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We investigate the structure X(4630) discovered by the LHCb Collaboration in the process B™ —
J/wpK™ as aresonance in the J/y¢ mass distribution. We explore this resonance as a diquark-antidiquark
state X = [cs][¢5] with spin-parities J?© = 17*. Its mass and current coupling are calculated using the
QCD two-point sum rule method by taking into account vacuum condensates up to dimension 10. We also

study decays of this tetraquark to mesons J/w¢, n.n") and y.;n"), and compute partial widths of these
channels. To this end, we employ the light-cone sum rule approach and technical methods of soft-meson
approximation to extract strong coupling at relevant tetraquark-meson-meson vertices. Our predictions for
the mass m = (4632 + 60) MeV and width I' = (159 £ 31) MeV of X are in a very nice agreement with
recent measurements of the LHCb Collaboration. These results allow us to interpret the resonance X (4630)

as the tetraquark X with spin-parities J*¢ = 17+,

DOI: 10.1103/PhysRevD.106.014025

I. INTRODUCTION

Recently the LHCb Collaboration announced that new
charmoniumlike resonances Z_., and X were observed in the
process Bt — J/w¢pK" in J/wK*' and J/w¢ invariant
mass distributions [1]. The new resonances Z.;(4000) " and
Z..(4220)" were discovered in the J/wK™ channel, and
are presumably exotic mesons with a quark content ccus.
States fixed in the J/w¢ channel should be composed of
ccss quarks provided they are four-quark structures. New
resonances in this channel X (4630) and X (4685) enriched
a list of vector, axial-vector, and scalar states discovered by
LHCb during the last few years [2,3]. The collaboration
also updated parameters of states seen at early stages of
investigations.

These experimental results generated a theoretical activ-
ity aimed to explain obtained information in the context of
various approaches of high energy physics. Studies were
concentrated mainly around the resonances X(4630) and
Z.s, in which authors calculated masses and magnetic
moments of these states, and explored their decay channels
[4-8]. Some of the new states were explained as threshold
effects as well [9].
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The structure X(4630) is a wide resonance with the
mass

Mexp = (4626 £ 161 ]})) MeV, (1)
and width
Teyp = (174 £2733%) MeV, (2)

respectively. The LHCb determined also the spin-parity of
X(4630) and fixed them J* = 1-.

It should be noted that, a vector structure Y (4626) with
the mass 4625.9782(stat.) & 0.4(sys.) MeV and the width
49.87132(stat.) + 4.0(sys.) MeV was seen by the Belle
Collaboration recently in the process e e~ — DiDy;(2536)
[10]. This resonance can be considered as a member
of the Y family of vector states discovered in electron-
positron annihilations. Other members of this group are
resonances Y (4630) and Y(4660). The first of these was
detected by Belle in the process ete™ = AFA7 as a
peak in the AJA7 invariant mass distribution [11].
Its parameters m=4634"3(stat.)"3(sys.)MeV and T'=
92739(stat.) 11%(sys.) MeV are close to those of the reso-
nance Y (4626), and whether they are different states or not
is under investigation. It is interesting that Y (4630) was
usually identified with the vector state Y (4660) [12].

The resonance Y (4660), as a particle produced in e*e™
annihilation, bears the quantum numbers J*¢ = 17~ It was
modeled as excited 53, and 63S; charmonia, as a com-
pound of the scalar f,(980) and vector y(2S) mesons, or as
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a baryonium state. In our work [13], we explored Y (4660)
by treating it as the diquark-antidiquark vector state [cs][¢5].
We calculated the mass and current coupling of the tetraquark
[cs][€5], and also evaluated its full width. Our results for the
mass and full width of the state [cs][¢5] allowed us to interpret
it as the observed resonance Y (4660).

From analysis of the decay channel X (4630) — J/yd, it
is clear, that X(4630) is a charmoniumlike state probably
with hidden strange component s5. Then, in the four-quark
model its quark content should be ccss. It is also evident
that C-parity conservation implies that X(4630) is a C
parity positive particle, i.e., the quantum numbers of this
resonance should be JP¢ = 17+ In other words, it can be
considered as a C = +1 counterpart of the resonance
Y(4626). Spin-parities J'¢ = 17" exclude interpretation
of X(4630) as an ordinary meson, because these quantum
numbers are not accessible in the conventional quark-
antiquark model. In other words, the resonance X(4630)
may be a double-exotic state: it is composed of four quarks
and carries exotic quantum numbers.

Four valence quarks can be grouped in different ways
to form a single structure. Indeed, they may form two
conventional colorless mesons and constitute a hadronic
molecule. Alternatively, four quarks ccss may build a
diquark-antidiquark state [cs][¢5]. The resonance X (4630)
was examined in the context of both of these models. Thus,
it was considered in Ref. [6] as the molecule DD, (2536)
with required spin parities. An analysis was performed
there using the one-boson-exchange method. The mass of
the molecule D} D, was found equal to 4644 MeV which is
consistent with the LHCb data. The authors also empha-
sized that a decay to a meson pair J/y¢ is the main decay
channel of the molecule D:D,;.

The molecule model for Y (4626) was used in Ref. [14],
in which it was examined as a system JC = 17~ appearing
from the interaction DD, — D,D,,. In this article, struc-
tures with spin-parities J°© = 077,07, 1~*, and others
were explored as well. This treatment for the masses of the
molecules D} D, with JP¢ = 17~ and J?© = 1=+ leads to
predictions 4646 and 4648 MeV, respectively. Heavy-
antiheavy hadronic molecules built of the S-wave charmed
mesons and baryons were studied also in Ref. [15]. The
authors assumed that interaction between mesons (baryons)
is saturated by a meson exchange, and searched for poles in
such systems by solving the Bethe-Salpeter equation.

In the framework of the QCD sum rule method a
diquark-antidiquark option was considered in Ref. [16].
The result of this article for the mass of the tetraquark
[es][e5] with JPC = 17+ equals 4.637) 4 GeV and agrees
with the new LHCb data. As is seen, almost all models for
X(4630) and predictions for its mass extracted using
various methods within errors are consistent with exper-
imental data. Stated differently, masses of exotic states do
not provide information sufficient to verify different models
by confronting them with each another and/or experimental

data. Therefore, besides computations of the mass, there is
a necessity to evaluate the full width of X(4630) as precise
as possible.

In the present work, we are going to fulfill this program
and calculate the mass and width of the resonance X (4630).
We treat X(4630) as diquark-antidiquark vector state
X = [cs][c5] with spin-parities JPC = 17", Investigations
are performed in the context of the QCD sum rule method
[17,18], which is one of powerful nonperturbative tools of
high energy physics. It allows one to compute parameters
not only of conventional mesons and baryons, but also of
multiquark hadrons [19,20].

The mass and current coupling of the tetraquark X are
calculated in the framework of the QCD two-point sum rule
approach. In these calculations, we take into account
various quark, gluon, and mixed vacuum condensates up
to dimension 10. To investigate numerous decay channels
of X, we use the light-cone sum rule (LCSR) method [21].
Most of tetraquarks are strong-interaction unstable particles
and decay into two conventional mesons. The resonance
X(4630) decays primarily to a pair of mesons J/y¢ which
is an experimentally confirmed fact. In the present work,
we study decays of the tetraquark X not only to J/y ¢, but
also to 7.7 and y.;n") mesons saturating by these five
channels its full width. The process X — J/w¢ is the
dominant decay channel of the tetraquark X, whereas
remaining modes are subdominant ones, but their contri-
butions are important to evaluate the full width of X.

Partial widths of aforementioned decays are determined
by strong couplings at relevant vertices. For instance, in the
case of the dominant decay there is a strong coupling G at
the vertex X.J/w¢. Calculation of the strong coupling at the
tetraquark and two mesons vertex XJ/y¢ in the LCSR
method necessitates usage of complementary technical
tools. A reason is that X is built of four valence quarks,
and the light-cone expansion of the relevant nonlocal
correlator leads to expressions which instead of distribution
amplitudes of the ¢ meson depend on its local matrix
elements. To preserve the four-momentum at the vertex
XJ /w, in this situation one needs to impose an additional
kinematical restriction on the momentum of the ¢ meson.
Troubles encountered afterward can be handled by includ-
ing into analysis technical methods known as a soft-meson
approximation [22,23]. The soft-meson approximation was
adapted for investigation of tetraquarks in Ref. [24], and
applied to explore decays of some of such particles (see, for
example, Ref. [19]). In the present article, strong couplings
at relevant vertices are computed by including into analysis
nonperturbative terms up to dimension eight. The coupling
G receives a contribution also from the twist-4 matrix
element of the ¢ meson.

This article is organized in the following way: The mass
and current coupling of the tetraquark X are computed in
Sec. II. We calculate the strong coupling G of particles at
the vertex X.J/w¢ in Sec. III. Here, we find also the partial
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width of the decay X — J/w¢. Section IV is devoted to
analysis of the processes X — n.n") and X — y.n"), and
to computation of their partial widths. To this end, we
calculate couplings ¢; and g, corresponding to vertices
Xn.n and Xn ', respectively. Strong couplings g3 and gy
required to study decays X — y.;1") are found also in this
section. In Sec. V, we confront our results with LHCb data
for the resonance X (4630). This section contains also our
concluding remarks.

II. MASS AND CURRENT COUPLING
OF THE TETRAQUARK X

Sum rules to calculate the mass m and current coupling f
of the tetraquark X can be derived from analysis of the
correlation function

HMm—jMwwwwmm@w» 3)

where J,(x) is the interpolating current for the X state, and
T is the time-ordered product of two currents.

The current with required properties has the following
form:

J,(x) = €€[s] (x)Cysc.(x)54(x)ysy,Cel (x)
=55 (X)Cyuysce(x)54(x)ysCel (x)], (4)

where €€ = €,,,.€,4., and a, b, c, d, and e are color indices.
In the expression above C is the charge conjugation matrix.
The current J,(x) describes the tetraquark composed of
the color antitriplet scalar diquark es” Cysc (vector diquark
es” Cy,ysc) and color triplet vector antidiquark €5ysy,Cc’”
(scalar antidiquark &5ysCc”). This current belongs to
|

antitriplet-triplet representation [3,]., ® [3.].; of the color
group SU.(3). Because the scalar diquark configuration is
the most attractive and stable two-quark system [25], the
current J,,(x) corresponds to a ground-state vector particle
with lowest mass and required spin-parities.

To derive the desired sum rules, we write down the
correlation function I1,,(g) using the mass and current
coupling of the state X. For these purposes, we insert into
the correlation function a complete set of states with
quantum numbers of X and carry out in Eq. (3) integration
over x. As a result, we get

(01, |X(p. &) (X (p.e)|J{]0)
m? — p?

Phy:
,"(p) = +- (9)
with m being the mass of X. In Eq. (5) dots stand for
contributions of higher resonances and continuum states.
We introduce the current coupling f by means of the matrix
element

Ol X(p. €)) = fme,, (6)

where ¢, is the polarization vector of the tetraquark X. In
terms of m and f, the correlation function can be rewritten
in the following form:

242

Phys o m f p [lpl/

() = o5 (g + 225 ) o )
We calculate the QCD side of the correlation function

I1,,(p) using explicit expression of the current J,(x) and

obtain TIOFE(p) in terms of heavy and light quark propa-

gators. Then for IO E(p), we get the following formula:

H,(BEE(P) = i/d4xe"1”‘eée’é’{Tr[y5§§’b/(x)yssff'(x)]Tr[ysyﬂS’ge/(—x)yyy5S§1d’(—x)]

- Tf[?s}’ﬂgi/e(—x)}’ssf/d(—x)]Tr[Vs}’uS?b/ (X)YSSEC/ (x)] = Tr[?sgge(‘@h?ssﬁm(—x)]
X TrlysSe (x)y,rsSe ()] + Trlysy, S2 (x)r,rsSe (x)] TrlysS¢ e (—x)ys S (=x)]}, (8)

where €' = €,y €qq0. In Eq. (8) S (x) and S%(x) are
the s- and c-quark propagators, respectively. Their explicit
expressions are collected in the Appendix. Here, we also
use the notation

Sse)(x) = €SI, (x)C. (9)

To continue our analysis, we have to choose the same
structures both in IT;;**(p) and TIOPE(p). For our purposes,
it is convenient to work with terms proportional to
—Gu» 1. ., with invariant amplitude TTP"YS(p?) = m?f?/
(m* — p?) + - - -. This function receives contributions only
from spin-1 particles and does not contain spin-0 effects.

[

The amplitude TTP™S(p?) can be expressed by the
dispersion integral

0 pPhys (S)dS

HPhys(pZ) :/ 5 cee
4M?

s=p
where M =m,.+ mg, and dots indicate subtraction
terms necessary to make the whole expression finite.
The imaginary part of the amplitude TT""*(p?) constitutes
the spectral density p™™*(s), which can be written down in
the following form:

(10)

pPhys(S) _ %ImHPhys@) _ m2f25<s - mz) —|—ph(s). (11)
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Here, contribution of the ground-state particle (the pole
term) is separated from one due to higher resonances and
continuum states: the latter is characterized by an unknown
hadronic spectral density p"(s). It is not difficult to see that
PP () substituted into Eq. (10) leads to the expression of
the ground-state term

HPhys(pZ) _ lefz 4 /oo Ph<S)ds ‘ (12)

m*—p?  Jare s—p?

The obtained formula contains also a contribution coming
from higher resonances and continuum states.

The amplitude IT°F(p?) can be calculated theoretically
in a deep Euclidean region p?> < 0 in the operator product
expansion (OPE) with certain accuracy. The coefficient
functions in this expansion could be found using methods
of perturbative QCD (PQCD), whereas nonperturbative
information is encoded by vacuum expectation values of
various quark, gluon, and mixed operators. Having con-
tinued TTOPE( p?) analytically to the Minkowski domain and
computed its imaginary part, one determines the two-point
spectral density p°PE(s). In the region p? < 0 one applies
also the Borel transformation to remove subtraction terms
in the dispersion integral and suppress contributions of
higher resonances and continuum states. In the case of
P8 (p?), we find
BHPhys(pZ) _ m2f2€—m2/M2 + /oo dsph (s)e—s/M2 , (1 3)

4M?
with M? being the Borel parameter. Similar dispersion
representation can be written down for IT°PE(p?) in terms
of pOPE(s) as well. Later, using assumption about hadron-
parton duality and matching p"(s) ~ pOPE(s) in the duality
region, it is possible to subtract the second term in Eq. (13)
from the QCD side of the sum rule and get

mzfze—mz/M2 :/SO dspOPE( ) —s/M? +H(M2), (14)
4M?

where s, is a continuum subtraction parameter. The
second component of the invariant amplitude TT(M?)
contains nonperturbative contributions computed directly
from IIOFE(p).

As is seen, physical parameters m and f of the tetraquark
are expressed in terms of pOPE(s) and I1(M?) calculated in
quark-gluon degrees of freedom. To complete a system of
equations and determine the mass and coupling of the
tetraquark X, we act by the operator d/d(—1/M?) to both
sides of the equality Eq. (14), and, by this way, find a
missed second expression. This system can be solved, and
sum rules for the mass m and coupling f read

5 H’(Mz,so)
T TM, 5) (13)

and
2o s, (16)
m2
Here, we denote right-hand side of Eq. (14) as TI(M?, 5),
and introduce also a function IT(M?,sy) = dl1(M?, s,)/

d(—=1/M?).

In the present article, IT1(M?,s,) is calculated at the
leading order of PQCD by taking into account quark,
gluon, and mixed vacuum condensates up to dimension 10.
Details of computations of the spectral density p°PE(s) and
function T1(M?) can be found, for instance, in Ref. [24].
Therefore, we do not consider here these usual operations,
and move the explicit expression of the function IT1(M?, s;)
to the Appendix.

The sum rules for the mass and coupling given by Egs. (15)
and (16) contain quark, gluon, and mixed condensates which
are universal parameters of computations. They depend also
on masses of ¢ and s quarks. Numerical values of all of these
parameters are listed below:

gq) = —(0.24+£0.01)° GeV3,  (3s) = (0.8 £0.1)(gq).

5g,06Gs) = m3(ss), m}=(08+0.1) GeV?,

G2
<“ > (0.012 + 0.004) GeV*,

($3G3) = (0.57 £ 0.29) GeV®,

m,.=(1.274+0.02) GeV, m;= 93f511 MeV. (17)

The sum rules are functions also of auxiliary parameters
M? and s, which have to obey standard constraints
imposed on them by the sum rule method. This means
that in the working regions of the parameters M? and s, a
pole contribution (PC) should dominate in the sum rules
and the operator product expansion should converge
rapidly. To quantify these constraints and use them to
fix working windows for M? and s,, we introduce the
expressions

B (M2, s)
PC = H(T%Z) (18)
and
R(Mz) _ HDimN(M2, SO) ’ (19)

H(Mz, So)

where TIP™N(M?, ) is a contribution of the last three
terms in the OPE, i.e., DimN = Dim(8 + 9 + 10).
Equation (18) determines a contribution of the pole term
to the function I1(M?, sy). In our present study, we adopt
the limit PC > 0.2, which is typical for multiquark par-
ticles. The convergence of the operator product expansion
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FIG. 1.
continuum threshold s at fixed M? (right).

is examined by means of the expression Eq. (19): The
convergence of OPE is fulfilled if at the minimum of the
Borel parameter the ratio R(M?) does not exceed 0.01. The
mass and current coupling of X obtained by means of the sum
rules, in general, have not to depend on the Borel parameter,
but in actual computations, one can only limit its influence on
obtained predictions. Thus, a stability of extracted results is
among employed constraints to get the parameters M2 and s.

Computations show that the working regions that meet
all of these constraints are

M? € (55,65 GeV2, sy € [24,25] GeV2.  (20)

In fact, in these regions the pole contribution varies within
a range 0.66 < PC <0.26. The convergence of OPE is
also satisfied, because at M? = 5.5 GeV?, and we fix
R(M?) £0.01.

To extract numerical values of the mass m and coupling f,
we calculate them at different choices of the parameters M?
and s, and find their mean values averaged over the working
regions Eq. (20). For m and f these calculations yield

m = (4632 + 60) MeV,

f=(9240.8) x 107 GeV*, (21)

The values from Eq. (21) correspond to sum rules’ results
computed at the middle point of the working regions, i.e., to
results at the points M2 = 6 GeV? and s, = 24.5 GeV?. At
this point the pole contribution is PC = 0.51, which guar-
antees reliability of the obtained predictions, and a ground-
state nature of X.

In Fig. 1, we plot the mass of the tetraquark X as
functions of the parameters M? and s,. As is seen, the mass
m is sensitive to a choice of M? and s,. It is also evident that
within the limits M? € [5.5,6.5] GeV? this dependence is
weak and theoretical errors do not exceed 1.5%, whereas a
similar estimate for the coupling gives 9%. This effect has a
simple explanation: The mass of the tetraquark is deter-
mined by the ratio of the correlation functions Eq. (15). As

The mass of the tetraquark X(4630) as a function of the Borel parameter M? at fixed s, (left), and as a function of the

a result, this ratio smooths dependence of m on the
parameter M2, which is not a case for the coupling Eq. (16).

The mass of the tetraquark X obtained in the present
work is in excellent agreement with the LHCb data for the
mass of the resonance X (4630). At this phase of our studies,
we can conclude that X(4630) is the diquark-antidiquark
state X = [cs][¢5] with spin-parities JP€ = 17+,

III. DECAY X — J/y¢

The resonance X(4630) was observed in the invariant
mass distribution of the J/y¢ mesons. Hence, the process
X(4630) — J/w¢ can be considered as its dominant decay
channel. In this section, we consider this decay and cal-
culate partial width of the process X — J/w¢, which is
governed by the strong coupling G at the vertex XJ/y¢.

In the context of the LCSR method the vertex XJ/w¢
can be explored by means of the correlator

M (p.q) = i / e (q)| T LY ()5 (0)}[0). (22)

with J, and J,J/ ¥ being the interpolating currents of the
tetraquark X and vector meson J /s, respectively. The J,, is

given by Eq. (4), and current Jﬁ/ ¥ has the form

L () = 0r,e(x), (23)
where [ =1, 2, 3 is the color index. In Eq. (22) p and ¢
are the momenta of the J/w and ¢ mesons. Then the
4-momentum of the tetraquark X is equal to p’ = p + gq.

For on mass-shell ¢ meson ¢ = mﬁ, the correlator

I1,,(p. q) is a function of two independent variables p* and
p”? = (p + q)* It can be expanded over a set of Lorentz
structures in terms of invariant amplitudes IT;(p?, p’?) and
mass factors C;({m?}). For our purposes, it is convenient to

expand II,,(p. g) in the following basis:
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1, (p.q) =11, (p*, p?)C;({m*})e;(q) p,

+1IL(p?, p?)C({m?})es(q) p + +105(p*, p?)
x C3({m*})e*(q) - ppup, +1L(p*. p?)
XC4({m2})8*(q)'ng+“', (24)

where €*(g) is the polarization vector of the ¢ meson.
The factors C;({m?}) depend on some combination of
particles’ masses {m*} = {m* m7, m3}, with m; and m,,
being masses of the J/y and ¢ mesons, respectively.
The phenomenological side of the sum rule can be
obtained from Eq. (22) by expressing IL,, (p, ¢) in terms of
physical parameters of particles involved in the decay
process. To explain this procedure, as an example, let us
consider the amplitude I1;(p?, p”?). Using the double
dispersion relation [23,26], for IT;(p?, p?) we get

// /)1 sl,s2 )ds,ds,
Sz—Pz)

4 //’11(51)51251 + /,021(52)61252‘ (25)
(s1=p") (52— p?)
As s seen, Eq. (25) contains also single dispersion integrals
which are necessary to make finite the whole expression.
The amplitude IT; (p?, p'?) receives contributions from
two channels: The first channel contains vector tetraquarks
[cs][c5], whereas the second one is a channel of vector
charmonia. Separating in spectral density pli(s;,s,) con-
tributions of ground-state particles in these channels, i.e.,
contribution of the tetraquark X and J/y from effects of
higher resonances and continuum states, we can model
Pi(s1,s,) in the form [26]

Gfmfmé(s; — mz)‘s(sz - m%)
+ P (51, 52)0(s1 — 50)0(s2 — s0), (26)

plll(sl’ SZ) =

where G is the strong coupling, which should be extracted
from the relevant sum rule. The doubly spectral density
pi(sy,s,) contains also the current coupling f of the
tetraquark X and decay constant f; of the J/w meson,
which are defined by Eq. (6) and by the matrix element

(O /w(p))

respectively. Here, €,(p) is the polarization vector of the
J/w meson.
Substituting pf(s;, s,) into Eq. (25), we find

Gfmfym, m2
=) (o -y 1)

// pl Slst dsldSZ 4o, (28)
(52— p?)

= f1m1€ﬂ<P)7 (27)

Hl(szPQ)

where > is a domain in the (sy,s,) plane boundaries of
which (sg, s;) depend on parameters of a process under
analysis. For the sake of brevity, we do not write down here
single dispersion integrals and denote them by dots. The
similar dispersion relations can be written down for
remaining amplitudes, as well. Because the strong coupling
G is the same for all structures [27], one gets

Gfmfim,
(p"* =m*)(p* = m3)
x [Cy({m*})es(q)p, + C:({m*})es(q) p,
+ C({m*})e*(q) - ppup, + Ca({m?})

]+ (p.g). (29)

hys
" (p.q) =

X €(q) - PG + -

Contributions stemming from higher resonances and con-

tinuum states are denoted in Eq. (29) by I1 (HR ) (p,q). We
are interested in detailed ana1y51s of the first term in

12 (p, q) [23], with poles at p* and p? = (p + ).

The correlation function I'[,wy (p, q) can be written down
in the factorized form

(X(p")I3]0)
(prz _ m2)

o (30)

."(p.q) = (¢(q)T/w(p)|IX(p"))
O /y(p))
(P _ml)

where mf and m;f, are replaced by relevant martix
elements (up to polararization vectors), whereas on-
mass-shell matrix element (¢(q)J/w(p)|X(p’)) defines
the strong coupling G at the vertex XJ/w¢. It can be
modeled in the following form:

(@) /y(P)IX(P')) = Gl(q = P),9ap = (P' + @)ayp
+(P' + P)pgyal€ (P (p)e” (q).
(31)
Then from Eq. (30) one can easily find that
" (p. q)
_ Gfmfym
(p" = m?)(p* = m3)
ml—mz—m{Z/) mz—m%—mfﬁ .
X |——s—€(q)p, + ————¢€,(q) P,
m m?
m? + m?3 — m?
_—mzm% Le*(q) - ppupy +26(q) - PG+
+ TR (. g), (32)

where ellipses inside of the square brackets stand for terms
that vanish in the limit p’ — p (see an explanation below).
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Comparing the correlation function IT,,"*(p, ¢) in Eq. (32)

with one from Eq. (29), one sees that they coincide with
each other provided functions C;({m?}) are given by
formulas

2 2 2
_my—m”—my,

¢\({my =
m —m2 m2
Ca({m’}) = —— 5"
e 4 2 — 2
Calfmy) = - "
Cl{my) =2, (33)

There are a few Lorentz structures in Eq. (32), which may
be employed to construct a sum rule equality. In the present
work, we choose to work with the structure ~e¢,(g)p, and
denote a relevant invariant amplitude by TP (p2, p2).

At the next phase of studies, we have to calculate the
correlation function TIOP®(p, g) using quark-gluon degrees
of freedom. To this end, we insert expressions of the currents
J#V(x) and J}(0) into Eq. (22), contract relevant quark
fields, and replace them by corresponding quark propagators.
In full LCSR treatment of vertices, for instance, composed of
three conventional mesons, a final expression obtained for
IIOPE(p, q) depends on propagators and distribution ampli-
tudes (DAs) of a meson. Afterwards, separating in the
correlation function a chosen Lorentz structure and corre-
sponding invariant amplitude TIPE(p?, (p + ¢)?), one
should calculate it in the regions s; = (p + ¢)*> < 0 and
s, = p? < 0, where methods of PQCD are applicable. After
analytical continuation of IT°PE(s;,s,) to a Minkowski
domain, computing its imaginary part over variables s,
and s,, one can determine a spectral density pOPE(s,, s5).
Then using parton-hadron duality assumption p" (s, s,) =~
pOPE(s,,s,) and performing double Borel transformations
over variables p?> < 0 and p"? < 0 to suppress effects of
higher resonances and remove single dispersion integrals,
one finds a sum rule which expresses an on-mass-shell three-
meson coupling in terms of p°PE (s, s,).

In the case under discussion, i.e., for tetraquark-meson-
meson vertex XJ/w¢, the full LCSR scheme outlined
above has to be modified. Reasons for that are connected
with features of the function II)P%(p, ¢). In fact, the QCD
expression for IIOFE(p, g) obtained by using quark propa-
gators is given by the formula

U2 (p.q) = =i [ dxeee{lysS oy,
xS (=x)r,s] + [rursSE ()r, S (=x)7s]} o
x (#(q)54(0)s5(0)]0), (34)

where a and f are spinor indices.

As is seen, the function IIO 5 (p, ¢) instead of ¢ meson’s

distribution amplitudes depends on its local matrix ele-
ments. The emerged situation has a simple explanation:
The meson J/y is composed of a ¢ quark and antiquark at x
which can be contracted only with ¢ antiquark and quark
from the tetraquark X. As a result, the remaining s-quark
fields in the current J;(0) located at the space-time position
x = 0 establish local matrix elements of the ¢ meson.

To understand the consequences of this situation, it is
convenient to perform the following transformations:

_ 1 P
Sosf — Eé""l"éa(sl"/s), (35)
where TV is the full set of Dirac matrices,

Fj = 1’ 75, J/;u iYSyw Upw/\/i' (36)

Let us note that in Eq. (35) we also use the projector onto a
color-singlet state 6%¢/3.

After these manipulations, it is easy to carry out a color
summation. Later, we substitute quark propagators into the
obtained expression and perform four-dimensional integra-
tion over x. This integration creates in the integrand the
delta function 6*(p’ — p), which as an argument contains
only four-momenta of the tetraquark X and meson J/y.
Therefore, subsequent integration over p or p’ sets p = p/,
which is the consequence of the four-momentum conser-
vation at the vertex XJ/w¢. Stated differently, to preserve
the four-momentum at the tetraquark-meson-meson vertex,
one has to choose ¢ = 0. In the full LCSR method this is
known as the soft-meson approximation [23]. At vertices of
ordinary mesons ¢ # 0, and only in the soft-meson limit,
one equates ¢ to zero, whereas the tetraquark-meson-meson
vertex can be explored in the framework of the LCSR
method only for ¢ =0. It is worth emphasizing that
tetraquark-tetraquark-meson vertices can be explored using
the full LCSR method: the correlation function of such a
vertex depends on distribution amplitudes of a final meson
[28-30]. For our purposes, it is important that both the soft-
meson approximation and full LCSR treatment of the
ordinary mesons’ vertices lead for the strong couplings
to very close numerical predictions [23], hence our treat-
ment of the coupling G should give a reliable result.

Equation (35) applied to ITOF®(p, 0) generates different
local matrix elements of the ¢» meson, which are known and
can be used to find an analytical expression and carry out
numerical computations. The analysis confirms that only two
matrix elements of the ¢» meson contribute to the correlation
function. The first of them is a twist-2 matrix element

(#(q)[5(0)r,5(0)[0) = fymye; (), (37)

where f is the decay constant of the ¢ meson. The second
matrix element, which survives in the soft-meson limit, has
twist 4 and is given by the expression
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(#(9)[5(0)9Gur*755(0)|0) = fymilapei(a).  (38)

Here, G,, = 1/2¢,,,5G* is the gluon dual field-strength
tensor. The parameter {4, = 40.02 was determined from the
sum rule analysis in Ref. [31], and is small.

But before deriving the sum rule for the strong coupling
G, the soft limit should be implemented also in the physical
expression of the correlation function ITy*(p. ¢). In the

limit ¢ — 0, the ground-state term in IT,**(p.,0) can be
modified with some accuracy in the following way:

1 1

—m?)(p>=mi)  (p*—im

(p? 22 (39)
where 2 is equal to (m?* + m?) /2. After this transformation
instead of two single poles at p’> = m?* and p? = m3, the
function TT™5(p?, 0) acquires one double pole at p? = .

Having fixed in IPE(p,0) an amplitude TTOPF(p?)
which corresponds to the structure ~é;;(¢)p,, and carried
out calculations in the region p> < 0 we find finally the
spectral density p°PE(s). But in the soft approximation the
Borel transformation and subtraction procedure require
more careful considerations than in the full LCSR treat-
ment. In the soft limit one performs Borel transformation
over one variable p? < 0, and in this case single dispersion
integrals also contribute to hadronic part of the sum rules.
These nonvanishing contributions correspond to transitions
from the excited states in the X channel [23]. Therefore,
before carrying out the continuum subtraction they should
be excluded from BITP™3(p?) by means of some prescrip-
tion. This problem is solved by the operator [22,23]

d 2 2
P(M?,in?) = <1 - M? dM2> M2e™ /M (40)

that acts on both sides of the sum rule. It eliminates

unsuppressed terms in the physical side, but modifies also

the QCD side of the sum rule. Then contributions of higher

resonances with regular behavior can be subtracted from

the QCD side using the quark-hadron duality assumption.
The sum rule for the strong coupling G reads

G__ ™ P(M?, in?) BIIOPE (p?) m
fmyfy m%—mz—mé '

The Borel transformed and subtracted correlation function
BII°PE(p?) has the following form:

BIO™E(p?) = / °dsprn(s)en M TI(MY). (42)

aM?

The integral in Eq. (42) is a perturbative term, where the
spectral density pP*'(s) is determined by the expression

_ fgmgme/s(s = 4m7)

pert
pr(s) 472 s

(43)

The second component of BIT°PE(p?), i.e., the function
I1(M?), contains the twist-4 and nonperturbative contribu-
tions,

ﬁ(M2) _ —m?/M?x(1-x)

e

f¢m;mcé’4¢/l dx
167? 0o x(x—=1)

+ 2 L‘]:'n.—pen. (M2>’ (44)

where FPert(M?) is given by the formula

a,G>

) [ a6

G?\2
X Alﬁ(x, M?)dx — <a“ﬂ >

X /()1f3(x, M?)dx. (45)

Frepert(p2) = <

The nonperturbative contributions of four, six, and eight
dimensions are proportional to (a,G*/x), (¢2G?) and
(a,G*/m)?, respectively. The functions f;(x, M?), i =1,
2, 3 are explicitly given below:

1
M) =——— _[8m2(1 —x)?
fl(-x ) 18M4)C2<1—x)2[ mc( .)C)
+ M2(2 = Tx 4 9x% — 4x3 + 2x4)] et/ MPx(1=x)
(46)
1
fa(x.M?) 2M*x2(1—x)>2

T 240MP 225 (x— 1)
X (3—=11x+15x> —8x3 +4x*)
+24mt(1-2x)%(=2=Tx+17x* = 20x> 4+ 10x*)
—3m2M*x(4—49x + 176x* —293x3 +218x*
—26x5 —40x0 +10x7)] x e7me/M*x(1=x) - (47)

and
162%m?2
f3(.x, M2> = m <25m% + 6M2x
_ 6M2x2>e—m%/M2x(1—x). (48)

The width of the process X — J/w¢ is determined by the
formula

A’(ma my, md))

'Xx-1J =G?
( - /U/d)) 24am>

|M

49
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TABLE I. Masses and decay constants of mesons, which have
been used in numerical computations.

Parameters Values (in MeV units)
my[my,] 3096.900 £ 0.006
Filfip] 409 + 15
my[m, ] 2983.9+0.5
falf] 320 +£40
ms[m,, | 3510.67 £ 0.05
f3lf ] 344 + 27
i 1019.461 +0.019
fo 228.54+3.6
m, 547.862 +0.017
m,y 957.78 + 0.06
where
MP* = ——— [m} + 8mS(m* + m3
MP = oy i+ 82 4 )

+ (mg, — m*)?(my, + 10mgm* + m*)
= 2m{(9my + 16mgm?* + 9m*) + 8m7
x (’772) - 4m;§m2 - 4m§,m4 +m9)], (50)

and A(a, b, ¢) is the function

Vat bt + ¢t = 2(a?b? + a2t + b2C?)

Aa,b,c) 2
a

(51)

The sum rule Eq. (41) depends on the mass and decay
constant of the J/y and ¢ mesons; their values are
collected in Table I. This table contains also spectroscopic
parameters of other mesons which will be used in the next
section. The masses of all mesons are borrowed from
Ref. [32]. For the decay constants f, and f; of the vector
mesons ¢ and J /y, we use their experimental values reported
in Refs. [33,34], respectively. For the decay constants f, and
f3 of the . and y;. mesons, we utilize relevant sum rules’
predictions from Refs. [35,36], respectively.

In numerical analysis, the parameters M> and s, are
chosen as in Eq. (20). Computations allow us to find
numerical value of the strong coupling G,

G =0.85+0.12. (52)

In Fig. 2, we depict G as a function of the Borel parameter
M? at fixed s,. One sees that the coupling G is sensitive to
M? and s, which are the main sources of the theoretical
ambiguities of the analysis: Ambiguities arising due to
variations of the parameters M? and s, are equal to
AM50)G = £0.11. Uncertainties in the decay constants
f1 and £, generates ANG = £0.03 and AT G = £0.02,

2.0 T T T T T T T T T T T T T T T T T T
I 50=25.0 GeV? ]
1.5  mmemmeeee- 5o=24.5 GeV? 1
-------------- 50=24.0 GeV?

O 1.0 — R
0.5 ]
0.0 L L L L L L L L L L L L L L L L L L L

5.6 5.8 6.0 6.2 6.4
M2 (GeV?)

FIG. 2. The strong coupling G as a function of the Borel
parameter M at fixed s.

respectively. Errors connected with various vacuum con-
densates are very small and can be neglected.
For the partial width of the process X — J/w¢, we get

T(X — J/y¢) = (113 £ 30) MeV. (53)

This information will be used below to evaluate the full
width of the tetraquark X.

IV. PROCESSES X — 7.7") AND X — y;.4"

In this section, we consider processes X — 7.} and
X = y;.n") and calculate their partial widths. It is not
difficult to see that decays to pseudoscalar mesons 7, (1S)
and 5"} with spin-parities J’C = 0=+ are P-wave modes of
the tetraquark X. The second pair of decays to axial-vector
meson y,.(1P) with JPC = 1+ and »") are its S-wave
modes. In all of these processes conservation of C parity is
the case.

A. Decays X — 5,7 and X — 7.1/

We start from analysis of the processes X — . and
X — 5.1/, and extract couplings g, and ¢, which des-
cribe strong interaction at the vertices X#.n and X1,
respectively.

The strong coupling g, is defined through an on-mass-
shell matrix element

(n(@n.(p)IX(P")) = gip - e(p’). (54)

The correlation function for analysis of this coupling has
the following form:

M,(p.q) = i/d“xe"”"w(Q)|T{J””(X)Jf4(0)}|0>, (55)
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where J"(x) is the interpolating current for the 7, meson

1(xX)iysei(x). (56)
The term which will be used to determine ¢, is

fm%fz
4m,m(p"* —m?)(p* — m3)
X [(m% - ml% - mz)p;t + (m% + m% + mz)qy]

T (57)

Jie(x)=¢

h
"™ (p.q) = o

Here, m, and m, are masses of the 5. and n mesons,
respectively. The decay constant of the 77, meson is denoted
by f». Let us note that to derive Eq. (57), we use the matrix
elements of the tetraquark X from Eq. (6), and the matrix
element of the 7. meson

:fzm%

0}J" .
(ol 2m,

1¢(P)) (58)

The QCD side of the sum rule reads

9% (p.q) = [ dtveree((7sSE (rs
xS (=x)rrs] + [rurs S ()75 Se (=x)rs]} o
x (n(q)156(0)s5(0)[0). (59)

Itis clear that [I7P%(p, ¢) contains only local matrix elements
of n; therefore, the remaining calculations have to be carried
out in the context of the soft-meson approximation.
Technical methods of such treatment have been explained
in the previous section. Therefore, we do not concentrate on
further details, and note that in the soft limit fI?P%(p,0)
receives contributions only from the matrix element

2my(n|siyss|0) = hy. (60)

The parameter /; in Eq. (60) can be defined theoretically
[37], but for our purposes it is enough to use its phenom-
enological value extracted from analysis of relevant exclu-
sive processes. Thus, we have
hy, = —hysin g, hy = (0.087 £ 0.006) GeV?, (61)
where ¢ = 39.3° 4+ 1.0° is the 5 — ' mixing angle in the
quark-flavor basis (for details, see Ref. [37]).

The sum rule for g, is derived by making use of invariant

amplitudes corresponding to structures p,, in 1, (p) and
NIOPE(p). It reads
4mm, P(M?, m'*)BIIOPE(p?) (62)
g1 = )
! fmaf, m3 —m?* —m;

where m”? = (m? + m3)/2. The Borel transformed and

subtracted invariant amplitude BITPE(p?) is given by
the following expression:

BHOPE ( p

\/ 4m S/M2
471' my M2

+ TI(M?). (63)

The nonperturbative component IT(M?) is calculated with
dimension-eight accuracy and determined by formulas
similar to the ones from Egs. (45)—(48). Therefore, there
is no need to write down their explicit expressions.

The width of the mode X — 7.7 can be calculated using
the formula

A (m, my, my)

L(X = nn) =g (64)

247m?
Numerical computations yield
lg1| = 3.75 +£0.78, (65)
and
I'(X - n.n) = (18.0+£5.4) MeV. (66)

The second process X — 5.4 can be considered in a
similar manner, the difference being in the matrix element
of the #' meson

2mg (1 |5iyss]0) = hycos @, (67)

that contributes to the corresponding correlation function.
For this decay, we find

9> = 4.38 +0.90, (68)

and

X - nan')=(155+45) MeV. (69)
Effects of these processes on the full width of X are not
small and will be taken into account.

B. Decays X — y;.7 and X — y;.1f

Processes X — y;.n and X — y,./' are explored in
accordance with the scheme described above. Here, we
have to evaluate the strong couplings g; and g4 which
correspond to vertices Xy . and Xy,.1 .

Let us consider the decay X — y;.# and write down
some principal expressions. The relevant strong coupling g;
is defined by the on-mass-shell matrix element

n(@)xic(p)IX(P")) = g3{lp - P'lle"(p) - e(p')]
=[p-e(p)llp" - (p)l} (70)

with &, (p) being the polarization vector of the meson y.
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To determine g3, we consider the correlation function

(. g) =i / e (n(q) [T L () IL(O)}0).  (71)

where J%'“(x) is the interpolating current for the axial-
vector meson y .

J0(x) = € (x)iysy,ci(x). (72)

A

Then, the term in II,(p,q) which has two poles in
variables p? and p”? = (p + ¢)? is given by the formula

Smfsyms

fIPhys
—m?*)(p* - m3)

Hy (p’ q) =43 (p/z

1
X E(mz—'—m%_m%)gﬂv_pyp; +-y
(73)

where m5 and f5 are the mass and decay constant of the y,.
meson. As usual, dots stand for contributions of higher
resonances and continuum states. The ground-state term in

1% (p. q) has been found using the matrix element

(ol

21c(P)) :f3m3€/4(l7)’ (74)

as well as the matrix element of the tetraquark X.
The correlation function Hng(p,q) is given by the
expression

(% (p.q) = i / dhxemee { [y (07,753 (=277

+ [1ursSE()rurs S (=x)75]} o
x (1(q)|5(0)s5(0)[0). (75)

The required sum rule for the coupling g5 is derived by

equating invariant amplitudes of structures ~g,, from the
A Phys

functions 1L, (p, g) and f[,?,f’ E(p.q), and has the form
2 P(M?.m?)BIO™ (p?)

Smfzms ; 7

g3 (76)

2% —m
where M2 = (m* + m3)/2. Numerical analysis for g; gives
g3 = (1.34 +£0.23) x 107! GeV~!. (77)

The width of the process X — y,.# is determined by the
expression

Am? 202
I(X = yin) = ggﬁ <3 + W) (78)
3

with 4 being equal to A(m, m3,m,). Then it is not difficult
to find that

(X = y10n) = (1.9 £ 1.9) MeV. (79)
For the decay X — y,.1f, we get

lga] = (1.39 £0.23) x 10~! GeV~!, (80)
and

T(X = 1) = (49 £ 1.2) MeV, (81)

respectively.

V. SUMMING UP

The full width of the tetraquark X can be evaluated using
results for the partial width of its five decay modes obtained
in Secs. III and IV. One of these modes X — J/w¢ is the
dominant decay channel of the tetraquark X, whereas the
remaining processes are subdominant ones. After simple
computations, we get

I = (159 + 31) MeV. (82)

Our result for the full width I" of the tetraquark X is in very
nice agreement with 'y, = (174 & 2773*) MeV found by
the LHCb collaboration.

But by drawing such conclusions, we take into account
that both theoretical and experimental information on the
full with of X(4630) suffers from errors. The uncertainties
are large in the case of I'.y, which limit credibility of
conclusions that are based on these data. Experimental errors
also make it difficult to obtain detailed comparisons and
choose between existing theoretical models for X(4630). In
this sense, more precise measurements of I, are required.

From another side, our present result can be further
refined by including into analysis other decay modes
of X. There are a few processes which contribute to the
full width of the tetraquark X. Thus, decays to meson pairs
D:*D(2317)F and DD, (2460)F are among kinemat-
ically allowed channels of X. These processes belong to
V —->V+Sand V- PS+ AV type S-wave decay modes
of X, respectively. Their partial widths are determined by
the expression (78) with relevant strong coupling. To make
crude estimates for partial widths of these decays, we may
assume that strong couplings at corresponding tetraquark-
meson-meson vertices are the same order of g3 (|g,|). Then
widths of these modes are suppressed relative to decays
X = y1.n"), because the factor A = m? A(3 + 242 /m?) /24x
(m, is a mass of a heaviest final meson) is smaller for two
final-state mesons of approximately equal mass than in the
case of light and heavy mesons. For instance, the decay
X — yi.1 is equal to A = 0.44, while we find A ~ 0.17 for
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the process X — Dy D,;(2460)". But these decay chan-
nels, in total, may compensate a 15 MeV gap between Iy,
and I
Another interesting field of future studies is an exploration
of X(4630) in the molecule picture using the QCD sum rule
method. This is necessary to compare predictions for the
molecule and diquark-antidiquark models with each another,
as well as with the LHCb data. In the context of the QCD sum
rule approach diquark-antidiquark and molecule models for
the same resonance lead to different results [38,39]. As arule,
amolecule of conventional mesons is heavier than a diquark-
antidiquark structure with identical content and spin-parities.
Awidth of such molecule is also larger than that of its diquark
counterpart, i.e., a diquark structure is more stable than a
meson molecule. Nevertheless, despite existing investiga-
tions of X(4630) in different approaches, it is necessary to
examine the molecule model for X(4630) in the context of
the QCD sum rule method as well.
|

Analysis performed in the present article and gained
knowledge about the mass and full width of the tetraquark
X, as well as a very nice agreement between these para-
meters and LHCb measurements allows us to interpret
X(4630) as the vector diquark-antidiquark state X with the
spin-parities JP¢ = 1=+,
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APPENDIX: THE QUARK PROPAGATORS
AND INVARIANT AMPLITUDE I1(M? s,)

In the current article, for the light quark propagator
§4P(x), we employ the following expression:

a : g (g9) mq(qq) e
qu (X) = léab 27[2)64 - 5ab 4r 2x - 5ab 12 + 5(11) 2-8 - 5ab 192 (qgqu)

2)( G 240207 \2 4/ 202

- 95Gp o X5 (qq) x*(q9)(9:G")

1 0Gq) —i—%5 — iy — e = O+ . Al
+1 ab 11z~ 1152 <qgs Q> 132”2x2 [fdap’ + Ga/}x] L0gp 7776 ab 27648 + ( )
For the heavy quark Q = ¢, we use the propagator S‘éb (x)
(k + mQ)G(zﬂ

Sab —
o' (27)* k* = mg 4

7G> K+ mok 7G?

d4k e—ikx{éab(k + mQ) gsGaﬂ {lﬂ(k + mQ)
02— mpy

(K +mp)

1)
+ B abM Q(k m2Q)4 43 ab(kz_m2Q)6

Here, we have used the shorthand notations
aff __ ~af A
Gab = GA j“ab/z’ G’

where G“ﬂ

G A Ga[)’

[J(k* = 3m3) + 2mg(2k> — md)|(k + mg) + - - } (A2)

G% — fABCG‘gﬁGBﬂ(nga, (A3)

is the gluon field strength tensor, and 24 and A€ are the Gell-Mann matrices and structure constants of the color

group SU,(3), respectively. The indices A, B, C run in the range 1,2,...8.

The invariant amplitude T1(M?, 5)) obtained after the Borel transformation and subtraction procedures is given by the

expression

So

(M2, 50) = / dspOF (s)e™ /M 4 TI(M?).
4M?

where the spectral density p©FF(s) and the function I1(M?) are determined by formulas

8
POTE(S) = () + D pPN(s)
N=3

respectively. The components of pOPE(s) and I1(M?) are given by the expressions

DlmN DlmN S a, ,B)

= ),

10
2) _ ZHDimN(M2>, (A4)
N=6
1 1-a
DimN (72} — DimN ( 372
1 (M)—Adal APTIPN (A2 a1, ). (AS)
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if pPI™N(s, a, B) and IIP™N(M?, @, B) are functions of a and 3, and by formulas
. 1 . . 1 .
lemN (S) — / dalemN(& a)’ HDlmN (M2) — / dal'[D‘mN(Mz, a)’ (A6)
0 0

provided that they depend only on «. Let us note that in Egs. (A5) and (A6) variables « and f are Feynman parameters.

The perturbative and nonperturbative components of the spectral density pP*(s, a, ) and pP™3*5678)(s o f) have
the forms:

O(L,)
15362°L>N$
+ af(=10 + 13a) + (=5 + 13a)] = 3552 L — 12m m saf(a + B) [ + 20 (a— 1) + a(a - 1)?

+ B(1 = 3a+ 202> + 2m2sa* B[ + 2% (a — 1) + a(a — 1)> + B(1 = 3a + 2a*)|[144* + 14a(a - 1)
+ B(=14 + 27a)]}, (A7)

Dim3 __(59)0(Ly)
P @ p) 167°N¢

—2m2safLN3 + 3mim N3 + & (a — 1)? + p*(=2 + 4a) + pa*(3 — Ta + 4a?) + p*a(3 — 10a + 8a?)
+ (1 = Ta + 8a%)] — sm2msap 27 + 20 (a — 1)* = p°(8 — 23a) + pa*(a — 1)*(=6 + 23a)

+ (12 = 75a + 79a?) + p*a(a — 1)?(6 — 54a + 79a°) + p*(—8 + 87a — 212a* + 133a°)

+ (2 —4la+ 193a% — 28703 + 133a*)]}, (A8)

PP (s, a, ) = [m2N, — sapL)*{12mimL(a + B)>N3 — miapN3[56° + 5a*(a — 1)

{m2N3 — mgs* AL B + ala— 1) = B(1 + 14a)] + m s*a®fAL>N,

Dimd _ {a,G*/m)O(L,)
s @ B) = = g e 2N

+255a — 1630?) + fa* (=54 + 9T — 19a?) + 4a* (=3 — 2a + 502) — 2/° (15 — 89a + 104a?)]

+ 6sm.myapL*[5f7 + 2a*(a—1)*(3 + @) — 2Ba* (@ — 1)*(=28 + 31a) — f°(7 + 53a) — fPa?(a —1)?

x (=97 + 173a) + (=1 + 156a — 161a*) + Fa(50 — 355a + 588a* — 283a?)

+ (3 = 153a + 41902 — 277a%)] — 6m2m N3 [56" + 2a*(a — 1)2(3 + a) — f°(7 + 260)

+ (=1 4 96a — 143a%) + p*(3 — 106a + 356a> — 259a°) + f*a?(69 — 297a + 389a> — 161a°)
+2B%a(18 — 141a + 255a% — 134a®) — 2B (=21 + 65a — 63a* + 19a%)] + mZsa?B*|° + 2% (a — 1)
+a(a—=1)2+ (1 =3a +2a%)|[754* + 34 (=74 + 149a) — 120%(=5 + 4a + a?)

+ ap(207 — 535a + 264a?) + *(147 — 718a + 627a%)|}, (A9)

(=152 B LY (9B + 4a) + miapNI2p° + p*(28 — 82a) + fPa(=72

(sg;0Gs)O(L,)
967* N3

+ap(2 = S5a+ 3a*) + (1 = 5a + 4a?)] + m2map[1* + Ta?(a — 1)> + 23 (=7 + 10a)

+2aB(7 = 17a + 100?) + (7 — 34a + 270)]}, (A10)

i L
PP (s, a, f) = {=16sm,a®B*L* + 3m2N3 = 3sm.af|p* + a*(a —1)? + (=2 + 3a)

B O(L)

405 - 2"275(p — 1)2L*N]
X (a=1)?+283(=7 4+ 10a) + 2pa(7 — 17a + 10a?) + (7 — 34a + 27a%))]
+ GG [-18m m (B = 1)2NT(3p° + (-9 + a) = 33’ (a — 1) = 54%a° (a — 1)?
+3a%(a—1)° + (9 = 5a%) + a2 = 5a +3a?) + pa’(2 = 3a + &) — (3 + 3a — 10a* + 3a?))
+ 3m2ap(17613 + 2p12(=51 + 19a) — o’ (a — 1)*(=17 = 2a + a?) + (255 — 214a + 37a?)
- B19(340 — 500a + 1820% + &*) — p*a®(a — 1)*(=3 = 79a + 65a* + 4a3) — pa’(a —1)3

pPme (M2 a, B) = {2560¢27% (35)%( — 1)?aBL3*N3[-16saBL* + m2(1p* + Ta?
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X (24 — 66a + 20a* + 7a°) — Pat(a — 1)2(10 — 350 — 63a* + 71a?)

+ (255 — 620a + 3550 + 31a° — 41a*) — p*a’ (a — 1)%(10 — 66a + 107a* — 17a° + 9a*)
—2%(51 = 215a + 1700? + 62a® — 105a* + 30a°) + (17 — 158a + 155a* + 206a* — 4400*
+282a* — 66a°) + fPa(24 — 22a — 169a° + 480a° — 532a* + 281 — 62a°)

+ (=3 + 67a — 28507 + 507a° — 449a* + 202a° — 39a°)) + 25?2 L% (215° — 463 (21 + 8a)
+ B7(126 + 128a — 28a?) — 3a° (a — 1)*(=7 = 2a + a?) — 4pBa*(a — 1)*(8 + 9a + 3a?)
+44°5(—21 — 48a + 20a° + 3a®) + f*a(—32 + 16a + 480> — 31a*)

+ 28203 (2 + 44a — T50% + 2607 + 3a*) — 4p°a% (=1 + 6a + 17a* — 330> + 11a*)

+ (21 +128a — 72a* — 4a® + 12a%))]}, (A11)
A 2/7) (55)O(L
oo (012, ) = BSOSO 1, o121 o (55~ 251 1 V1) + (=3 + 3T~ 376
115222 N
+ fPa(—15 + 48a — 37a%) + pa*(—15 + 37a — 22a°) + a*(—3 — 2a + 50°)]}, (A12)
. 5(a,G?*/7)?
pims (M2, g1, ) = 2 T (L, )P L. Al3
P1 ( a ﬁ) 307277:2N‘1l ( 1)0{ / ( )
The spectral densities pP™(7:8) (s, &) are given by the formulas
i 6(5g,6Gs)m>m;
P (s, a) = —%9@2)’ (Al14)
<o\2
. 5s
P (s,0) = oL 0(L,) pgim,m, + 27 (8m2 — dmm,)|. (A1
e _ (,G/n)(5)
py ™ (s, a) = W(a(l@)[mc —mga(a—1)], (Al6)
and
- 58)(59,0Gs
o5 (5.0 = B0 o 1), (A17)

Components of the function T1(M?) are

HDimG (MZ’ a, ,B) —

(2G*)m, MmN, }
15-2B25M2a? L3 N3 M?apL

x [mIN3 (210 + 158a’ (a = 1)* + 208 (a — 1) + (=4 + 15) + fa* (=15 + 80a — 74a?)

+ 2% (6 + 9a — 26a?) + fTa(15 — 32a — 3a?) — 3%’ (5 — 6a + a?) + 4B*a®(3 — 8a + 5a?)
—4p%a* (7 = 20a + 13a?) + (2 = 30a + 200?)) — 2m2M*o? L2 (2% — 540 (a — 1)* + 2a°(a — 1)?
— B4+ 5a) + Pa(=5 + 38a — 44a*) + p%(2 + 10a — 200%) — 22 a* (1 — 3a + 2a°)

—2%0*(9 — 19a + 10a?) — 2*a*(9 — 33a + 26a?))] }, (A18)
1 YG2 5 g S
P (M2 a, f) = {a 7/27;>2<£;v>;l “ B*+a*(a— 1)+ (-2 4 3a) + af(2 = 5a + a?)
+ap(2 = 5a+ o) + (1 = 5a + 4a?)], (A19)
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(a,G*/m)*m
812172 MOap(p —
60m,MCap(p —

HDimS(MZ’ (Z,ﬂ) — —

+ 6m!(a+ p)*N; —

2N
P | g ] (amim M5 = 1) (e PLNY

DL3(pt -

B +a(a—1)] = 9m MOa?B*( — 1)(a® + p*)L°

—6m2mM*(f — 1)L*[86" + 18fa*(a — 1)* + 8’ (a — 1)* + 2%(—8 + 9a) + 7p°a* (2 — 5a + 3a?)
+283a*(7 — 15a + 8a%) + p*a(18 — 35a + 160%) + (8 — 36a + 21a?)]

—2mIMP*[1257 — 38 + 3a* (a —
+28°(6 — 9a + 8a?) +

+ Pa(=6 + 14a + 6a%> — 51 + 37a)][p* + o*(a

1)3 + (=18 + 6a + a?) + 3pa’ (a — 1)*(=2 + a + 3a?)
PP (=6 + lda + 11a? — 43a° + 24a*) + p*(=3 + 18a — 9a? — 30a° + 28a*)

—1)2 4+ (=2 + 3a) + fa(2 — 5a + 3a?)

+ B*(1 = Sa+ 4a?)] + miM*apL?[ =348 + 3a*(a — 1)* + 257(6 + 13) + 64°(=3 — 15a + 14a?)

+ B (a—1)2(12 = 23a + 210%) + (12 + 114a — 2890 + 177a)

+ fPa?(30 — 163a + 303a® — 244a° + T4a’) + fPa(12 — 181a + 467> — 454a° + 156a*)

+ p*(=3 = 62a + 356a* — 4930 + 201a*)]}, (A20)

[1Pim9 (1‘427 a, ﬂ) —

46082 M’ (f— 1)°LA P
+ 121M*m m (B —

(a,G*/7)(59,6Gs)m N3 B m2N,
M?apL
Da(a— 1)L2N? + 40M>m mp*( — 1)L>N?

}{48M4ﬂ3<ﬁ D2a(a— 1)L + 6MYFa(p— 1)L

- 64M2mcmsﬂ052LN‘1L

+ 32M*m.mBaLlNT(1 + ) + 16mim(a + B)N3 (a® — 1) + 32mmsa(a + B)N7}, (A21)

and
(@, G? /) (55)*mENt

729 - BMA2? (B —

[_gsaﬂ<a_

HD]mlO( ,a, ﬂ)

3L4e p[ A’;];L}{zmm 2(a—1)2(a+B)N? — M2BL

Y(B—=1)L + 1087 (4p*a(a —

+ f*(—10 4+ 39a — 69a* + 63a° — 40a* + 12a°) + B(5 — 20a + 38a* — 47’ + 48a* — 32a° + 8a®))|}.

In expressions above, ©(z) is the Unit Step function. We have also used the following shorthand notations:

= +pa-1)+ala-1), N, =

Li=L(s,a,p) = (1]\72'3)

1

[m%Nz — sapL],

12 +dad(@— 1) + f3(5 — 23a+ 3962 — 240’ + 8a*)
(A22)
(a+ BNy, L=a+p-1,
L, =Ly(s,a) = sa(l —a) — m?. (A23)
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