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We investigate the structure Xð4630Þ discovered by the LHCb Collaboration in the process Bþ →
J=ψϕKþ as a resonance in the J=ψϕmass distribution. We explore this resonance as a diquark-antidiquark
state X ¼ ½cs�½c̄s̄� with spin-parities JPC ¼ 1−þ. Its mass and current coupling are calculated using the
QCD two-point sum rule method by taking into account vacuum condensates up to dimension 10. We also
study decays of this tetraquark to mesons J=ψϕ, ηcηð0Þ and χc1η

ð0Þ, and compute partial widths of these
channels. To this end, we employ the light-cone sum rule approach and technical methods of soft-meson
approximation to extract strong coupling at relevant tetraquark-meson-meson vertices. Our predictions for
the mass m ¼ ð4632� 60Þ MeV and width Γ ¼ ð159� 31Þ MeV of X are in a very nice agreement with
recent measurements of the LHCb Collaboration. These results allow us to interpret the resonance Xð4630Þ
as the tetraquark X with spin-parities JPC ¼ 1−þ.
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I. INTRODUCTION

Recently the LHCb Collaboration announced that new
charmoniumlike resonances Zcs and X were observed in the
process Bþ → J=ψϕKþ in J=ψKþ and J=ψϕ invariant
mass distributions [1]. The new resonances Zcsð4000Þþ and
Zcsð4220Þþ were discovered in the J=ψKþ channel, and
are presumably exotic mesons with a quark content cc̄us̄.
States fixed in the J=ψϕ channel should be composed of
cc̄ss̄ quarks provided they are four-quark structures. New
resonances in this channel Xð4630Þ and Xð4685Þ enriched
a list of vector, axial-vector, and scalar states discovered by
LHCb during the last few years [2,3]. The collaboration
also updated parameters of states seen at early stages of
investigations.
These experimental results generated a theoretical activ-

ity aimed to explain obtained information in the context of
various approaches of high energy physics. Studies were
concentrated mainly around the resonances Xð4630Þ and
Zcs, in which authors calculated masses and magnetic
moments of these states, and explored their decay channels
[4–8]. Some of the new states were explained as threshold
effects as well [9].

The structure Xð4630Þ is a wide resonance with the
mass

mexp ¼ ð4626� 16þ18
−110Þ MeV; ð1Þ

and width

Γexp ¼ ð174� 27þ134
−73 Þ MeV; ð2Þ

respectively. The LHCb determined also the spin-parity of
Xð4630Þ and fixed them JP ¼ 1−.
It should be noted that, a vector structure Yð4626Þ with

the mass 4625.9þ6.2
−6.0ðstat:Þ � 0.4ðsys:Þ MeV and the width

49.8þ13.9
−11.5ðstat:Þ � 4.0ðsys:Þ MeV was seen by the Belle

Collaboration recently in the process eþe− → D�
sDs1ð2536Þ

[10]. This resonance can be considered as a member
of the Y family of vector states discovered in electron-
positron annihilations. Other members of this group are
resonances Yð4630Þ and Yð4660Þ. The first of these was
detected by Belle in the process eþe− → Λþ

c Λ−
c as a

peak in the Λþ
c Λ−

c invariant mass distribution [11].
Its parameters m¼4634þ8

−7ðstat:Þþ5
−8ðsys:ÞMeV and Γ¼

92þ40
−24ðstat:Þþ10

−21ðsys:ÞMeV are close to those of the reso-
nance Yð4626Þ, and whether they are different states or not
is under investigation. It is interesting that Yð4630Þ was
usually identified with the vector state Yð4660Þ [12].
The resonance Yð4660Þ, as a particle produced in eþe−

annihilation, bears the quantum numbers JPC ¼ 1−−. It was
modeled as excited 53S1 and 63S1 charmonia, as a com-
pound of the scalar f0ð980Þ and vector ψð2SÞmesons, or as
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a baryonium state. In our work [13], we explored Yð4660Þ
by treating it as the diquark-antidiquark vector state ½cs�½c̄s̄�.
We calculated themass and current coupling of the tetraquark
½cs�½c̄s̄�, and also evaluated its full width. Our results for the
mass and fullwidth of the state ½cs�½c̄s̄� allowedus to interpret
it as the observed resonance Yð4660Þ.
From analysis of the decay channel Xð4630Þ → J=ψϕ, it

is clear, that Xð4630Þ is a charmoniumlike state probably
with hidden strange component ss̄. Then, in the four-quark
model its quark content should be cc̄ss̄. It is also evident
that C-parity conservation implies that Xð4630Þ is a C
parity positive particle, i.e., the quantum numbers of this
resonance should be JPC ¼ 1−þ. In other words, it can be
considered as a C ¼ þ1 counterpart of the resonance
Yð4626Þ. Spin-parities JPC ¼ 1−þ exclude interpretation
of Xð4630Þ as an ordinary meson, because these quantum
numbers are not accessible in the conventional quark-
antiquark model. In other words, the resonance Xð4630Þ
may be a double-exotic state: it is composed of four quarks
and carries exotic quantum numbers.
Four valence quarks can be grouped in different ways

to form a single structure. Indeed, they may form two
conventional colorless mesons and constitute a hadronic
molecule. Alternatively, four quarks cc̄ss̄ may build a
diquark-antidiquark state ½cs�½c̄s̄�. The resonance Xð4630Þ
was examined in the context of both of these models. Thus,
it was considered in Ref. [6] as the molecule D�

sD̄s1ð2536Þ
with required spin parities. An analysis was performed
there using the one-boson-exchange method. The mass of
the moleculeD�

sD̄s1 was found equal to 4644MeVwhich is
consistent with the LHCb data. The authors also empha-
sized that a decay to a meson pair J=ψϕ is the main decay
channel of the molecule D�

sD̄s1.
The molecule model for Yð4626Þ was used in Ref. [14],

in which it was examined as a system JPC ¼ 1−− appearing
from the interaction D�

sD̄s1 −DsD̄s1. In this article, struc-
tures with spin-parities JPC ¼ 0−−; 0−þ; 1−þ, and others
were explored as well. This treatment for the masses of the
molecules D�

sD̄s1 with JPC ¼ 1−− and JPC ¼ 1−þ leads to
predictions 4646 and 4648 MeV, respectively. Heavy-
antiheavy hadronic molecules built of the S-wave charmed
mesons and baryons were studied also in Ref. [15]. The
authors assumed that interaction between mesons (baryons)
is saturated by a meson exchange, and searched for poles in
such systems by solving the Bethe-Salpeter equation.
In the framework of the QCD sum rule method a

diquark-antidiquark option was considered in Ref. [16].
The result of this article for the mass of the tetraquark
½cs�½c̄s̄� with JPC ¼ 1−þ equals 4.63þ0.11

−0.08 GeV and agrees
with the new LHCb data. As is seen, almost all models for
Xð4630Þ and predictions for its mass extracted using
various methods within errors are consistent with exper-
imental data. Stated differently, masses of exotic states do
not provide information sufficient to verify different models
by confronting them with each another and/or experimental

data. Therefore, besides computations of the mass, there is
a necessity to evaluate the full width of Xð4630Þ as precise
as possible.
In the present work, we are going to fulfill this program

and calculate the mass and width of the resonance Xð4630Þ.
We treat Xð4630Þ as diquark-antidiquark vector state
X ¼ ½cs�½c̄s̄� with spin-parities JPC ¼ 1−þ. Investigations
are performed in the context of the QCD sum rule method
[17,18], which is one of powerful nonperturbative tools of
high energy physics. It allows one to compute parameters
not only of conventional mesons and baryons, but also of
multiquark hadrons [19,20].
The mass and current coupling of the tetraquark X are

calculated in the framework of the QCD two-point sum rule
approach. In these calculations, we take into account
various quark, gluon, and mixed vacuum condensates up
to dimension 10. To investigate numerous decay channels
of X, we use the light-cone sum rule (LCSR) method [21].
Most of tetraquarks are strong-interaction unstable particles
and decay into two conventional mesons. The resonance
Xð4630Þ decays primarily to a pair of mesons J=ψϕ which
is an experimentally confirmed fact. In the present work,
we study decays of the tetraquark X not only to J=ψϕ, but
also to ηcη

ð0Þ and χc1η
ð0Þ mesons saturating by these five

channels its full width. The process X → J=ψϕ is the
dominant decay channel of the tetraquark X, whereas
remaining modes are subdominant ones, but their contri-
butions are important to evaluate the full width of X.
Partial widths of aforementioned decays are determined

by strong couplings at relevant vertices. For instance, in the
case of the dominant decay there is a strong coupling G at
the vertex XJ=ψϕ. Calculation of the strong coupling at the
tetraquark and two mesons vertex XJ=ψϕ in the LCSR
method necessitates usage of complementary technical
tools. A reason is that X is built of four valence quarks,
and the light-cone expansion of the relevant nonlocal
correlator leads to expressions which instead of distribution
amplitudes of the ϕ meson depend on its local matrix
elements. To preserve the four-momentum at the vertex
XJ=ψϕ, in this situation one needs to impose an additional
kinematical restriction on the momentum of the ϕ meson.
Troubles encountered afterward can be handled by includ-
ing into analysis technical methods known as a soft-meson
approximation [22,23]. The soft-meson approximation was
adapted for investigation of tetraquarks in Ref. [24], and
applied to explore decays of some of such particles (see, for
example, Ref. [19]). In the present article, strong couplings
at relevant vertices are computed by including into analysis
nonperturbative terms up to dimension eight. The coupling
G receives a contribution also from the twist-4 matrix
element of the ϕ meson.
This article is organized in the following way: The mass

and current coupling of the tetraquark X are computed in
Sec. II. We calculate the strong coupling G of particles at
the vertex XJ=ψϕ in Sec. III. Here, we find also the partial
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width of the decay X → J=ψϕ. Section IV is devoted to
analysis of the processes X → ηcη

ð0Þ and X → χc1η
ð0Þ, and

to computation of their partial widths. To this end, we
calculate couplings g1 and g2 corresponding to vertices
Xηcη and Xηcη0, respectively. Strong couplings g3 and g4
required to study decays X → χc1η

ð0Þ are found also in this
section. In Sec. V, we confront our results with LHCb data
for the resonance Xð4630Þ. This section contains also our
concluding remarks.

II. MASS AND CURRENT COUPLING
OF THE TETRAQUARK X

Sum rules to calculate the massm and current coupling f
of the tetraquark X can be derived from analysis of the
correlation function

ΠμνðpÞ ¼ i
Z

d4xeipxh0jT fJμðxÞJ†νð0Þgj0i; ð3Þ

where JμðxÞ is the interpolating current for the X state, and
T is the time-ordered product of two currents.
The current with required properties has the following

form:

JμðxÞ ¼ ϵϵ̃½sTbðxÞCγ5ccðxÞs̄dðxÞγ5γμCc̄Te ðxÞ
−sTbðxÞCγμγ5ccðxÞs̄dðxÞγ5Cc̄Te ðxÞ�; ð4Þ

where ϵϵ̃ ¼ ϵabcϵade, and a, b, c, d, and e are color indices.
In the expression above C is the charge conjugation matrix.
The current JμðxÞ describes the tetraquark composed of

the color antitriplet scalar diquark ϵsTCγ5c (vector diquark
ϵsTCγμγ5c) and color triplet vector antidiquark ϵ̃s̄γ5γμCc̄T

(scalar antidiquark ϵ̃s̄γ5Cc̄T). This current belongs to

antitriplet-triplet representation [3c]cs ⊗ ½3c]c̄s̄ of the color
group SUcð3Þ. Because the scalar diquark configuration is
the most attractive and stable two-quark system [25], the
current JμðxÞ corresponds to a ground-state vector particle
with lowest mass and required spin-parities.
To derive the desired sum rules, we write down the

correlation function ΠμνðqÞ using the mass and current
coupling of the state X. For these purposes, we insert into
the correlation function a complete set of states with
quantum numbers of X and carry out in Eq. (3) integration
over x. As a result, we get

ΠPhys
μν ðpÞ ¼ h0jJμjXðp; εihXðp; εÞjJ†νj0i

m2 − p2
þ � � � ; ð5Þ

with m being the mass of X. In Eq. (5) dots stand for
contributions of higher resonances and continuum states.
We introduce the current coupling f by means of the matrix
element

h0jJμjXðp; εÞi ¼ fmεμ; ð6Þ

where εμ is the polarization vector of the tetraquark X. In
terms of m and f, the correlation function can be rewritten
in the following form:

ΠPhys
μν ðpÞ ¼ m2f2

m2 − p2

�
−gμν þ

pμpν

m2

�
þ � � � : ð7Þ

We calculate the QCD side of the correlation function
ΠμνðpÞ using explicit expression of the current JμðxÞ and
obtain ΠOPE

μν ðpÞ in terms of heavy and light quark propa-
gators. Then for ΠOPE

μν ðpÞ, we get the following formula:

ΠOPE
μν ðpÞ ¼ i

Z
d4xeipxϵϵ̃ϵ0ϵ̃0fTr½γ5S̃bb0s ðxÞγ5Scc0c ðxÞ�Tr½γ5γμS̃ee0c ð−xÞγνγ5Sdd0s ð−xÞ�

− Tr½γ5γμS̃e0ec ð−xÞγ5Sd0ds ð−xÞ�Tr½γ5γνS̃bb0s ðxÞγ5Scc0c ðxÞ� − Tr½γ5S̃e0ec ð−xÞγνγ5Sd0ds ð−xÞ�
× Tr½γ5S̃bb0s ðxÞγμγ5Scc0c ðxÞ� þ Tr½γ5γνS̃bb0s ðxÞγμγ5Scc0c ðxÞ�Tr½γ5S̃e0ec ð−xÞγ5Sdd0s ð−xÞ�g; ð8Þ

where ϵ0ϵ̃0 ¼ ϵa0b0c0ϵa0d0e0 . In Eq. (8) Sabs ðxÞ and Sabc ðxÞ are
the s- and c-quark propagators, respectively. Their explicit
expressions are collected in the Appendix. Here, we also
use the notation

S̃sðcÞðxÞ ¼ CSTsðcÞðxÞC: ð9Þ

To continue our analysis, we have to choose the same
structures both in ΠPhys

μν ðpÞ and ΠOPE
μν ðpÞ. For our purposes,

it is convenient to work with terms proportional to
−gμν, i. e., with invariant amplitude ΠPhysðp2Þ ¼ m2f2=
ðm2 − p2Þ þ � � �. This function receives contributions only
from spin-1 particles and does not contain spin-0 effects.

The amplitude ΠPhysðp2Þ can be expressed by the
dispersion integral

ΠPhysðp2Þ ¼
Z

∞

4M2

ρPhysðsÞds
s − p2

þ � � � ; ð10Þ

where M ¼ mc þms, and dots indicate subtraction
terms necessary to make the whole expression finite.
The imaginary part of the amplitude ΠPhysðp2Þ constitutes
the spectral density ρPhysðsÞ, which can be written down in
the following form:

ρPhysðsÞ ¼ 1

π
ImΠPhysðsÞ ¼ m2f2δðs −m2Þ þ ρhðsÞ: ð11Þ
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Here, contribution of the ground-state particle (the pole
term) is separated from one due to higher resonances and
continuum states: the latter is characterized by an unknown
hadronic spectral density ρhðsÞ. It is not difficult to see that
ρPhysðsÞ substituted into Eq. (10) leads to the expression of
the ground-state term

ΠPhysðp2Þ ¼ m2f2

m2 − p2
þ
Z

∞

4M2

ρhðsÞds
s − p2

: ð12Þ

The obtained formula contains also a contribution coming
from higher resonances and continuum states.
The amplitude ΠOPEðp2Þ can be calculated theoretically

in a deep Euclidean region p2 ≪ 0 in the operator product
expansion (OPE) with certain accuracy. The coefficient
functions in this expansion could be found using methods
of perturbative QCD (PQCD), whereas nonperturbative
information is encoded by vacuum expectation values of
various quark, gluon, and mixed operators. Having con-
tinuedΠOPEðp2Þ analytically to the Minkowski domain and
computed its imaginary part, one determines the two-point
spectral density ρOPEðsÞ. In the region p2 ≪ 0 one applies
also the Borel transformation to remove subtraction terms
in the dispersion integral and suppress contributions of
higher resonances and continuum states. In the case of
ΠPhysðp2Þ, we find

BΠPhysðp2Þ ¼ m2f2e−m
2=M2 þ

Z
∞

4M2

dsρhðsÞe−s=M2

; ð13Þ

with M2 being the Borel parameter. Similar dispersion
representation can be written down for ΠOPEðp2Þ in terms
of ρOPEðsÞ as well. Later, using assumption about hadron-
parton duality and matching ρhðsÞ ≃ ρOPEðsÞ in the duality
region, it is possible to subtract the second term in Eq. (13)
from the QCD side of the sum rule and get

m2f2e−m
2=M2 ¼

Z
s0

4M2

dsρOPEðsÞe−s=M2 þ ΠðM2Þ; ð14Þ

where s0 is a continuum subtraction parameter. The
second component of the invariant amplitude ΠðM2Þ
contains nonperturbative contributions computed directly
from ΠOPE

μν ðpÞ.
As is seen, physical parametersm and f of the tetraquark

are expressed in terms of ρOPEðsÞ and ΠðM2Þ calculated in
quark-gluon degrees of freedom. To complete a system of
equations and determine the mass and coupling of the
tetraquark X, we act by the operator d=dð−1=M2Þ to both
sides of the equality Eq. (14), and, by this way, find a
missed second expression. This system can be solved, and
sum rules for the mass m and coupling f read

m2 ¼ Π0ðM2; s0Þ
ΠðM2; s0Þ

ð15Þ

and

f2 ¼ em
2=M2

m2
ΠðM2; s0Þ: ð16Þ

Here, we denote right-hand side of Eq. (14) as ΠðM2; s0Þ,
and introduce also a function Π0ðM2; s0Þ ¼ dΠðM2; s0Þ=
dð−1=M2Þ.
In the present article, ΠðM2; s0Þ is calculated at the

leading order of PQCD by taking into account quark,
gluon, and mixed vacuum condensates up to dimension 10.
Details of computations of the spectral density ρOPEðsÞ and
function ΠðM2Þ can be found, for instance, in Ref. [24].
Therefore, we do not consider here these usual operations,
and move the explicit expression of the function ΠðM2; s0Þ
to the Appendix.
The sumrules for themass and couplinggivenbyEqs. (15)

and (16) contain quark, gluon, andmixed condensates which
are universal parameters of computations. They depend also
onmasses of c and s quarks. Numerical values of all of these
parameters are listed below:

hq̄qi ¼ −ð0.24� 0.01Þ3 GeV3; hs̄si ¼ ð0.8� 0.1Þhq̄qi;
hs̄gsσGsi ¼m2

0hs̄si; m2
0 ¼ ð0.8� 0.1Þ GeV2;�

αsG2

π

�
¼ ð0.012� 0.004Þ GeV4;

hg3sG3i ¼ ð0.57� 0.29Þ GeV6;

mc ¼ ð1.27� 0.02Þ GeV; ms ¼ 93þ11
−5 MeV: ð17Þ

The sum rules are functions also of auxiliary parameters
M2 and s0, which have to obey standard constraints
imposed on them by the sum rule method. This means
that in the working regions of the parameters M2 and s0 a
pole contribution (PC) should dominate in the sum rules
and the operator product expansion should converge
rapidly. To quantify these constraints and use them to
fix working windows for M2 and s0, we introduce the
expressions

PC ¼ ΠðM2; s0Þ
ΠðM2;∞Þ ð18Þ

and

RðM2Þ ¼ ΠDimNðM2; s0Þ
ΠðM2; s0Þ

; ð19Þ

where ΠDimNðM2; s0Þ is a contribution of the last three
terms in the OPE, i.e., DimN ¼ Dimð8þ 9þ 10Þ.
Equation (18) determines a contribution of the pole term

to the function ΠðM2; s0Þ. In our present study, we adopt
the limit PC ≥ 0.2, which is typical for multiquark par-
ticles. The convergence of the operator product expansion
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is examined by means of the expression Eq. (19): The
convergence of OPE is fulfilled if at the minimum of the
Borel parameter the ratio RðM2Þ does not exceed 0.01. The
mass and current coupling ofX obtained bymeans of the sum
rules, in general, have not to depend on the Borel parameter,
but in actual computations, one can only limit its influence on
obtained predictions. Thus, a stability of extracted results is
among employedconstraints to get the parametersM2 and s0.
Computations show that the working regions that meet

all of these constraints are

M2 ∈ ½5.5; 6.5� GeV2; s0 ∈ ½24; 25� GeV2: ð20Þ
In fact, in these regions the pole contribution varies within
a range 0.66 ≤ PC ≤ 0.26. The convergence of OPE is
also satisfied, because at M2 ¼ 5.5 GeV2, and we fix
RðM2Þ ≤ 0.01.
To extract numerical values of the massm and coupling f,

we calculate them at different choices of the parametersM2

and s0, and find their mean values averaged over theworking
regions Eq. (20). For m and f these calculations yield

m ¼ ð4632� 60Þ MeV;

f ¼ ð9.2� 0.8Þ × 10−3 GeV4: ð21Þ
The values from Eq. (21) correspond to sum rules’ results
computed at the middle point of the working regions, i.e., to
results at the pointsM2 ¼ 6 GeV2 and s0 ¼ 24.5 GeV2. At
this point the pole contribution is PC ≈ 0.51, which guar-
antees reliability of the obtained predictions, and a ground-
state nature of X.
In Fig. 1, we plot the mass of the tetraquark X as

functions of the parametersM2 and s0. As is seen, the mass
m is sensitive to a choice ofM2 and s0. It is also evident that
within the limits M2 ∈ ½5.5; 6.5� GeV2 this dependence is
weak and theoretical errors do not exceed 1.5%, whereas a
similar estimate for the coupling gives 9%. This effect has a
simple explanation: The mass of the tetraquark is deter-
mined by the ratio of the correlation functions Eq. (15). As

a result, this ratio smooths dependence of m on the
parameterM2, which is not a case for the coupling Eq. (16).
The mass of the tetraquark X obtained in the present

work is in excellent agreement with the LHCb data for the
mass of the resonance Xð4630Þ. At this phase of our studies,
we can conclude that Xð4630Þ is the diquark-antidiquark
state X ¼ ½cs�½c̄s̄� with spin-parities JPC ¼ 1−þ.

III. DECAY X → J=ψϕ

The resonance Xð4630Þ was observed in the invariant
mass distribution of the J=ψϕ mesons. Hence, the process
Xð4630Þ → J=ψϕ can be considered as its dominant decay
channel. In this section, we consider this decay and cal-
culate partial width of the process X → J=ψϕ, which is
governed by the strong coupling G at the vertex XJ=ψϕ.
In the context of the LCSR method the vertex XJ=ψϕ

can be explored by means of the correlator

Πμνðp; qÞ ¼ i
Z

d4xeipxhϕðqÞjT fJJ=ψμ ðxÞJ†νð0Þgj0i; ð22Þ

with Jν and JJ=ψμ being the interpolating currents of the
tetraquark X and vector meson J=ψ , respectively. The Jν is
given by Eq. (4), and current JJ=ψμ has the form

JJ=ψμ ðxÞ ¼ c̄lðxÞγμclðxÞ; ð23Þ

where l ¼ 1, 2, 3 is the color index. In Eq. (22) p and q
are the momenta of the J=ψ and ϕ mesons. Then the
4-momentum of the tetraquark X is equal to p0 ¼ pþ q.
For on mass-shell ϕ meson q2 ¼ m2

ϕ, the correlator
Πμνðp; qÞ is a function of two independent variables p2 and
p02 ¼ ðpþ qÞ2. It can be expanded over a set of Lorentz
structures in terms of invariant amplitudes Πiðp2; p02Þ and
mass factorsCiðfm2gÞ. For our purposes, it is convenient to
expand Πμνðp; qÞ in the following basis:

s0 25.0 GeV2

s0 24.5 GeV2

s0 24.0 GeV2

5.6 5.8 6.0 6.2 6.4
4.0

4.2

4.4

4.6

4.8

5.0

5.2

M2 GeV2

m
G
eV

M 2 6.5 GeV2

M 2 6.0 GeV2

M 2 5.5 GeV2

24.0 24.2 24.4 24.6 24.8 25.0
4.0

4.2

4.4

4.6

4.8

5.0

5.2

s0 GeV2

m
G
eV

FIG. 1. The mass of the tetraquark Xð4630Þ as a function of the Borel parameter M2 at fixed s0 (left), and as a function of the
continuum threshold s0 at fixed M2 (right).
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Πμνðp;qÞ¼Π1ðp2;p02ÞC1ðfm2gÞε�μðqÞpν

þΠ2ðp2;p02ÞC2ðfm2gÞε�νðqÞpμþþΠ3ðp2;p02Þ
×C3ðfm2gÞε�ðqÞ ·ppμpνþΠ4ðp2;p02Þ
×C4ðfm2gÞε�ðqÞ ·pgμνþ�� � ; ð24Þ

where ε�ðqÞ is the polarization vector of the ϕ meson.
The factors Ciðfm2gÞ depend on some combination of
particles’ masses fm2g ¼ fm2; m2

1; m
2
ϕg, with m1 and mϕ

being masses of the J=ψ and ϕ mesons, respectively.
The phenomenological side of the sum rule can be

obtained from Eq. (22) by expressing Πμνðp; qÞ in terms of
physical parameters of particles involved in the decay
process. To explain this procedure, as an example, let us
consider the amplitude Π1ðp2; p02Þ. Using the double
dispersion relation [23,26], for Π1ðp2; p02Þ we get

Π1ðp2; p02Þ ¼
Z Z

ρh1ðs1; s2Þds1ds2
ðs1 − p02Þðs2 − p2Þ

þ
Z

ρh11ðs1Þds1
ðs1 − p02Þ þ

Z
ρh21ðs2Þds2
ðs2 − p2Þ : ð25Þ

As is seen, Eq. (25) contains also single dispersion integrals
which are necessary to make finite the whole expression.
The amplitude Π1ðp2; p02Þ receives contributions from

two channels: The first channel contains vector tetraquarks
½cs�½c̄s̄�, whereas the second one is a channel of vector
charmonia. Separating in spectral density ρh1ðs1; s2Þ con-
tributions of ground-state particles in these channels, i.e.,
contribution of the tetraquark X and J=ψ from effects of
higher resonances and continuum states, we can model
ρh1ðs1; s2Þ in the form [26]

ρh1ðs1; s2Þ ¼ Gfmf1m1δðs1 −m2Þδðs2 −m2
1Þ;

þ ρh1ðs1; s2Þθðs1 − s0Þθðs2 − s00Þ; ð26Þ

where G is the strong coupling, which should be extracted
from the relevant sum rule. The doubly spectral density
ρh1ðs1; s2Þ contains also the current coupling f of the
tetraquark X and decay constant f1 of the J=ψ meson,
which are defined by Eq. (6) and by the matrix element

h0jJJ=ψμ jJ=ψðpÞi ¼ f1m1εμðpÞ; ð27Þ

respectively. Here, εμðpÞ is the polarization vector of the
J=ψ meson.
Substituting ρh1ðs1; s2Þ into Eq. (25), we find

Π1ðp2; p02Þ ¼ Gfmf1m1

ðp02 −m2Þðp2 −m2
1Þ
C1ðfm2gÞ

þ
Z Z
P

ρh1ðs1; s2Þds1ds2
ðs1 − p02Þðs2 − p2Þ þ � � � ; ð28Þ

where
P

is a domain in the ðs1; s2Þ plane boundaries of
which ðs0; s00Þ depend on parameters of a process under
analysis. For the sake of brevity, we do not write down here
single dispersion integrals and denote them by dots. The
similar dispersion relations can be written down for
remaining amplitudes, as well. Because the strong coupling
G is the same for all structures [27], one gets

ΠPhys
μν ðp; qÞ ¼ Gfmf1m1

ðp02 −m2Þðp2 −m2
1Þ

× ½C1ðfm2gÞε�μðqÞpν þ C2ðfm2gÞε�νðqÞpμ

þ C3ðfm2gÞε�ðqÞ · ppμpν þ C4ðfm2gÞ
× ε�ðqÞ · pgμν þ � � �� þ ΠðHR;CÞ

μν ðp; qÞ: ð29Þ

Contributions stemming from higher resonances and con-

tinuum states are denoted in Eq. (29) by ΠðHR;CÞ
μν ðp; qÞ. We

are interested in detailed analysis of the first term in
ΠPhys

μν ðp; qÞ [23], with poles at p2 and p02 ¼ ðpþ qÞ2.
The correlation functionΠPhys

μν ðp; qÞ can be written down
in the factorized form

ΠPhys
μν ðp; qÞ ¼ hϕðqÞJ=ψðpÞjXðp0Þi hXðp

0ÞjJ†νj0i
ðp02 −m2Þ

×
h0jJJ=ψμ jJ=ψðpÞi

ðp2 −m2
1Þ

þ � � � ; ð30Þ

where mf and m1f1 are replaced by relevant martix
elements (up to polararization vectors), whereas on-
mass-shell matrix element hϕðqÞJ=ψðpÞjXðp0Þi defines
the strong coupling G at the vertex XJ=ψϕ. It can be
modeled in the following form:

hϕðqÞJ=ψðpÞjXðp0Þi ¼ G½ðq − pÞγgαβ − ðp0 þ qÞαgγβ
þðp0 þ pÞβgγα�εγðp0Þε�αðpÞε�βðqÞ:

ð31Þ

Then from Eq. (30) one can easily find that

ΠPhys
μν ðp; qÞ

¼ Gfmf1m1

ðp02 −m2Þðp2 −m2
1Þ

×

�
m2

1 −m2 −m2
ϕ

m2
ε�μðqÞpν þ

m2 −m2
1 −m2

ϕ

m2
1

ε�νðqÞpμ

−
m2 þm2

1 −m2
ϕ

m2m2
1

ε�ðqÞ · ppμpν þ 2ε�ðqÞ · pgμν þ � � �
�

þ ΠðHR;CÞ
μν ðp; qÞ; ð32Þ

where ellipses inside of the square brackets stand for terms
that vanish in the limit p0 → p (see an explanation below).
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Comparing the correlation function ΠPhys
μν ðp; qÞ in Eq. (32)

with one from Eq. (29), one sees that they coincide with
each other provided functions Ciðfm2gÞ are given by
formulas

C1ðfm2gÞ ¼ m2
1 −m2 −m2

ϕ

m2
;

C2ðfm2gÞ ¼ m2 −m2
1 −m2

ϕ

m2
1

;

C3ðfm2gÞ ¼ −
m2 þm2

1 −m2
ϕ

m2m2
1

;

C4ðfm2gÞ ¼ 2: ð33Þ
There are a few Lorentz structures in Eq. (32), which may

be employed to construct a sum rule equality. In the present
work, we choose to work with the structure ∼ε�μðqÞpν and
denote a relevant invariant amplitude by ΠPhysðp2; p02Þ.
At the next phase of studies, we have to calculate the

correlation function ΠOPE
μν ðp; qÞ using quark-gluon degrees

of freedom. To this end, we insert expressions of the currents
JJ=ψμ ðxÞ and J†νð0Þ into Eq. (22), contract relevant quark
fields, and replace themby correspondingquarkpropagators.
In full LCSR treatment of vertices, for instance, composed of
three conventional mesons, a final expression obtained for
ΠOPE

μν ðp; qÞ depends on propagators and distribution ampli-
tudes (DAs) of a meson. Afterwards, separating in the
correlation function a chosen Lorentz structure and corre-
sponding invariant amplitude ΠOPEðp2; ðpþ qÞ2Þ, one
should calculate it in the regions s1 ¼ ðpþ qÞ2 ≪ 0 and
s2 ¼ p2 ≪ 0, wheremethods of PQCD are applicable. After
analytical continuation of ΠOPEðs1; s2Þ to a Minkowski
domain, computing its imaginary part over variables s1
and s2, one can determine a spectral density ρOPEðs1; s2Þ.
Then using parton-hadron duality assumption ρhðs1; s2Þ ≃
ρOPEðs1; s2Þ and performing double Borel transformations
over variables p2 ≪ 0 and p02 ≪ 0 to suppress effects of
higher resonances and remove single dispersion integrals,
one finds a sum rulewhich expresses an on-mass-shell three-
meson coupling in terms of ρOPEðs1; s2Þ.
In the case under discussion, i.e., for tetraquark-meson-

meson vertex XJ=ψϕ, the full LCSR scheme outlined
above has to be modified. Reasons for that are connected
with features of the function ΠOPE

μν ðp; qÞ. In fact, the QCD
expression for ΠOPE

μν ðp; qÞ obtained by using quark propa-
gators is given by the formula

ΠOPE
μν ðp; qÞ ¼ −i

Z
d4xeipxϵϵ̃f½γ5S̃lcc ðxÞγμ

×S̃elc ð−xÞγνγ5� þ ½γνγ5S̃lcc ðxÞγμS̃elc ð−xÞγ5�gαβ
× hϕðqÞjs̄bαð0Þsdβð0Þj0i; ð34Þ

where α and β are spinor indices.

As is seen, the function ΠOPE
μν ðp; qÞ instead of ϕ meson’s

distribution amplitudes depends on its local matrix ele-
ments. The emerged situation has a simple explanation:
The meson J=ψ is composed of a c quark and antiquark at x
which can be contracted only with c antiquark and quark
from the tetraquark X. As a result, the remaining s-quark
fields in the current J†νð0Þ located at the space-time position
x ¼ 0 establish local matrix elements of the ϕ meson.
To understand the consequences of this situation, it is

convenient to perform the following transformations:

s̄bαsdβ →
1

12
δbdΓj

βαðs̄ΓjsÞ; ð35Þ

where Γj is the full set of Dirac matrices,

Γj ¼ 1; γ5; γμ; iγ5γμ; σμν=
ffiffiffi
2

p
: ð36Þ

Let us note that in Eq. (35) we also use the projector onto a
color-singlet state δbd=3.
After these manipulations, it is easy to carry out a color

summation. Later, we substitute quark propagators into the
obtained expression and perform four-dimensional integra-
tion over x. This integration creates in the integrand the
delta function δ4ðp0 − pÞ, which as an argument contains
only four-momenta of the tetraquark X and meson J=ψ .
Therefore, subsequent integration over p or p0 sets p ¼ p0,
which is the consequence of the four-momentum conser-
vation at the vertex XJ=ψϕ. Stated differently, to preserve
the four-momentum at the tetraquark-meson-meson vertex,
one has to choose q ¼ 0. In the full LCSR method this is
known as the soft-meson approximation [23]. At vertices of
ordinary mesons q ≠ 0, and only in the soft-meson limit,
one equates q to zero, whereas the tetraquark-meson-meson
vertex can be explored in the framework of the LCSR
method only for q ¼ 0. It is worth emphasizing that
tetraquark-tetraquark-meson vertices can be explored using
the full LCSR method: the correlation function of such a
vertex depends on distribution amplitudes of a final meson
[28–30]. For our purposes, it is important that both the soft-
meson approximation and full LCSR treatment of the
ordinary mesons’ vertices lead for the strong couplings
to very close numerical predictions [23], hence our treat-
ment of the coupling G should give a reliable result.
Equation (35) applied to ΠOPE

μν ðp; 0Þ generates different
local matrix elements of the ϕ meson, which are known and
can be used to find an analytical expression and carry out
numerical computations. The analysis confirms that only two
matrix elements of the ϕmeson contribute to the correlation
function. The first of them is a twist-2 matrix element

hϕðqÞjs̄ð0Þγμsð0Þj0i ¼ fϕmϕε
�
μðqÞ; ð37Þ

where fϕ is the decay constant of the ϕ meson. The second
matrix element, which survives in the soft-meson limit, has
twist 4 and is given by the expression
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hϕðqÞjs̄ð0ÞgG̃μνγ
νγ5sð0Þj0i ¼ fϕm3

ϕζ4ϕε
�
μðqÞ: ð38Þ

Here, G̃μν ¼ 1=2εμναβGαβ is the gluon dual field-strength
tensor. The parameter ζ4ϕ ¼ �0.02was determined from the
sum rule analysis in Ref. [31], and is small.
But before deriving the sum rule for the strong coupling

G, the soft limit should be implemented also in the physical
expression of the correlation function ΠPhys

μν ðp; qÞ. In the
limit q → 0, the ground-state term in ΠPhys

μν ðp; 0Þ can be
modified with some accuracy in the following way:

1

ðp02 −m2Þðp2 −m2
1Þ

→
1

ðp2 − m̃2Þ2 ; ð39Þ

where m̃2 is equal to ðm2 þm2
1Þ=2. After this transformation

instead of two single poles at p02 ¼ m2 and p2 ¼ m2
1, the

function ΠPhysðp2; 0Þ acquires one double pole at p2 ¼ m̃2.
Having fixed in ΠOPE

μν ðp; 0Þ an amplitude ΠOPEðp2Þ
which corresponds to the structure ∼ε�μðqÞpν, and carried
out calculations in the region p2 ≪ 0 we find finally the
spectral density ρOPEðsÞ. But in the soft approximation the
Borel transformation and subtraction procedure require
more careful considerations than in the full LCSR treat-
ment. In the soft limit one performs Borel transformation
over one variable p2 ≪ 0, and in this case single dispersion
integrals also contribute to hadronic part of the sum rules.
These nonvanishing contributions correspond to transitions
from the excited states in the X channel [23]. Therefore,
before carrying out the continuum subtraction they should
be excluded from BΠPhysðp2Þ by means of some prescrip-
tion. This problem is solved by the operator [22,23]

PðM2; m̃2Þ ¼
�
1 −M2

d
dM2

�
M2em̃

2=M2

; ð40Þ

that acts on both sides of the sum rule. It eliminates
unsuppressed terms in the physical side, but modifies also
the QCD side of the sum rule. Then contributions of higher
resonances with regular behavior can be subtracted from
the QCD side using the quark-hadron duality assumption.
The sum rule for the strong coupling G reads

G ¼ m
fm1f1

PðM2; m̃2ÞBΠOPEðp2Þ
m2

1 −m2 −m2
ϕ

: ð41Þ

The Borel transformed and subtracted correlation function
BΠOPEðp2Þ has the following form:

BΠOPEðp2Þ ¼
Z

s0

4M2

dsρpertðsÞe−s=M2 þ Π̄ðM2Þ: ð42Þ

The integral in Eq. (42) is a perturbative term, where the
spectral density ρpertðsÞ is determined by the expression

ρpertðsÞ ¼ fϕmϕmc

4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

cÞ
p

s
: ð43Þ

The second component of BΠOPEðp2Þ, i.e., the function
Π̄ðM2Þ, contains the twist-4 and nonperturbative contribu-
tions,

Π̄ðM2Þ ¼ fϕm3
ϕmcζ4ϕ
16π2

Z
1

0

dx
xðx − 1Þ e

−m2
c=M2xð1−xÞ

þ fϕmϕmc

4
F n:-pert:ðM2Þ; ð44Þ

where F n:-pertðM2Þ is given by the formula

F n:-pertðM2Þ ¼
�
αsG2

π

�Z
1

0

f1ðx;M2Þdx − hg3sG3i

×
Z

1

0

f2ðx;M2Þdx −
�
αsG2

π

�
2

×
Z

1

0

f3ðx;M2Þdx: ð45Þ

The nonperturbative contributions of four, six, and eight
dimensions are proportional to hαsG2=πi, hg3sG3i and
hαsG2=πi2, respectively. The functions fiðx;M2Þ, i ¼ 1,
2, 3 are explicitly given below:

f1ðx;M2Þ ¼ 1

18M4x2ð1− xÞ2 ½8m
2
cð1− xÞ2

þM2ð2− 7xþ 9x2 − 4x3 þ 2x4Þ�e−m2
c=M2xð1−xÞ;

ð46Þ

f2ðx;M2Þ¼ 1

240M8π2x5ðx−1Þ5 ½2M
4x2ð1−xÞ2

×ð3−11xþ15x2−8x3þ4x4Þ
þ24m4

cð1−2xÞ2ð−2−7xþ17x2−20x3þ10x4Þ
−3m2

cM2xð4−49xþ176x2−293x3þ218x4

−26x5−40x6þ10x7Þ�×e−m
2
c=M2xð1−xÞ; ð47Þ

and

f3ðx;M2Þ ¼ 16π2m2
c

9M10x3ðx − 1Þ3 ð25m
2
c þ 6M2x

− 6M2x2Þe−m2
c=M2xð1−xÞ: ð48Þ

The width of the process X → J=ψϕ is determined by the
formula

ΓðX → J=ψϕÞ ¼ G2
λðm;m1; mϕÞ

24πm2
jMj2; ð49Þ
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where

jMj2 ¼ 1

4m2m2
1m

2
ϕ

½m8
1 þ 8m6

1ðm2 þm2
ϕÞ

þ ðm2
ϕ −m2Þ2ðm4

ϕ þ 10m2
ϕm

2 þm4Þ
− 2m4

1ð9m4
ϕ þ 16m2

ϕm
2 þ 9m4Þ þ 8m2

1

× ðm6
ϕ − 4m4

ϕm
2 − 4m2

ϕm
4 þm6Þ�; ð50Þ

and λða; b; cÞ is the function

λða; b; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4 þ c4 − 2ða2b2 þ a2c2 þ b2c2Þ

p
2a

:

ð51Þ

The sum rule Eq. (41) depends on the mass and decay
constant of the J=ψ and ϕ mesons; their values are
collected in Table I. This table contains also spectroscopic
parameters of other mesons which will be used in the next
section. The masses of all mesons are borrowed from
Ref. [32]. For the decay constants fϕ and f1 of the vector
mesonsϕ andJ=ψ ,we use their experimental values reported
in Refs. [33,34], respectively. For the decay constants f2 and
f3 of the ηc and χ1c mesons, we utilize relevant sum rules’
predictions from Refs. [35,36], respectively.
In numerical analysis, the parameters M2 and s0 are

chosen as in Eq. (20). Computations allow us to find
numerical value of the strong coupling G,

G ¼ 0.85� 0.12: ð52Þ

In Fig. 2, we depict G as a function of the Borel parameter
M2 at fixed s0. One sees that the coupling G is sensitive to
M2 and s0, which are the main sources of the theoretical
ambiguities of the analysis: Ambiguities arising due to
variations of the parameters M2 and s0 are equal to
ΔðM2;s0ÞG ¼ �0.11. Uncertainties in the decay constants
f1 and fϕ generates Δðf1ÞG ¼ �0.03 and ΔðfϕÞG ¼ �0.02,

respectively. Errors connected with various vacuum con-
densates are very small and can be neglected.
For the partial width of the process X → J=ψϕ, we get

ΓðX → J=ψϕÞ ¼ ð113� 30Þ MeV: ð53Þ

This information will be used below to evaluate the full
width of the tetraquark X.

IV. PROCESSES X → ηcηð0Þ AND X → χ 1cηð0Þ

In this section, we consider processes X → ηcη
ð0Þ and

X → χ1cη
ð0Þ and calculate their partial widths. It is not

difficult to see that decays to pseudoscalar mesons ηcð1SÞ
and ηð0Þ with spin-parities JPC ¼ 0−þ are P-wave modes of
the tetraquark X. The second pair of decays to axial-vector
meson χ1cð1PÞ with JPC ¼ 1þþ and ηð0Þ are its S-wave
modes. In all of these processes conservation of C parity is
the case.

A. Decays X → ηcη and X → ηcη0

We start from analysis of the processes X → ηcη and
X → ηcη

0, and extract couplings g1 and g2 which des-
cribe strong interaction at the vertices Xηcη and Xηcη0,
respectively.
The strong coupling g1 is defined through an on-mass-

shell matrix element

hηðqÞηcðpÞjXðp0Þi ¼ g1p · εðp0Þ: ð54Þ

The correlation function for analysis of this coupling has
the following form:

Π̃μðp; qÞ ¼ i
Z

d4xeipxhηðqÞjT fJηcðxÞJ†μð0Þgj0i; ð55Þ

TABLE I. Masses and decay constants of mesons, which have
been used in numerical computations.

Parameters Values (in MeV units)

m1½mJ=ψ � 3096.900� 0.006
f1½fJ=ψ � 409� 15

m2½mηc � 2983.9� 0.5
f2½fηc � 320� 40

m3½mχ1c � 3510.67� 0.05
f3½fχ1c � 344� 27

mϕ 1019.461� 0.019
fϕ 228.5� 3.6
mη 547.862� 0.017
mη0 957.78� 0.06

FIG. 2. The strong coupling G as a function of the Borel
parameter M2 at fixed s0.
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where JηcðxÞ is the interpolating current for the ηc meson

JηcðxÞ ¼ c̄lðxÞiγ5clðxÞ: ð56Þ

The term which will be used to determine g1 is

Π̃Phys
μ ðp; qÞ ¼ g1

fm2
2f2

4mcmðp02 −m2Þðp2 −m2
2Þ

× ½ðm2
2 −m2

η −m2Þpμ þ ðm2
2 þm2

η þm2Þqμ�
þ � � � : ð57Þ

Here, m2 and mη are masses of the ηc and η mesons,
respectively. The decay constant of the ηc meson is denoted
by f2. Let us note that to derive Eq. (57), we use the matrix
elements of the tetraquark X from Eq. (6), and the matrix
element of the ηc meson

h0jJηc jηcðpÞi ¼
f2m2

2

2mc
: ð58Þ

The QCD side of the sum rule reads

Π̃OPE
μ ðp; qÞ ¼ i

Z
d4xeipxϵϵ̃f½γ5S̃lcc ðxÞγ5

×S̃elc ð−xÞγμγ5� þ ½γμγ5S̃lcc ðxÞγ5S̃elc ð−xÞγ5�gαβ
× hηðqÞjs̄bαð0Þsdβð0Þj0i: ð59Þ

It is clear that Π̃OPE
μ ðp; qÞ contains only localmatrix elements

of η; therefore, the remaining calculations have to be carried
out in the context of the soft-meson approximation.
Technical methods of such treatment have been explained
in the previous section. Therefore, we do not concentrate on
further details, and note that in the soft limit Π̃OPE

μ ðp; 0Þ
receives contributions only from the matrix element

2mshηjs̄iγ5sj0i ¼ hsη: ð60Þ

The parameter hsη in Eq. (60) can be defined theoretically
[37], but for our purposes it is enough to use its phenom-
enological value extracted from analysis of relevant exclu-
sive processes. Thus, we have

hsη ¼ −hs sinφ; hs ¼ ð0.087� 0.006Þ GeV3; ð61Þ

where φ ¼ 39.3°� 1.0° is the η − η0 mixing angle in the
quark-flavor basis (for details, see Ref. [37]).
The sum rule for g1 is derived by making use of invariant

amplitudes corresponding to structures pμ in Π̃Phys
μ ðpÞ and

Π̃OPE
μ ðpÞ. It reads

g1 ¼
4mmc

fm2
2f2

PðM2; m02ÞBΠ̃OPEðp2Þ
m2

2 −m2 −m2
η

; ð62Þ

where m02 ¼ ðm2 þm2
2Þ=2. The Borel transformed and

subtracted invariant amplitude BΠ̃OPEðp2Þ is given by
the following expression:

BΠ̃OPEðp2Þ ¼ −
hsηmc

4π2ms

Z
s0

4M2

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

cÞ
p

s
e−s=M

2

þ Π̃ðM2Þ: ð63Þ
The nonperturbative component Π̃ðM2Þ is calculated with
dimension-eight accuracy and determined by formulas
similar to the ones from Eqs. (45)–(48). Therefore, there
is no need to write down their explicit expressions.
The width of the mode X → ηcη can be calculated using

the formula

ΓðX → ηcηÞ ¼ g21
λ3ðm;m2; mηÞ

24πm2
: ð64Þ

Numerical computations yield

jg1j ¼ 3.75� 0.78; ð65Þ
and

ΓðX → ηcηÞ ¼ ð18.0� 5.4Þ MeV: ð66Þ
The second process X → ηcη

0 can be considered in a
similar manner, the difference being in the matrix element
of the η0 meson

2mshη0js̄iγ5sj0i ¼ hs cosφ; ð67Þ

that contributes to the corresponding correlation function.
For this decay, we find

g2 ¼ 4.38� 0.90; ð68Þ
and

ΓðX → ηcη
0Þ ¼ ð15.5� 4.5Þ MeV: ð69Þ

Effects of these processes on the full width of X are not
small and will be taken into account.

B. Decays X → χ 1cη and X → χ 1cη0

Processes X → χ1cη and X → χ1cη
0 are explored in

accordance with the scheme described above. Here, we
have to evaluate the strong couplings g3 and g4 which
correspond to vertices Xχ1cη and Xχ1cη0.
Let us consider the decay X → χ1cη and write down

some principal expressions. The relevant strong coupling g3
is defined by the on-mass-shell matrix element

hηðqÞχ1cðpÞjXðp0Þi ¼ g3f½p · p0�½ε�ðpÞ · εðp0Þ�
−½p · εðp0Þ�½p0 · ε�ðpÞ�g; ð70Þ

with ε�μðpÞ being the polarization vector of the meson χ1c.
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To determine g3, we consider the correlation function

Π̂μνðp; qÞ ¼ i
Z

d4xeipxhηðqÞjT fJχ1cν ðxÞJ†μð0Þgj0i; ð71Þ

where Jχ1cμ ðxÞ is the interpolating current for the axial-
vector meson χ1c

Jχ1cν ðxÞ ¼ c̄lðxÞiγ5γνclðxÞ: ð72Þ

Then, the term in Π̂μνðp; qÞ which has two poles in
variables p2 and p02 ¼ ðpþ qÞ2 is given by the formula

Π̂Phys
μν ðp; qÞ ¼ g3

fmf3m3

ðp02 −m2Þðp2 −m2
3Þ

×

�
1

2
ðm2 þm2

3 −m2
ηÞgμν − pμp0

ν

�
þ � � � ;

ð73Þ

wherem3 and f3 are the mass and decay constant of the χ1c
meson. As usual, dots stand for contributions of higher
resonances and continuum states. The ground-state term in
Π̂Phys

μν ðp; qÞ has been found using the matrix element

h0jJχ1cμ jχ1cðpÞi ¼ f3m3εμðpÞ; ð74Þ

as well as the matrix element of the tetraquark X.
The correlation function Π̂OPE

μν ðp; qÞ is given by the
expression

Π̂OPE
μν ðp; qÞ ¼ i

Z
d4xeipxϵϵ̃f½γ5S̃lcc ðxÞγνγ5S̃elc ð−xÞγμγ5�

þ ½γμγ5S̃lcc ðxÞγνγ5S̃elc ð−xÞγ5�gαβ
× hηðqÞjs̄bαð0Þsdβð0Þj0i: ð75Þ

The required sum rule for the coupling g3 is derived by
equating invariant amplitudes of structures ∼gμν from the

functions Π̂Phys
μν ðp; qÞ and Π̂OPE

μν ðp; qÞ, and has the form

g3 ¼
2

fmf3m3

PðM2; m̂2ÞBΠ̂OPEðp2Þ
2m̂2 −m2

η
; ð76Þ

where m̂2 ¼ ðm2 þm2
3Þ=2. Numerical analysis for g3 gives

g3 ¼ ð1.34� 0.23Þ × 10−1 GeV−1: ð77Þ

The width of the process X → χ1cη is determined by the
expression

ΓðX → χ1cηÞ ¼ g23
λm2

3

24π

�
3þ 2λ2

m2
3

�
; ð78Þ

with λ being equal to λðm;m3; mηÞ. Then it is not difficult
to find that

ΓðX → χ1cηÞ ¼ ð7.9� 1.9Þ MeV: ð79Þ

For the decay X → χ1cη
0, we get

jg4j ¼ ð1.39� 0.23Þ × 10−1 GeV−1; ð80Þ

and

ΓðX → χ1cη
0Þ ¼ ð4.9� 1.2Þ MeV; ð81Þ

respectively.

V. SUMMING UP

The full width of the tetraquark X can be evaluated using
results for the partial width of its five decay modes obtained
in Secs. III and IV. One of these modes X → J=ψϕ is the
dominant decay channel of the tetraquark X, whereas the
remaining processes are subdominant ones. After simple
computations, we get

Γ ¼ ð159� 31Þ MeV: ð82Þ

Our result for the full width Γ of the tetraquark X is in very
nice agreement with Γexp ¼ ð174� 27þ134

−73 Þ MeV found by
the LHCb collaboration.
But by drawing such conclusions, we take into account

that both theoretical and experimental information on the
full with of Xð4630Þ suffers from errors. The uncertainties
are large in the case of Γexp which limit credibility of
conclusions that are based on these data. Experimental errors
also make it difficult to obtain detailed comparisons and
choose between existing theoretical models for Xð4630Þ. In
this sense, more precise measurements of Γexp are required.
From another side, our present result can be further

refined by including into analysis other decay modes
of X. There are a few processes which contribute to the
full width of the tetraquark X. Thus, decays to meson pairs
D��

s Ds0ð2317Þ∓ and D�
s Ds1ð2460Þ∓ are among kinemat-

ically allowed channels of X. These processes belong to
V → Vþ S and V → PSþ AV type S-wave decay modes
of X, respectively. Their partial widths are determined by
the expression (78) with relevant strong coupling. To make
crude estimates for partial widths of these decays, we may
assume that strong couplings at corresponding tetraquark-
meson-meson vertices are the same order of g3 (jg4j). Then
widths of these modes are suppressed relative to decays
X→ χ1cη

ð0Þ, because the factor Λ¼m2� λð3þ 2λ2=m2�Þ=24π
(m� is a mass of a heaviest final meson) is smaller for two
final-state mesons of approximately equal mass than in the
case of light and heavy mesons. For instance, the decay
X → χ1cη is equal to Λ ≈ 0.44, while we find Λ ≈ 0.17 for
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the process X → D−
s Ds1ð2460Þþ. But these decay chan-

nels, in total, may compensate a 15 MeV gap between Γexp

and Γ.
Another interesting field of future studies is an exploration

of Xð4630Þ in the molecule picture using the QCD sum rule
method. This is necessary to compare predictions for the
molecule and diquark-antidiquarkmodels with each another,
aswell aswith theLHCbdata. In the context of theQCD sum
rule approach diquark-antidiquark and molecule models for
the same resonance lead to different results [38,39].As a rule,
a molecule of conventional mesons is heavier than a diquark-
antidiquark structurewith identical content and spin-parities.
Awidth of suchmolecule is also larger than that of its diquark
counterpart, i.e., a diquark structure is more stable than a
meson molecule. Nevertheless, despite existing investiga-
tions of Xð4630Þ in different approaches, it is necessary to
examine the molecule model for Xð4630Þ in the context of
the QCD sum rule method as well.

Analysis performed in the present article and gained
knowledge about the mass and full width of the tetraquark
X, as well as a very nice agreement between these para-
meters and LHCb measurements allows us to interpret
Xð4630Þ as the vector diquark-antidiquark state X with the
spin-parities JPC ¼ 1−þ.
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APPENDIX: THE QUARK PROPAGATORS
AND INVARIANT AMPLITUDE ΠðM2;s0Þ

In the current article, for the light quark propagator
Sabq ðxÞ, we employ the following expression:

Sabq ðxÞ ¼ iδab
=x

2π2x4
− δab

mq

4π2x2
− δab

hq̄qi
12

þ iδab
=xmqhq̄qi

48
− δab

x2

192
hq̄gsσGqi

þ iδab
x2=xmq

1152
hq̄gsσGqi − i

gsG
αβ
ab

32π2x2
½=xσαβ þ σαβ=x� − iδab

x2=xg2shq̄qi2
7776

− δab
x4hq̄qihg2sG2i

27648
þ � � � : ðA1Þ

For the heavy quark Q ¼ c, we use the propagator SabQ ðxÞ

SabQ ðxÞ ¼ i
Z

d4k
ð2πÞ4 e

−ikx
	
δabð=kþmQÞ
k2 −m2

Q
−
gsG

αβ
ab

4

σαβð=kþmQÞ þ ð=kþmQÞσαβ
ðk2 −m2

QÞ2

þ g2sG2

12
δabmQ

k2 þmQ=k

ðk2 −m2
QÞ4

þ g3sG3

48
δab

ð=kþmQÞ
ðk2 −m2

QÞ6
½=kðk2 − 3m2

QÞ þ 2mQð2k2 −m2
QÞ�ð=kþmQÞ þ � � �



: ðA2Þ

Here, we have used the shorthand notations

Gαβ
ab ≡Gαβ

A λAab=2; G2 ¼ GA
αβG

αβ
A ; G3 ¼ fABCGA

αβG
BβδGCα

δ ; ðA3Þ

whereGαβ
A is the gluon field strength tensor, and λA and fABC are the Gell-Mann matrices and structure constants of the color

group SUcð3Þ, respectively. The indices A, B, C run in the range 1; 2;…8.
The invariant amplitude ΠðM2; s0Þ obtained after the Borel transformation and subtraction procedures is given by the

expression

ΠðM2; s0Þ ¼
Z

s0

4M2

dsρOPEðsÞe−s=M2 þ ΠðM2Þ;

where the spectral density ρOPEðsÞ and the function ΠðM2Þ are determined by formulas

ρOPEðsÞ ¼ ρpertðsÞ þ
X8
N¼3

ρDimNðsÞ; ΠðM2Þ ¼
X10
N¼6

ΠDimNðM2Þ; ðA4Þ

respectively. The components of ρOPEðsÞ and ΠðM2Þ are given by the expressions

ρDimNðsÞ ¼
Z

1

0

dα
Z

1−a

0

dβρDimNðs;α; βÞ; ΠDimNðM2Þ ¼
Z

1

0

dα
Z

1−a

0

dβΠDimNðM2; α; βÞ; ðA5Þ
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if ρDimNðs; α; βÞ and ΠDimNðM2;α; βÞ are functions of α and β, and by formulas

ρDimNðsÞ ¼
Z

1

0

dαρDimNðs; αÞ; ΠDimNðM2Þ ¼
Z

1

0

dαΠDimNðM2; αÞ; ðA6Þ

provided that they depend only on α. Let us note that in Eqs. (A5) and (A6) variables α and β are Feynman parameters.

The perturbative and nonperturbative components of the spectral density ρpertðs; α; βÞ and ρDim3ð4;5;6;7;8Þðs; α; βÞ have
the forms:

ρpertðs; α; βÞ ¼ ΘðL1Þ
1536π6L2N8

1

½m2
cN2 − sαβL�2f12m3

cmsLðαþ βÞ2N3
1 −m4

cαβN2
1½5β3 þ 5α2ðα − 1Þ

þ αβð−10þ 13αÞ þ β2ð−5þ 13αÞ� − 35s2α3β3L3 − 12mcmssαβðαþ βÞ½β3 þ 2β2ðα − 1Þ þ αðα − 1Þ2
þ βð1 − 3αþ 2α2Þ�2 þ 2m2

csα2β2½β3 þ 2β2ðα − 1Þ þ αðα − 1Þ2 þ βð1 − 3αþ 2α2Þ�½14β2 þ 14αðα − 1Þ
þ βð−14þ 27αÞ�g; ðA7Þ

ρDim3ðs;α; βÞ ¼ −
hs̄siΘðL1Þ
16π4N6

1

fm5
cN3

2 −mss2α2β2L3½β2 þ αðα − 1Þ − βð1þ 14αÞ� þmcs2α2β2L2N2

− 2m3
csαβLN2

2 þ 3m4
cmsN2

1½β5 þ α3ðα − 1Þ2 þ β4ð−2þ 4αÞ þ βα2ð3 − 7αþ 4α2Þ þ β2αð3 − 10αþ 8α2Þ
þ β3ð1 − 7αþ 8α2Þ� − sm2

cmsαβ½2β7 þ 2α3ðα − 1Þ4 − β6ð8 − 23αÞ þ βα2ðα − 1Þ3ð−6þ 23αÞ
þ β5ð12 − 75αþ 79α2Þ þ β2αðα − 1Þ2ð6 − 54αþ 79α2Þ þ β4ð−8þ 87α − 212α2 þ 133α3Þ
þ β3ð2 − 41αþ 193α2 − 287α3 þ 133α4Þ�g; ðA8Þ

ρDim4ðs;α; βÞ ¼ −
hαsG2=πiΘðL1Þ
9216π4L2N6

1

f−15s2α3β3L4ð9β þ 4αÞ þm4
cαβN2

1½2β5 þ β4ð28 − 82αÞ þ β2αð−72

þ 255α − 163α2Þ þ βα2ð−54þ 97α − 19α2Þ þ 4α3ð−3 − 2αþ 5α2Þ − 2β3ð15 − 89αþ 104α2Þ�
þ 6smcmsαβL2½5β7 þ 2α4ðα − 1Þ2ð3þ αÞ − 2βα3ðα − 1Þ2ð−28þ 31αÞ − β6ð7þ 53αÞ − β2α2ðα − 1Þ2
× ð−97þ 173αÞ þ β5ð−1þ 156α − 161α2Þ þ β3αð50 − 355αþ 588α2 − 283α3Þ
þ β4ð3 − 153αþ 419α2 − 277α3Þ� − 6m3

cmsN2
1½5β7 þ 2α4ðα − 1Þ2ð3þ αÞ − β6ð7þ 26αÞ

þ β5ð−1þ 96α − 143α2Þ þ β4ð3 − 106αþ 356α2 − 259α3Þ þ β2α2ð69 − 297αþ 389α2 − 161α3Þ
þ 2β3αð18 − 141αþ 255α2 − 134α3Þ − 2βα3ð−21þ 65α − 63α2 þ 19α3Þ� þm2

csα2β2½β3 þ 2β2ðα − 1Þ
þ αðα − 1Þ2 þ βð1 − 3αþ 2α2Þ�½75β4 þ 3β3ð−74þ 149αÞ − 12α2ð−5þ 4αþ α2Þ
þ αβð207 − 535αþ 264α2Þ þ β2ð147 − 718αþ 627α2Þ�g; ðA9Þ

ρDim5
1 ðs;α; βÞ ¼ hs̄gsσGsiΘðL1ÞL

96π4N5
1

f−16smsα
2β2L2 þ 3m3

cN2
2 − 3smcαβ½β4 þ α2ðα − 1Þ2 þ β3ð−2þ 3αÞ

þ αβð2 − 5αþ 3α2Þ þ β2ð1 − 5αþ 4α2Þ� þm2
cmsαβ½7β4 þ 7α2ðα − 1Þ2 þ 2β3ð−7þ 10αÞ

þ 2αβð7 − 17αþ 10α2Þ þ β2ð7 − 34αþ 27α2Þ�g; ðA10Þ

ρDim6
1 ðM2;α; βÞ ¼ −

ΘðL1Þ
405 · 212π6ðβ − 1Þ2L2N7

1

f2560g2sπ2hs̄si2ðβ − 1Þ2αβL3N2
1½−16sαβL2 þm2

cð7β4 þ 7α2

× ðα − 1Þ2 þ 2β3ð−7þ 10αÞ þ 2βαð7 − 17αþ 10α2Þ þ β2ð7 − 34αþ 27α2ÞÞ�
þ 9hg3sG3i½−18mcmsðβ − 1Þ2N2

1ð3β9 þ β8ð−9þ αÞ − 3β3α5ðα − 1Þ − 5β2α5ðα − 1Þ2
þ 3α6ðα − 1Þ3 þ β7ð9 − 5α2Þ þ β5αð2 − 5αþ 3α2Þ þ βα5ð2 − 3αþ α3Þ − β6ð3þ 3α − 10α2 þ 3α3ÞÞ
þ 3m2

cαβð17β13 þ 2β12ð−51þ 19αÞ − α7ðα − 1Þ4ð−17 − 2αþ α2Þ þ β11ð255 − 214αþ 37α2Þ
− β10ð340 − 500αþ 182α2 þ α3Þ − β2α5ðα − 1Þ3ð−3 − 79αþ 65α2 þ 4α3Þ − βα6ðα − 1Þ3
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× ð24 − 66αþ 20α2 þ 7α3Þ − β3α4ðα − 1Þ2ð10 − 35α − 63α2 þ 71α3Þ
þ β9ð255 − 620αþ 355α2 þ 31α3 − 41α4Þ − β4α3ðα − 1Þ2ð10 − 66αþ 107α2 − 17α3 þ 9α4Þ
− 2β8ð51 − 215αþ 170α2 þ 62α3 − 105α4 þ 30α5Þ þ β7ð17 − 158αþ 155α2 þ 206α3 − 440α4

þ 282α4 − 66α6Þ þ β6αð24 − 22α − 169α2 þ 480α3 − 532α4 þ 281α5 − 62α6Þ
þ β5α2ð−3þ 67α − 285α2 þ 507α3 − 449α4 þ 202α5 − 39α6ÞÞ þ 2sα2β2L2ð21β9 − 4β8ð21þ 8αÞ
þ β7ð126þ 128α − 28α2Þ − 3α5ðα − 1Þ2ð−7 − 2αþ α2Þ − 4βα4ðα − 1Þ2ð8þ 9αþ 3α2Þ
þ 4β6ð−21 − 48αþ 20α2 þ 3α3Þ þ β4αð−32þ 16αþ 48α2 − 31α4Þ
þ 2β2α3ð2þ 44α − 75α2 þ 26α3 þ 3α4Þ − 4β3α2ð−1þ 6αþ 17α2 − 33α3 þ 11α4Þ
þ β5ð21þ 128α − 72α2 − 4α3 þ 12α4ÞÞ�g; ðA11Þ

ρDim7
1 ðM2; α; βÞ ¼ −

hαsG2=πihs̄siΘðL1Þ
1152π2N4

1

f9msβα
2L2 þ 2mc½5β5 − 2β4ð1þ 11αÞ þ β3ð−3þ 37α − 37α2Þ

þ β2αð−15þ 48α − 37α2Þ þ βα2ð−15þ 37α − 22α2Þ þ α3ð−3 − 2αþ 5α2Þ�g; ðA12Þ

ρDim8
1 ðM2; α; βÞ ¼ 5hαsG2=πi2

3072π2N4
1

ΘðL1Þα2β2L: ðA13Þ

The spectral densities ρDim5ð6;7;8Þðs; αÞ are given by the formulas

ρDim5
1 ðs; αÞ ¼ −

6hs̄gsσGsim2
cms

96π4
ΘðL2Þ; ðA14Þ

ρDim6
2 ðs;αÞ ¼ −

hs̄si2
1296π4

ΘðL2Þ½2g2smcms þ 27π2ð8m2
c − 4mcmsÞ�; ðA15Þ

ρDim7
2 ðs; αÞ ¼ hαsG2=πihs̄si

288π2
ΘðL2Þ½mc −msαðα − 1Þ�; ðA16Þ

and

ρDim8
2 ðs; αÞ ¼ hs̄sihs̄gsσGsi

24π2
ΘðL2Þαðα − 1Þ: ðA17Þ

Components of the function ΠðM2Þ are

ΠDim6ðM2; α; βÞ ¼ hg3sG3ims

15 · 213π6M2α2β2L3N5
1

	
2mcM2α4β4L4ð3β2 þ βαþ α2Þ − exp

�
−

m2
cN2

M2αβL

�

× ½m5
cN2

1ð2β10 þ 15βα7ðα − 1Þ2 þ 2α8ðα − 1Þ2 þ β9ð−4þ 15αÞ þ β5α3ð−15þ 80α − 74α2Þ
þ 2β6α2ð6þ 9α − 26α2Þ þ β7αð15 − 32α − 3α2Þ − 3β3α5ð5 − 6αþ α2Þ þ 4β2α6ð3 − 8αþ 5α2Þ
− 4β4α4ð7 − 20αþ 13α2Þ þ β8ð2 − 30αþ 20α2ÞÞ − 2m3

cM2α2β2L2ð2β8 − 5βα5ðα − 1Þ2 þ 2α6ðα − 1Þ2
− β7ð4þ 5αÞ þ β5αð−5þ 38α − 44α2Þ þ β6ð2þ 10α − 20α2Þ − 22β3α3ð1 − 3αþ 2α2Þ

− 2β2α4ð9 − 19αþ 10α2Þ − 2β4α2ð9 − 33αþ 26α2ÞÞ�


; ðA18Þ

ΠDim7ðM2; α; βÞ ¼ hαsG2=πihs̄sim2
cms

72π2LN3
1

½β4 þ α2ðα − 1Þ2 þ β3ð−2þ 3αÞ þ αβð2 − 5αþ α2Þ

þ αβð2 − 5αþ α2Þ þ β2ð1 − 5αþ 4α2Þ�; ðA19Þ
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ΠDim8ðM2; α; βÞ ¼ −
hαsG2=πi2mc

81 · 210π2M6αβðβ − 1ÞL6N3
1

exp

�
−

m2
cN2

M2αβL

�
f24m4

cmsM2ðβ − 1Þðαþ βÞ3L4N2
1

þ 6m7
cðαþ βÞ2N5

1 − 60msM6αβðβ − 1ÞL5½β4 − β3 þ α3ðα − 1Þ� − 9mcM6α2β2ðβ − 1Þðα2 þ β2ÞL5

− 6m2
cmsM4ðβ − 1ÞL4½8β7 þ 18βα4ðα − 1Þ2 þ 8α5ðα − 1Þ2 þ 2β6ð−8þ 9αÞ þ 7β2α3ð2 − 5αþ 3α2Þ

þ 2β3α2ð7 − 15αþ 8α2Þ þ β4αð18 − 35αþ 16α2Þ þ β5ð8 − 36αþ 21α2Þ�
− 2m5

cM2½12β7 − 3β8 þ 3α4ðα − 1Þ3 þ β6ð−18þ 6αþ α2Þ þ 3βα3ðα − 1Þ2ð−2þ αþ 3α2Þ
þ 2β5ð6 − 9αþ 8α2Þ þ β2α2ð−6þ 14αþ 11α2 − 43α3 þ 24α4Þ þ β4ð−3þ 18α − 9α2 − 30α3 þ 28α4Þ
þ β3αð−6þ 14αþ 6α2 − 51α3 þ 37α4Þ�½β4 þ α2ðα − 1Þ2 þ β3ð−2þ 3αÞ þ βαð2 − 5αþ 3α2Þ
þ β2ð1 − 5αþ 4α2Þ� þm3

cM4αβL2½−3β8 þ 3α4ðα − 1Þ3 þ 2β7ð6þ 13αÞ þ 6β6ð−3 − 15αþ 14α2Þ
þ βα3ðα − 1Þ2ð12 − 23αþ 21α2Þ þ β5ð12þ 114α − 289α2 þ 177α3Þ
þ β2α2ð30 − 163αþ 303α2 − 244α3 þ 74α4Þ þ β3αð12 − 181αþ 467α2 − 454α3 þ 156α4Þ
þ β4ð−3 − 62αþ 356α2 − 493α3 þ 201α4Þ�g; ðA20Þ

ΠDim9ðM2; α; βÞ ¼ hαsG2=πihs̄gsσGsimcN2
1

4608π2M4β4α2ðβ − 1Þ3L4
exp

�
−

m2
cN2

M2αβL

�
f48M4β3ðβ − 1Þ2α2ðα − 1ÞL3 þ 6M4β3αðβ − 1Þ2L3

þ 121M2mcmsβ
2ðβ − 1Þαðα − 1ÞL2N2

1 þ 40M2mcmsβ
2ðβ − 1ÞL2N2

1 − 64M2mcmsβα
2LN4

1

þ 32M2mcmsβαLN4
1ð1þ αÞ þ 16m3

cmsðαþ βÞN5
1ðα2 − 1Þ þ 32m3

cmsαðαþ βÞN5
1g; ðA21Þ

and

ΠDim10ðM2;α;βÞ ¼ −
hαsG2=πihs̄si2m2

cN4
1

729 · 25M4π2α2β4ðβ− 1Þ3L4
exp

�
−

m2
cN2

M2αβL

�
f216m2

cπ
2ðα− 1Þ2ðαþ βÞN3

1 −M2βL

× ½−g2sαβðα− 1Þðβ− 1ÞLþ 108π2ð4β4αðα− 1Þ2 þ 4α3ðα− 1Þ4 þ β3ð5− 23αþ 39α2 − 24α3 þ 8α4Þ
þ β2ð−10þ 39α− 69α2 þ 63α3 − 40α4 þ 12α5Þ þ βð5− 20αþ 38α2 − 47α3 þ 48α4 − 32α5 þ 8α6ÞÞ�g:

ðA22Þ

In expressions above, ΘðzÞ is the Unit Step function. We have also used the following shorthand notations:

N1 ¼ β2 þ βðα − 1Þ þ αðα − 1Þ; N2 ¼ ðαþ βÞN1; L ¼ αþ β − 1;

L1 ≡ L1ðs; α; βÞ ¼
ð1 − βÞ
N2

1

½m2
cN2 − sαβL�; L2 ≡ L2ðs; αÞ ¼ sαð1 − αÞ −m2

c: ðA23Þ
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