scale μ0 associated with UV divergence, and the
so-called Collins-Soper scale ζ0 associated with rapidity
divergence [60,62–65]. In model and phenomenological
studies [10,16,17,61], the ζ0 is usually set to μ20. On the
other hand, the leading Fock-state approximation implicitly
sets the scale of our TMDs. In this work, we follow earlier
study on pseudoscalar mesons [54] and approximate the
scale of our TMDs to be μ0 ≈ 2mf [66]. The mf is defined
as the Eucledian constituent quark mass which satisfies
Mfðq2 ¼ m2

fÞ ¼ m2
f where Mfðq2Þ is the quark mass

function of flavor f. For heavy mesons, we obtain μ0 ≈
2.6 GeV for J=ψ and μ0 ≈ 8.6 GeV for ϒ TMDs. For ρ, we
obtain μ0 ≈ 0.6 GeV. As will be addressed in Sec. IV, by
evolving and comparing the collinear PDF with lattice
prediction, we finally determine the renormalization scale
of our ρ TMDs to be μ0 ≈ 0.67 GeV.

IV. RESULTS

A. TMDs of J=ψ and ϒ
We show in Fig. 2 the TMDs f1ðx; k2TÞ, g1Lðx; k2TÞ, and

h1ðx; k2TÞ of J=ψ (left column) andϒ (right column), which
have one-dimensional correspondences, e.g., the collinear

PDF f1ðxÞ, g1LðxÞ, and h1ðxÞ respectively.3 They describe
the momentum distribution of unpolarized, longitudinally
polarized and transversely polarized quarks in mesons with
the same polarization. These TMDs are similar in profile
and magnitude within the same meson. They are mostly
centered at x ¼ 1=2 and low k2T and decrease monotoni-
cally, indicating the heavy quark and the antiquark tend to
have low relative momentum. Meanwhile, f1 is symmetric
with respect to x ¼ 1=2, while the g1L and h1 are slightly
asymmetric. The asymmetry originates from the p- and
d-wave LF-LFWFs; in Eqs. (17), (18), and (20) the
overlapping LF-LFWFs are diagonal in lz for f, g1L, and
h1, so the p- and d-wave contributions to these TMDs can
be separated from the s-wave contribution. Given that the
p- and d-wave LF-LFWFs are suppressed in heavy mesons,
the asymmetry is thus slight. From J=ψ to ϒ, the TMDs get
narrower in x but broader in k2T . Therefore, the quark and
antiquark in a heavier meson tend to carry larger transverse
momentum but smaller relative longitudinal momentum.
We then show the worm-gear TMDs g1T , h⊥1L and the

pretzelosity TMD h⊥1T in Fig. 3. The g1T describes the
momentum distribution of the longitudinally-polarized
quark in transversely-polarized meson, while h⊥1L and

FIG. 1. A demonstration of the J=ψ’s f1ðx; k2TÞ (left column)
and f1LLðx; k2TÞ (right column) calculated using rescaled (colored
surface) and unrescaled (gray surface) LF-LFWFs.

FIG. 2. 3D plot of the f1ðx; k2TÞ (top row), g1Lðx; k2TÞ (middle
row), and h1ðx; k2TÞ (bottom row) for J=ψ (left column) and ϒ
(right column).

3We use the same notation for TMD and collinear PDF for
convenience. They can be easily distinguished based on the
context.
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h⊥1T are for the transversely-polarized quark in longitudi-
nally and transversely-polarized (perpendicular to quark
polarization) mesons, respectively. These TMDs are similar
in magnitude, with h⊥1L and h⊥1T being negative. They are
generally not symmetric in x → 1 − x. From Eqs. (19)
and (21) one observes that the g1T and h⊥1L only include
overlaps between LF-LFWFs that differ by one unit in
OAM, i.e., jΔlzj ¼ 1, while for h⊥1T the overlapping LF-
LFWFs differ by jΔlzj ¼ 2. Since our LF-LFWFs are
nonvanishing for all possible lz components, the TMDs
are nonvanishing as well. We remark that although the
worm-gear and pretzelosity TMDs in Fig. 3 appear larger in
magnitude than f1, g1L, and h1, their contributions to the
correlation function are actually suppressed by factors
proportional to jkT j=mV or ðjkT j=mVÞ2 from Eqs. (11)
and (12), given that the TMDs of J=ψ and ϒ have typical
support in jkT j < 1 GeV in Fig. 3.
Finally, the tensor polarized TMDs f1LT and f1TT are

shown in Fig. 4. They are significantly smaller in magni-
tude as compared to other TMDs. We find f1LT is
antisymmetric with respect to x ¼ 1=2 while f1TT is
symmetric. Based on Eqs. (24) and (25), the f1LT is the
overlap between LF-LFWFs of Λ ¼ 0 and Λ ¼ �1 with
one unit of OAM (Δlzj ¼ 1) transfer while f1TT is the
overlap betweenΛ ¼ þ1 andΛ ¼ −1 LF-LFWFs with two
units of OAM transfer, i.e., jΔlzj ¼ 2. The f1LT and f1TT
are quite different in profile between J=ψ andϒ, which was
not observed for previously shown TMDs. This indicates

that they are sensitive to the current mass of valence quarks
in the vector mesons.

B. TMDs of ρ

We show the calculated ρ TMDs in Fig. 5. As compared
to the TMDs of heavy vector mesons, they are significantly
broader in x and narrower in k2T , following the trend fromϒ
to J=ψ . We recall that such an effect is also observed in the
TMDs of light and heavy pseudoscalar mesons [54]. On the
other hand, the ρ meson is a highly-relativistic system, so
the p- and d-wave LF-LFWFs are more pronounced. They
bring prominent effect, as the g1L, h1, g1T , h⊥1L, and h⊥1T
become more asymmetric.4 Meanwhile, the f1LT and f1TT
are strongly enhanced as compared to those in J=ψ and ϒ.
Note that f1LT and f1TT undergo a flip in sign from ρ to ϒ.
It is interesting to compare our ρ TMDs with those from

the NJL model [27], the light front holographic model and
the light front quark model [28]. In particular, it is found
that the light front holographic model agrees well with NJL
model on the profile of all the ρ TMDs, i.e., the TMDs
share exactly same behavior such as being vanishing or
nonvanishing, positive, or negative, as well as the way they
are skewed [28]. Here, we want to point out that, such nice
agreement could be due to the fact that the two models
actually have LF-LFWFs with the same nonvanishing spin
configurations. To see that, we first recapitulate the light
front holographic LFWFs of ρ, which read [28,67]

ΦΛ¼0
λ;λ0 ðx; kTÞ ¼ NLδλ;−λ0 ðm2

ρxð1 − xÞ þm2
q þ k2TÞ

ψðx; k2TÞ
xð1 − xÞ ;

ð27Þ

FIG. 3. 3D plot of the g1Tðx; k2TÞ (top row), h⊥1Lðx; k2TÞ (middle
row), and h⊥1Tðx; k2TÞ (bottom row) for J=ψ (left column) and ϒ
(right column).

FIG. 4. 3D plot of the f1LTðx; k2TÞ (top row) and f1TTðx; k2TÞ
(bottom row) for J=ψ (left column) and ϒ (right column).

4The g1L and h1 are asymmetric at k2T ≠ 0, which would be
more obvious by plotting jkT jg1L and jkT jh1 instead.
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ΦΛ¼�1
λ;λ0 ðx;kTÞ ¼ NT ½jkT je�iθkT ð�xδλ�;λ0∓ ∓ ð1− xÞδλ∓;λ0�Þ

þmqδλ�;λ0��
ψðx;k2TÞ
xð1− xÞ : ð28Þ

Here, δab;cd ¼ δa;bδc;d, with δa;b the Kronecker delta. The
spin configurations are generated by the bare vertex γμ with

ūλðkþ; kTÞffiffiffi
x

p ϵΛ · γ
vλ0 ðk0þ; k0TÞffiffiffiffiffiffiffiffiffiffiffi

1 − x
p : ð29Þ

The k and k0 denotes the four-momenta of the quark and
antiquark, respectively. They satisfy kþ ¼ xPþ, k0þ ¼ ð1 −
xÞPþ and kT ¼ −kT , where P is the meson four-momen-
tum. Comparing with Eqs. (3) and (4), one finds that ΦΛ¼0

�;�
and ΦΛ¼�1∓;∓ vanish in Eqs. (27) and (28). Note that ΦΛ¼0

�;�
andΦΛ¼�1∓;∓ correspond to jlzj ¼ 1 and jlzj ¼ 2 respectively,
so we will denote them as ΦΛ¼0

jlzj¼1
and ΦΛ¼�1

jlzj¼2
in the

following. On the other hand, the NJL model calculation
takes the covariant formalism rather than the light front
overlap formalism. We can follow Eq. (29), or equivalently
Eq. (2), and project out the LF-LFWFs from ρ’s Bethe-
Salpeter amplitude in the NJL model. We recall that the
Dirac structure of ρ’s BS amplitude contains only the γμ

term, see Eq. (47) in [27], so it generates exactly the same
spin configurations as light front holographic model does.
To make an analogous comparison with the light front

holographic model, we set ΦΛ¼0
jlzj¼1

and ΦΛ¼�1
jlzj¼2

of the BSE-
based LF-LFWFs to zero, and recalculate all the TMDs.
While some TMDs do not change much, significant
deviations are found in others which we have picked out
and plotted in Fig. 6. One can see by comparing the second
row of Fig. 5 to Fig. 6, the g1T changes from asymmetric in
x to symmetric, and the h⊥1T changes from nonvanishing to
vanishing. Moreover, the f1LT and f1TT both undergo a
sign flip. The LF-LFWFs with higher OAM thus have
sizable effect in determining these TMDs. It is worth noting
that the TMDs in Fig. 6 plus the first row of Fig. 5 agree
very well with the light front holographic model or the NJL
model regarding their profiles. Again, we remark that
although the g1T; h⊥1L, and h⊥1T are larger in magnitude as
compared to other TMDs, their contribution to the corre-
lation function is suppressed by powers of jkT j=mρ, with
jkT j typically around 0.3 GeV. Similar observation had
been made in [27].
Finally, we remark that the light front quark model

incorporates nonvanishing ΦΛ¼0
jlzj¼1

and ΦΛ¼�1
jlzj¼2

[68,69], and
yields g1T and h⊥1T which are similar to ours in Fig. 5 [28].
However, the tensor-polarized TMDs f1LT and f1TT vanish
in the light front quark model, which is different from our

FIG. 5. The ρ TMDs from the full BSE-based LF-LFWFs.

FIG. 6. The ρ TMDs obtained by setting ϕΛ¼0
jlzj¼1

¼ ϕΛ¼1
jlzj¼2

¼ 0 in the full BSE-based LF-LFWFs.
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result. So at this stage, new possibilities regarding the
profile of f1LT and f1TT are presented in Fig. 5.

C. Integrated TMDs

To quantify the transverse momentum dependence in
TMDs and compare with other model studies, we follow
[27,28] and calculate the mean transverse momentum of
certain TMDs, defined through

hkTi ¼
R
dx d2kT jkT jF ðx; k2TÞR
dx d2kTF ðx; k2TÞ

; ð30Þ

where the F stands for various TMDs. These hkTi’s
therefore characterize the “broadness” of the kT −
distribution of the TMDs. We note that this definition is
highly empirical and works only for model study purposes,
as in real QCD the momentum integration in both the
numerator and denominator could suffer from divergences
[59,70]. In Table. II, we list the hkTi of concerned TMDs,
and compare with other model studies. Our result is listed
in the last three columns. We notice that our results on ρ are
generally larger than other model predictions, but are close
to the NJL model for most TMDs. We note that these values
are obtained at low-hadronic scale. As the renormalization
scale increases, the jkT j − dependence would evolve. In
addition to the unpolarized TMD, the polarized TMDs
evolution has been investigated [71–73]. For instance, it
was found in [71] that the polarized TMDs, i.e., g1L and h1,
evolve in the same way as unpolarized TMD f1. So the
polarization only affect TMD evolution through the col-
linear factorization of the TMDs in terms of collinear PDFs
in the small jbT j region.5 The final finding was that all the
TMDs get broader in jkT j after evolving to a higher scale.
We therefore anticipate the vector meson TMDs to get
broader in jkT j as the scale increases as well.
In our model study, the collinear PDFs of vector mesons

can be obtained by integrating over the kT in TMDs, i.e.,

F ðxÞ ¼
Z

dk2TF ðx; k2TÞ; ð31Þ

with F ¼ f1; g1L; h1 and f1LL. The f1ðxÞ has the prob-
abilistic interpretation of finding an unpolarized quark in an
unpolarized meson. The helicity PDF g1L is the number
density of quarks with helicity 1 over quarks with helicity
−1 in a meson with helicity 1, and the transversity PDF h1
is the analog when both quarks and mesons are transversely
polarized along the same axis. The f1LL characterizes the
difference of unpolarized quark distribution between Λ ¼ 0
and Λ ¼ �1 states. We stress again that Eq. (31) is
restricted to a model study, but does not hold true in
QCD [59,70]. Meanwhile the parton-density interpretation
is only valid for leading-order QCD.
We plot the PDFs f1, g1L, and h1 of ρ, J=ψ , and ϒ in

Fig. 7. The PDFs of heavy mesons are generally narrow in x
and centered around x ¼ 1=2. Meanwhile, PDFs of the
same heavy meson are quite close to each other. Looking
into the quark spin sum hx0ig1L ¼ R

dxg1LðxÞ and tensor

charge hx0ih1 ¼
R
dxh1ðxÞ, we find hx0iJ=ψg1L ¼ 0.92,

hx0iJ=ψh1
¼ 0.96 and hx0iϒg1L ¼ 0.98, hx0iϒh ¼ 0.99. They

are less than unity due to nonzero OAM of quarks, and
closer to unity in ϒ than in J=ψ , as the relativistic effect
reduces. We note that these results are in qualitative
agreement with those by the BLFQ approach and light
front models [66,74,75]. On the other hand, the PDFs of ρ
are much broader and the deviation between the PDFs are
more significant. This indicates the quark and antiquark in a
highly-relativistic system as ρ are no longer constrained to
carry small relative longitudinal momentum as in heavy
mesons. Moreover, nonzero OAM configurations become
significant as we find hx0iρg1L ¼ 0.67 and hx0iρh1 ¼ 0.79.
While the ρ PDFs are unavailable by experiment, lattice

QCD has made predictions on their moments [76,77]. In
[76], the first three moments of ρ’s valence (nonsinglet)

TABLE II. The kT -moment of TMDs defined in Eq. (30). Lines
in the blank indicate the corresponding TMDs are vanishing.
All units are given in GeV. The first three columns are taken
from [27,28].

hkTiρNJL hkTiρLFHM hkTiρLFQM hkTiρBSE hkTiJ=ψBSE hkTiϒBSE
f1 0.32 0.238 0.328 0.399 0.623 1.020
g1L 0.08 0.204 0.269 0.318 0.589 1.003
g1T 0.34 0.229 0.269 0.358 0.615 1.020
h1 0.34 0.229 0.307 0.367 0.608 1.012
h⊥1L 0.33 0.204 0.269 0.368 0.608 1.017
h⊥1T … … 0.237 0.365 0.602 1.017
f1TT 0.32 0.211 … 0.338 0.764 1.063

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

x

P
D

F
s

FIG. 7. The f1ðxÞ (gray solid), g1LðxÞ (red dotted) and h1ðxÞ
(blue dashed) of vector mesons at hadron scale. At x ¼ 0.5, from
top to bottom, the three sets of curves correspond to ϒ, J=ψ , and
ρ respectively.

5The TMD evolution is conveniently performed in the bT
space, which is the Fourier conjugate of kT .
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unpolarized distribution an ¼ hxn−1if1;v and helicity dis-

tribution rn ¼ hxn−1ig1L;v at a renormalization scale of
μ ≈ 2.4 GeV are given

a2 ¼ 0.334ð21Þ; a3 ¼ 0.174ð47Þ; a4 ¼ 0.066ð39Þ;
ð32Þ

r1 ¼ 0.57ð32Þ; r2 ¼ 0.212ð17Þ; r3 ¼ 0.077ð34Þ:
ð33Þ

Note in [76], there are two sets of rn values extracted from
two different operators which should equal in the con-
tinuum limit. Here, we take their intersection. To compare
with the lattice prediction directly, we evolve our PDFs to
the scale of μ2 ¼ 2.4 GeV using the NLO-DGLAP evo-
lution with the help from the QCDNUM package [78]. The
strong coupling constant is set to the optimal value in NLO
global PDF analysis αsð1 GeVÞ ¼ 0.491 [79] and the
variable flavor number scheme is taken. However, the
initial scale of our ρ PDFs model is unknown. Here, we
choose it to be μ0 ¼ 670 MeV.6 In this case, the valence ρ
PDFs at scales μ0 and μ2 are shown in Fig. 8, with the
later yield

a2 ¼ 0.316; a3 ¼ 0.155; a4 ¼ 0.091; ð34Þ

r1 ¼ 0.66; r2 ¼ 0.227; r3 ¼ 0.111: ð35Þ

at the scale of 2.4 GeV. They agree with lattice predictions
in Eqs. (32) and (33) within uncertainties.
Ref. [76] also predicted the moments of valence tensor

polarized PDF f1LL;vðxÞ. However, due to the instability

of f1LLðxÞ under the rescaling procedure, we refrain from
making prediction on its moments, as the latter relies on
f1LLðxÞ’s global behavior at all x. On the other hand,
model studies have given diverse predictions on f1LLðxÞ
so far, as displayed in Fig. 9. In this respect, our LF-
LFWFs can shed some light on the f1LLðxÞ’s behavior at
relatively large x, e.g., x≳ 0.8, since the large x behavior
of PDFs, i.e., x → 1, is dominated by LF-LFWFs [80].
So we plot f1LLðxÞ calculated with our original (unre-
scaled) ρ LF-LFWFs as the solid curve in Fig. 9. We
emphasize that only the large x region of the solid curve
is meaningful in such scheme. We find our f1LLðxÞ
is positive at large x, similar to results of [81,82].
Meanwhile, the light front quark model gives a vanishing
result [28], and the NJL model and the LF holographic
model give a negative result [27,28]. Such a discrepancy
deserves careful investigation in the future. For instance,
a potential solution could be to carry out a fully covariant
calculation of ρ’s f1LL in analogy to the pion PDF
calculation [83], so that higher Fock-state effects can be
counted in.

V. SUMMARY

We extend the study of ρ and J=ψ LF-LFWFs in [38] to
extract the LF-LFWFs of ϒ from its BS wave functions.
The leading Fock-state approximation is then enforced by
rescaling the LF-LFWFs, and the TMDs of ρ, J=ψ , and ϒ
are studied using the light front overlap representation.
Among all the nine TMDs, the f1LL is unstable under the
rescaling procedure, indicating its sensitivity to Fock-state
truncation, thus left out in this study.
For J=ψ and ϒ, we find the unpolarized, longitudinally-

polarized, and transversely-polarized TMDs are all sizable
in magnitude, while the tensor-polarized TMDs f1LT and
f1TT are suppressed. The tensor-polarized TMDs change

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

x

FIG. 8. The xfρ1;vðxÞ at hadronic scale (black solid) and evolved
scale of 2.4 GeV (blue dotted), and xgρ1L;vðxÞ at hadronic scale
(purple dashed) and evolved scale of 2.4 GeV (red dot-dashed).

FIG. 9. The tensor polarized PDF f1LLðxÞ of ρ from light front
constituent quark model [81] (green dotted), LF quark model [28]
(blue dot-dashed), NJL model [27](purple dot-dash-dashed), light
front holographic model [28] (black dashed), [82] (light blue
band) and unrescaled BSE-based LF-LFWFs (red solid). Note
that only the large-x part of red solid curve is meaningful.

6The corresponding expansion parameter of perturbative
NLO-DGLAP evolution is αsðμ0Þ

2π ¼ 0.126.
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significantly from J=ψ to ϒ, indicating their sensitivity to
the quark mass. All TMDs in heavy mesons appear
symmetric with respect to x ¼ 1=2 due to the suppressed
p- and d-wave LF-LFWFs.
The ρ TMDs are then explored and compared with

existing studies by the light front holographic model, the
NJL model and the light front quark model [27,28]. The ρ
TMDs are generally broad in x and concentrate in low k2T.
We point out both the light front holographic model and the
NJL model have ΦΛ¼0

jlzj¼1
¼ ΦΛ¼�1

jlzj¼2
¼ 0, and after enforcing

this condition on the BSE-based LF-LFWFs similar TMDs
can be obtained. Our final result on ρ TMDs is given in
Fig. 5. In this case, the g1T and h⊥1T are found to agree with
the light front quark model, while the profiles of f1LT and
f1TT are new in literature. We therefore argue that LF-
LFWFs with higher OAM can have sizable impact in
determining certain polarized TMDs. We also compare the
kT dependence of our ρ TMDs with these models and
general agreement is found in Table. II. We stress that the
comparison herein is made at a low hadronic scale, i.e.,
roughly between 500–670 MeV. Evolution to higher scales
should broaden these TMDs.

Finally, the collinear PDFs of ρ, J=ψ and ϒ are studied.
We evolve our ρ valence PDFs, i.e., f1;vðxÞ and g1L;vðxÞ, to
the scale of 2.4 GeV. The first three moments of these PDFs
are found to be in agreement with lattice prediction within
uncertainties [76]. We also calculate the f1LLðxÞ using
unrescaled BSE-based LF-LFWFs, and find it to be positive
at large x. A covariant calculation that counts in the higher
Fock-states effects on f1LLðxÞ is thus called for.
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APPENDIX: LF-LFWFs OF VECTOR MESONS

The LF-LFWFs of ρ and J=ψ mesons from Dyson-
Schwinger equations approach have been reported in [38].
Here we supplement with LF-LFWFs of ϒ and show all the
LF-LFWFs in Figs. 10and 11.

FIG. 10. The LF-LFWFs of ρ (left column), J=ψ (middle column), and ϒ (right column) with Λ ¼ 0. See Eqs. (1), (3), and (4) for
definition of the LF-LFWFs.
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