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We investigate the three-dimensional (3D) and two-dimensional (2D) charge distributions of a spin-one
particle in terms of the multipole expansion. On account of the geometrical difference between 2D and 3D
spaces, projecting the 3D electric distribution to the 2D one in the Breit frame brings about the influence of
the quadrupole distribution upon the monopole one. Thus, the 2D charge distribution becomes spin
dependent. This effect should be sorted out from the relativistic effects arising from the Lorentz boost. We
first provide the connections between the 2D and 3D distributions in the Breit frame in terms of the angle-
dependent Abel transformation. We then provide the differential equations that enable us to map 2D
distributions in the Breit frame to those in the infinite momentum frame.
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I. INTRODUCTION

The electromagnetic (EM) form factors of a hadron have
been considered one of the important issues since meas-
uring them in elastic-scattering experiments [1]. The EM
form factors encode the information on the internal
distributions of the charge and the magnetization. They
have been simply obtained by the 3D Fourier transform
[2,3] of the EM form factors in the Breit frame (BF). This
interpretation is true only when the size of the system is
much larger than the Compton wavelength. Since the
Compton wavelength gives the minimum radius of a
localized particle with a finite mass, the region smaller
than the Compton wavelength brings about ambiguous
relativistic effects. It means that nonrelativistic treatment is
valid for the particles such as atoms and nuclei. For
example, in the case of the deuteron, the Compton wave-
length is about 5% of its charge radius. It indicates that the
nonrelativistic treatment of the deuteron is plausible.
However, as the precision of the experiment gradually
increased, a fully relativistic understanding of the EM
distributions is needed instead of using the nonrelativistic
approximation. In addition, the ρ meson, which is another
spin-one particle, is a fully relativistic particle because the
Compton wavelength is about 30–40% of the charge
radius. It is thus important to explain the spin-one particle
in a fully relativistic picture. This problem was first raised

by Yennie et al. many years ago [4] in the case of the
nucleon. The ambiguous relativistic corrections were
then removed by employing the two-dimensional (2D)
EM distributions in the infinite momentum frame (IMF)
[5–11], since they are kinematically suppressed in this
frame. Recently, various prescriptions for this matter have
been discussed in Refs. [12–16].
Among those prescriptions, there was an attempt to grasp

the internal structure of a hadron in terms of the Wigner
distribution recently [17,18]. At distance smaller than the
Compton wavelength, one is able to interpret the EM
distributions as quasiprobabilistic ones in the perspective of
the phase-space Wigner distributions [19–21]. This allows
us to be free from ambiguous relativistic corrections. The
price to pay is that we have a quasiprobabilistic distribution
instead of having a strict probabilistic one. By adopting the
phase-space Wigner distribution, Lorcé described nicely
how the BF and IMF distributions can be naturally
interpolated with each other for both the nucleon [12]
and deuteron [15]. This analysis will be kept to understand
the BF static distributions in this paper. In addition to that
approach, Panteleeva and Polyakov [13] have shown how
the BF distributions can be mapped directly onto the IMF
ones by using the Abel transformation [22] in the case of
the nucleon mechanical properties. It was immediately
extended to the energy-momentum tensor [23] and EM [24]
distributions. In fact, the application of the Abel tomog-
raphy to the hadron structure has been already introduced in
Refs. [25,26]. Meanwhile, it was left to future work to study
a hadron structure of a higher spin particle in the sense of
tomography.
In the present work, we aim at investigating the 2D

charge distribution of a spin-one particle in the context of
the Wigner sense and the Abel tomography. If a target is
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boosted to the IMF, then the information on the 3D EM
distribution gathers on the 2D plane via a line integral, so
they are subjected to both the geometrical and relativistic
effects. However, in Ref. [10] it was impossible to distin-
guish between relativistic and geometrical effects on the
charge distribution. Thus, we will mainly focus on how the
charge distribution is affected by those effects. In general,
this charge distribution has been obtained by the 2D Fourier
transformation of the helicity-amplitude form factors.
However, it was rather difficult to grasp the physical
meaning of each form factor, especially for higher-spin
particles. We thus formulate the multipole distributions and
form factors in the three different frames 3D BF, 2D BF, and
2D IMF instead of using the helicity-amplitude form
factors. We will explicitly show how the projection from
the 3D to 2D BF frames affects the monopole distribution in
the presence of the quadrupole structure with the help of the
angle-dependent Abel tomography. In fact, this projection
results in the spin-dependent charge distribution in the 2D
BF. This feature can be observed in the mass distribution
and the mechanical properties of a higher spin particle
(S ≥ 1). Note that the geometrical feature should be
separated from the boost effects. After then, we take into
account the Lorentz boost effects on the distribution via
differential equations. In addition, it will be shown that the
Lorentz boost is the other origin of the spin-dependent
charge distribution.
We sketch this work as follows: in Sec. II, we present the

formalism for the EM multipole form factors of a spin-one
particle in three different frames 3D BF, 2D BF, and 2D
IMF. In Sec. III, we briefly review how we define the EM
multipole distributions in the Wigner sense. Then we
present the EM multipole distributions in the three different
frames 3D BF, 2D BF, and 2D IMF and relate them to each
other in terms of the angle-dependent Abel transformation
and differential equations. In Sec. III, we provide the
numerical results for the deuteron charge distributions.
Section V is devoted to the summary and conclusions of
this work.

II. DEFINITION OF THE EM FORM FACTORS

The matrix element of the EM current operator ĴμðrÞ ¼P
f qfψ̄fðrÞγμψfðrÞ with the flavor f and the correspond-

ing charge qf is parametrized in terms of the three different
form factors G1;2;3 for a spin-one particle as [27] (see also
[28] for a higher spin particle)

hp0;λ0jĴμð0Þjp;λi¼−2
�
ϵ0� ·ϵG1ðtÞþ2G3ðtÞ

ϵ0� ·Pϵ ·P
m2

�
Pμ

þ2G2ðtÞðϵμϵ0� ·Pþϵ0�μϵ ·PÞ; ð1Þ

where λðλ0Þ denotes the spin polarization of the initial
(final) state of the spin-one particle. Note that both the
initial and final momentum satisfy the on-mass-shell

conditions p2 ¼ p02 ¼ m2. Here the covariant normaliza-
tion hp0; λ0jp; λi ¼ 2p0ð2πÞ3δλ0λδð3Þðp0 − pÞ for the one-
particle states is used, and we introduce the timelike
average four-momentum P ¼ ðpþ p0Þ=2 and the spacelike
four-momentum transfer Δ ¼ p0 − p with Δ2 ¼ t. The
polarization vectors are defined as ϵ0μ ¼ ϵ0μðp0; λ0Þ, ϵμ ¼
ϵμðp; λÞ for brevity’s sake. In this work, we choose
canonical spin states (see relevant discussion [12,29,30]).
It can be obtained by applying the rotationless boost
operator to the spin-one polarization vector ϵμð0; λÞ ¼
ð0; ϵ̂λÞ in the rest frame. The explicit expression of the
spin-one vector ϵμ in any frame is given by

ϵμðp; λÞ ¼
�
p · ϵ̂λ
m

; ϵ̂λ þ
p · ϵ̂λ

mðmþ p0Þ
p

�
; ð2Þ

where the spin-one polarization vector in the rest frame in
the Cartesian basis is given by

ϵ̂1 ¼ ð1; 0; 0Þ; ϵ̂2 ¼ ð0; 1; 0Þ; ϵ̂3 ¼ ð0; 0; 1Þ: ð3Þ

A. Three-dimensional space

Before discussing the multipole expansion of the EM
form factors, we define the n-rank irreducible tensor and
multipole operators. For a spin-one particle, it has a
quadrupole structure. Thus, we first define the quadrupole
operator Q̂ij (rank 2 tensor) in terms of the spin operator Ŝi

as

Q̂ij ¼ 1

2

�
ŜiŜj þ ŜjŜi −

2

3
SðSþ 1Þδij

�
; ð4Þ

with i; j; k ¼ 1; 2; 3. The operator is symmetrized and
satisfies tracelessness (Q̂ii ¼ 0). The matrix element of
the quadrupole operator is given by Q̂ij

λ0λ, and that of the
spin operator can be expressed in terms of SU(2) Clebsch-
Gordan coefficients in the spherical basis as

Ŝaλ0λ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ1Þ

p
CSλ0
Sλ1a with ða¼ 0;�1. λ;λ0 ¼ 0;…;�SÞ:

ð5Þ

Note that the 3D n-rank irreducible tensor in position space
is defined as follows:

Y0ðΩrÞ ¼ 1; Yi
1ðΩrÞ ¼

ri

r
; Yij

2 ðΩrÞ ¼
rirj

r2
−
1

3
δij: ð6Þ

We are now in a position to define the EM multipole
form factors. In the BF, we set Δ0 ¼ 0 and P ¼ 0, which
means p0 ¼ p00 ¼ P0 and p0 ¼ −p. The matrix element of
the EM current for both the temporal and spatial compo-
nents are then parametrized in terms of the multipole form
factors:
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hp0; λ0jĴ0ð0Þjp; λi
2P0

¼ δλ0λGCðtÞ − 2τQ̂ij
λ0λY

ij
2 ðΩqÞGQðtÞ;

hp0; λ0jĴið0Þjp; λi
2P0

¼ iϵijkŜjλ0λY
k
1ðΩqÞ

ffiffiffi
τ

p
GMðtÞ; ð7Þ

where each term stands for the electric GCðtÞ, magnetic
GMðtÞ, and electric quadrupole GQðtÞ form factors, respec-
tively. They can be expressed as a linear combination of the
three different form factors given in Eq. (1):

GCðtÞ ¼ G1ðtÞ þ
2

3
τGQðtÞ; GMðtÞ ¼ G2ðtÞ;

GQðtÞ ¼ G1ðtÞ −G2ðtÞ þ ð1þ τÞτG3ðtÞ; ð8Þ

with τ ¼ Δ2=4m2. The normalizations of the multipole
form factors are defined as the charge GCð0Þ ¼ C½e�, the
magnetic moment GMð0Þ ¼ μ½e=2m�, and the electric
quadrupole moment GQð0Þ ¼ Q½e=m2�.

B. Two-dimensional space

Recently, the elastic frame (EF) [12,18] was introduced
and applied in order to study how the hadronic matrix
element (1) is varied under the Lorentz boost. It was shown
that this frame naturally interpolates between the 2D BF
and 2D IMF for both the nucleon [12] and the deuteron
[15]. In addition, this frame also allows one to define a
quasiprobabilistic distribution for a moving hadron in the
Wigner sense. To trace down the origin of both the
geometrical and relativistic effects, we first examine how
the multipole structure of the EMmatrix element is given in
2D space. If we restrict ourselves to the 2D space, we have
to define the 2D n-rank irreducible tensor as follows:

Yð2DÞ
0 ðθx⊥Þ ¼ 1; Yð2DÞi

1 ðθx⊥Þ ¼
xi⊥
x⊥

;

Yð2DÞij
2 ðθx⊥Þ ¼

xi⊥x
j
⊥

x2⊥
−
1

2
δij; ði; j ¼ 1; 2Þ: ð9Þ

In the EF, the spacelike momentum transfer Δ ¼ ðΔ⊥; 0Þ
lies in the transverse plane. The frame satisfy conditions,
P ¼ ð0; PzÞ and Δ0 ¼ 0. If we take a 2D BF, i.e., Pz ¼ 0,
then the matrix element of the EM current for both the
temporal and spatial components are expressed as

hp0; λ0jĴ0ð0Þjp; λi
2P0

����
Pz→0

¼ δ3λδλ03GC1ðtÞ þ δσ0σGC2ðtÞ

− 2τQ̂ij
λ0λY

ð2DÞij
2 ðθqÞGQðtÞ;

hp0; λ0jĴið0Þjp; λi
2P0

����
Pz→0

¼ iϵijkŜjλ0λY
ð2DÞk
1 ðθqÞ

ffiffiffi
τ

p
GMðtÞ;

ð10Þ

where we introduce the 2D BF form factors

GC1ðtÞ ¼
�
GCðtÞ −

2

3
τGQðtÞ

�
;

GC2ðtÞ ¼
�
GCðtÞ þ

1

3
τGQðtÞ

�
; ð11Þ

with λ ¼ 1; 2; 3 and σ ¼ 1; 2. GC1ðtÞ is the charge form
factor when a particle spin is polarized along the z axis,
whereas the GC2ðtÞ is that when the particle spin is
transversely polarized to the z axis. The distinctive feature
compared to the 3D BF results is that the charge distribu-
tion is not independent of the spin polarization anymore
when the 3D charge distribution is projected to 2D space. It
originates from the presence of the quadrupole structure
and totally comes from the geometrical difference between
the 2D and 3D spaces. This feature can be observed in both
the charge and mass [31] distributions of a higher spin
particle (S ≥ 1) such as the ρ meson and the Δ baryon.
Here, one must bear in mind that they are not relativistic
effects.
To estimate the relativistic effects, we take the IMF

(Pz → ∞) [15]. We then recover the expressions presented
in light-cone quantization [10]:

hp0;λ0jĴ0ð0Þjp;λi
2P0

����
Pz→∞

¼ δ3λδλ03GIMF
C1 ðtÞþδσ0σGIMF

C2 ðtÞ

þ iϵ3jkŜjλ0λY
ð2DÞk
1 ðθqÞ

ffiffiffi
τ

p
GIMF

M ðtÞ
−2τQ̂ij

λ0λY
ð2DÞij
2 ðθqÞGIMF

Q ðtÞ; ð12Þ

where we introduce the multipole form factors

GIMF
C1 ðtÞ ¼

�
GCðtÞ −

2

3
τGQðtÞ

�
− 2τGIMF

W ðtÞ;

GIMF
C2 ðtÞ ¼

�
GCðtÞ þ

1

3
τGQðtÞ

�
− τGIMF

W ðtÞ;

GIMF
M ðtÞ ¼ −GMðtÞ − 2GIMF

W ðtÞ;
GIMF

Q ðtÞ ¼ GQðtÞ −GIMF
W ðtÞ; ð13Þ

with

GIMF
W ðtÞ ¼ 1

1þ τ

�
GCðtÞ −GMðtÞ þ

1

3
τGQðtÞ

�
: ð14Þ

It is now easy to grasp the meaning of each term in Eq. (13).
In the case of the electric form factors GIMF

C1 and GIMF
C2 , the

first term inside the bracket is the charge form factor GC in
the 3D BF whereas the second term inside the bracket
originates from the geometrical difference between the 2D
and 3D spaces. The last term GW is due to the Wigner spin
rotation under the Lorentz boost. Interestingly, it was found
that this Wigner rotation effect can be parametrized in terms
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of the single combination of the form factors [15]. Similarly,
the quadrupole form factor GIMF

Q can be understood. It
consists of the quadrupole form factorGQ in the 3D BF and
the Wigner rotation effect GW . On the other hand, the
magnetization form factor GIMF

M is solely due to relativistic
effects. As shown in Eq. (10) there is no magnetization
contribution to the temporal component of the EM current in
the BF. However, when the system starts to be boosted, the
Wigner spin rotation brings about the relativistic correction
GW . In addition to that, the mixture of the spatial and
temporal components under the Lorentz boost results in the
first term GM. The normalizations of the IMF form factors
can be found as follows:

GIMF
C1 ð0Þ¼GIMF

C2 ð0Þ¼GCð0Þ; GIMF
M ð0Þ¼GMð0Þ−2GCð0Þ;

GIMF
Q ð0Þ¼GQð0Þ−GCð0ÞþGMð0Þ: ð15Þ

The given results are consistent with the those in
Refs. [10,15].1

III. DEFINITION OF THE EM DISTRIBUTIONS

While the 3D charge distribution of a spin-one particle
cannot be interpreted as a probabilistic distribution because
of the ambiguous relativistic corrections, it can be under-
stood as a quasiprobabilistic distribution by means of the
Wigner distribution. This quasiprobabilistic distribution
conveys information on the internal structure of a hadron
in a fully relativistic picture. The matrix element of the EM
current for a physical state jψi can be defined as [12]

hĴμðrÞi ¼
Z

d3P
ð2πÞ3

Z
d3RWðR;PÞhĴμðrÞiR;P; ð16Þ

where WðR;PÞ stands for the Wigner distribution that is
given by

WðR;PÞ ¼
Z

d3Δ
ð2πÞ3 e

−iΔ·Rψ̃�
�
Pþ Δ

2

�
ψ̃

�
P −

Δ
2

�
;

¼
Z

d3ze−iz·Pψ�
�
R −

z
2

�
ψ

�
Rþ z

2

�
: ð17Þ

The average position R and momentum P are defined as
R ¼ ðr0 þ rÞ=2 and P ¼ ðp0 þ pÞ=2, respectively. Δ ¼ p0 −
p denotes the momentum transfer, which enables us to
access the internal structure of a particle. The variable z ¼
r0 − r represents the position separation between the initial
and final particles. The Wigner distribution contains
information on the wave packet of a particle

ψðrÞ ¼ hrjψi ¼
Z

d3p
ð2π3Þe

ip·rψ̃ðpÞ; ψ̃ðpÞ ¼ 1ffiffiffiffiffiffiffiffi
2p0

p hpjψi;

ð18Þ

with the plane-wave states jpi and jri, respectively,
normalized as hp0jpi ¼ 2p0ð2πÞ3δð3Þðp0 − pÞ and hr0jri ¼
δð3Þðr0 − rÞ. The position state jri localized at r at time
t ¼ 0 is defined as a Fourier transform of the momentum
eigenstate jpi

jri ¼
Z

d3p

ð2πÞ3
ffiffiffiffiffiffiffiffi
2p0

p e−ip·rjpi: ð19Þ

If we integrate over the average position and momentum,
then the probabilistic density in either position or
momentum space is recovered to be

Z
d3P
ð2πÞ3 WNðR;PÞ ¼ jψNðRÞj2;
Z

d3RWNðR;PÞ ¼ jψ̃NðPÞj2: ð20Þ

Given P and R, the matrix element hĴμðrÞiR;P conveys
information on the internal structure of the particle local-
ized around the average position R and average momentum
P. This can be expressed as the 3D Fourier transform of the
matrix element hp0; λ0jĴμð0Þjp; λi:

hĴμðrÞiR;P¼hĴμð0Þi−x;P
¼
Z

d3Δ
ð2πÞ3e

−ix·Δ 1ffiffiffiffiffiffiffiffi
2p0

p ffiffiffiffiffiffiffiffiffi
2p00p hp0;λ0jĴμð0Þjp;λi;

ð21Þ

with the shifted position vector x ¼ r − R.

A. Three-dimensional Breit frame

In the BF, we have Δ0 ¼ 0 and P ¼ 0. Having integrated
over P of Eq. (16), we find that the part of the wave packet
can be factorized. Thus, the target in the BF is understood
as a localized state around R from the Wigner perspective.
In this frame, Eq. (21) is reduced to

J0BFðx; λ0; λÞ ≔ hĴ0ð0Þi−x;0
¼

Z
d3Δ
ð2πÞ3 e

−ix·Δ 1

2P0
hp0; λ0jĴ0ð0Þjp; λi: ð22Þ

From now on we use r instead of x. We introduce the
temporal component of the EM distributions in terms of the
multipole expansion as follows:

J0BFðr; λ0; λÞ ¼ ρCðrÞδλ0λ þ ρQðrÞQ̂ij
λ0λY

ijðΩrÞ; ð23Þ

1One is able to find the connection between the multipole
form factors and the helicity-amplitude form factors [15], such
as AIMF

00 ¼GIMF
C1 ;AIMF

11 ¼GIMF
C2 ;AIMF

01 ¼ ffiffi
τ
2

p
GIMF

M , and AIMF
−11 ¼

−τGIMF
Q .
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where the EM distributions are given in terms of the EM
multipole form factors by

ρC;MðrÞ ¼ G̃C;MðrÞ; ρQðrÞ ¼
r

2m2

d
dr

1

r
d
dr

G̃QðrÞ;

G̃C;M;QðrÞ ¼
Z

d3Δ
ð2πÞ3 e

−ir·ΔGC;M;QðΔ2Þ: ð24Þ

Note that the magnetization distribution is defined as
J ¼ ∇ ×M. The EM multipole form factors GC;M;QðtÞ
can be also expressed in terms of the EM distributions
ρC;M;QðrÞ in coordinate space:

GC;MðtÞ ¼
Z

d3rj0ðr
ffiffiffiffiffi
−t

p ÞρC;MðrÞ;

GQðtÞ ¼ −2m2

Z
d3r

j2ðr
ffiffiffiffiffi
−t

p Þ
t

ρQðrÞ: ð25Þ

At the zero momentum transfer t ¼ 0, the normalizations of
the form factors are expressed as the integrals of the EM
distributions over position r:

GC;Mð0Þ ¼
Z

d3rρC;MðrÞ;

GQð0Þ ¼
2

15
m2

Z
d3rr2ρQðrÞ: ð26Þ

In addition, the charge and magnetic radii are defined as the
slope of their multipole form factors GC;M:

hr2iC;M ¼
R
d3rr2ρC;MðrÞR
d3rρC;MðrÞ

¼ 6

GC;Mð0Þ
dGC;MðtÞ

dt

����
t¼0

: ð27Þ

B. Two-dimensional Breit frame

The EF distributions depend on the impact parameter x⊥
(r ¼ ðx⊥; xzÞ) and momentum P ¼ ð0; PzÞ where a spin-
one particle moves along the z direction without loss of
generality. In this frame, Eq. (21) is reduced to

J0EFðx⊥; Pz; λ0; λÞ

≔
Z

dxzhĴ0ð0Þi−r;0

¼
Z

d2Δ⊥
ð2πÞ2 e

−ix⊥·Δ⊥ 1

2P0
hp0; λ0jĴ0ð0Þjp; λi

����
Δz¼0

: ð28Þ

Before investigating the IMF distributions, one should
separate the geometrical contributions from the relativistic
ones first. We thus examine the distributions in the 2D BF
by taking Pz → 0. The temporal component of the EM
current in the 2D EF are given by

J0EFðx⊥; 0; λ0; λÞ ¼ δ3λδλ03ρ
ð2DÞ
C1 ðx⊥Þ þ δσ0σρ

ð2DÞ
C2 ðx⊥Þ

þ Q̂ij
λ0λY

ð2DÞij
2 ðθx⊥Þρð2DÞQ ðx⊥Þ; ð29Þ

where individual distributions are given in terms of the EM
multipole form factors by

ρð2DÞC1;C2;Mðx⊥Þ ¼ G̃ð2DÞ
C1;C2;M1ðx⊥Þ;

ρð2DÞQ ðx⊥Þ ¼
x⊥
2m2

d
dx⊥

1

x⊥
d

dx⊥
G̃ð2DÞ

Q ðx⊥Þ;

G̃ð2DÞ
C1;C2;M;Qðx⊥Þ ¼

Z
d2Δ⊥
ð2πÞ2 e

−ix⊥·Δ⊥GC1;C2;M;QðΔ2⊥Þ: ð30Þ

Since there is no magnetization contribution to the temporal
component of the EM current without the Lorentz boost,
the magnetization distribution is defined through the spatial
component of the EM current as usual. As pointed out in

Eq. (10), the charge distribution split into the ρð2DÞC1 and

ρð2DÞC2 due to the presence of the quadrupole structure. It will
be explicitly verified in terms of the EM distributions in the
next subsection. The EM multipole form factors GC1;C2;M;Q

can be also expressed in terms of the EM distributions

ρð2DÞC1;C2;M;Q in coordinate space:

GC1;C2;MðtÞ ¼
Z

d2x⊥J0ðx⊥
ffiffiffiffiffi
−t

p Þρð2DÞC1;C2;Mðx⊥Þ;

GQðtÞ ¼ −2m2

Z
d2x⊥

J2ðx⊥
ffiffiffiffiffi
−t

p Þ
t

ρð2DÞQ ðx⊥Þ: ð31Þ

At the zero momentum transfer t ¼ 0, the normalizations of
the 2D BF form factors are found to be

GC1;C2;Mð0Þ ¼
Z

d2x⊥ρ
ð2DÞ
C1;C2;Mðx⊥Þ;

GQð0Þ ¼
m2

4

Z
d2x⊥x2⊥ρ

ð2DÞ
Q ðx⊥Þ; ð32Þ

In addition, the charge and magnetic radii are defined as the
slope of their multipole form factors GC1;C2;M:

hx2⊥ið2DÞC1;C2;M ¼
R
d2x⊥x2⊥ρ

ð2DÞ
C1;C2;Mðx⊥ÞR

d2x⊥ρ
ð2DÞ
C1;C2;Mðx⊥Þ

¼ 4

GC1;C2;Mð0Þ
dGC1;C2;MðtÞ

dt

����
t¼0

: ð33Þ

C. Beyond Abel tomography

In the various Refs. [13,23,24], it was examined that the
spherical-symmetric 3D distributions for the nucleon can
be directly mapped to 2D ones via Abel transformation.

ELECTROMAGNETIC MULTIPOLE STRUCTURE OF A SPIN-ONE … PHYS. REV. D 106, 014022 (2022)

014022-5



The Abel transformation and its inverse transformation are
defined as

A½g�ðx⊥Þ ¼ Gðx⊥Þ ¼
Z

∞

x⊥

dr
r

gðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p ;

gðrÞ ¼ −
2

π
r2

Z
∞

r
dx⊥

dGðx⊥Þ
dx⊥

gðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2⊥ − r2

p : ð34Þ

Thus, A½g�ðbÞ ≔ GðbÞ is called the Abel image of the
function gðrÞ. In addition, a useful relation for the Mellin
moments of the Abel images can be obtained as [13]

Z
∞

0

bNA½g�ðbÞdb ¼
ffiffiffi
π

p
2

ΓðNþ1
2
Þ

ΓðNþ2
2
Þ
Z

∞

0

rN−1gðrÞdr: ð35Þ

For example, if there is no higher multipole distribution in
the BF, the Abel image of the monopole charge distribution
is found to be

Z
dxzhĴ0ð0Þi−r;0 ¼

Z
dxzρCðrÞδλ0λ ¼ ρð2DÞC ðx⊥Þδλ0λ;

ρð2DÞC ðx⊥Þ ¼
Z

∞

x⊥
dr

2rρCðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p : ð36Þ

It indeed works in the case of the nucleon and the pion.
However, as we pointed out in the previous section,
mapping the 3D charge distribution to 2D one in the
presence of the quadrupole structure brings about additional
contributions. To investigate their impact, we should employ
an angle-dependent Abel transformation. The concept of
this transformation is collecting all the angle-dependent
Abel images in 3D space and reconstructing them in the
2D space. It has been already discussed in various contexts
[32–35]. While the single Abel image is enough for a
spherically symmetric distribution, the angle-dependent
distribution requires more than one Abel image (scans or
line integrals) [22]. The scans in all directions are needed to
project angle-dependent 3D distributions to 2D ones in
general. In fact, the number of scans depends on the shape
of the distributions [33]. In our case, we need two Abel
images only, which is a very special case of the anisotropic
distributions. To generalize them, we need to introduce the
Radon transformation [36]. The Abel transformation we
keep using is just a special case of the Radon transformation
and is deeply related to the Radon transformation [34,35].

Extending current work to Radon transformation would be
interesting. However, in this work, we will keep concen-
trating on the physics that the line integral of the 3D
distribution gives induced monopole contributions.
In our case, we need to integrate ρðrÞYijðΩrÞ over the z

axis for each 3D angle. Of course, one can postulate that the
3D and 2D distributions can be given by Eqs. (23) and (29)
in terms of the multipole expansion. Then, the angle-
independent distributions ρðrÞ and ρð2DÞðx⊥Þ can be con-
nected through the Abel transformation, which is a method
having been done in the following Refs. [13,23,24].
However, one of the direct ways to relate them is to carry
out the integral of the 3D BF in Eq. (23) over z. We found
that the angle-dependent Abel transformation can be ana-
lytically implemented. It is derived as

Z
dxzρQðrÞYij

2 ðΩrÞQ̂ij
λ0λ ¼ ρð2DÞQ ðx⊥ÞYð2DÞij

2 ðθx⊥ÞQ̂ij
λ0λ

þΔQðx⊥Þ
�
−
1

3
δσ0σ þ

2

3
δλ03δ3λ

�
;

ð37Þ

with

ρð2DÞQ ðx⊥Þ ¼
Z

∞

x⊥
dr

2x2⊥ρQðrÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p ;

ΔQðx⊥Þ ¼
Z

∞

x⊥
dr

ð3x2⊥ − 2r2ÞρQðrÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p : ð38Þ

Under this transformation, we observe that the 2-rank
irreducible tensor in the 3D space is reduced to the 2-rank
irreducible tensor in the 2D space and a part of the diagonal
contributions leak out to the 0-rank irreducible tensor in
the 2D space. This induced monopole distribution ΔQ is
responsible for the splitting of the charge distributions with
the longitudinally and transversely polarized spins. Since
the energy-momentum tensor distributions for a higher-spin
particle possess an intricate structure in comparison with the
EM distributions, this geometrical understanding is indeed
important.
By considering the above relations, we are now able to

provide the explicit connections between the 2D and 3D BF
distributions in terms of Abel transformations as follows:

ρð2DÞC1 ðx⊥Þ þ 2ρð2DÞC2 ðx⊥Þ ¼ 6

Z
∞

x⊥

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p ρCðrÞ ¼ 3ρð2DÞC ðx⊥Þ;

ΔQðx⊥Þ ≔ ρð2DÞC1 ðx⊥Þ − ρð2DÞC2 ðx⊥Þ ¼
∂
2
ð2DÞ
4m2

G̃ð2DÞ
Q ðx⊥Þ; ρð2DÞM ðx⊥Þ ¼ 2

Z
∞

x⊥

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

p ρMðrÞ: ð39Þ

From Eq. (35), the obvious relations between the 2D and 3D distributions can be found to be
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GCð0Þ ¼
Z

d3rρCðrÞ ¼
Z

d2x⊥ρ
ð2DÞ
C1 ðx⊥Þ ¼

Z
d2x⊥ρ

ð2DÞ
C2 ðx⊥Þ;

GMð0Þ ¼
Z

d3rρMðrÞ ¼
Z

d2x⊥ρ
ð2DÞ
M ðx⊥Þ: ð40Þ

In addition, the charge radii and the quadrupole moments between the 2D and 3D distributions can be related as follows:

hx2⊥ið2DÞC1 GCð0Þ ¼
2

3
Qþ 2

3
hr2iCGCð0Þ; hx2⊥ið2DÞC2 GCð0Þ ¼ −

1

3
Qþ 2

3
hr2iCGCð0Þ; hx2⊥ið2DÞM ¼ 2

3
hr2iM;

GQð0Þ ¼
2

15
m2

Z
d3rr2ρQðrÞ ¼

m2

4

Z
d2x⊥x2⊥ρ

ð2DÞ
Q ðx⊥Þ: ð41Þ

D. IMF

We have obtained the 2D BF distributions through the
angle-dependent Abel transformation, and they can be
associated with the 2D IMF distributions via a specific
differential equation. In the IMF, i.e., Pz → ∞, we are able
to write down the temporal component of the EM current in
terms of the multipole expansion as follows:

J0EFðx⊥;∞; λ0; λÞ ¼ δ3λδλ03ρ
IMF
C1 ðx⊥Þ þ δσ0σρ

IMF
C2 ðx⊥Þ

þ iϵ3jkŜjλ0λY
ð2DÞk
1 ðθx⊥ÞρIMF

M ðx⊥Þ
þ Q̂ij

λ0λY
ð2DÞij
2 ðθx⊥ÞρIMF

Q ðx⊥Þ: ð42Þ

Note that for simplicity we drop out the magnetization
contribution in this work. The 2D IMF distributions are
given in terms of the multipole EM form factors by

ρIMF
C1;C2ðx⊥Þ ¼ G̃IMF

C1;C2ðx⊥Þ;

ρIMF
Q ðx⊥Þ ¼

x⊥
2m2

d
dx⊥

1

x⊥
d

dx⊥
G̃IMF

Q ðx⊥Þ;

G̃IMF
C1;C2;Q;Wðx⊥Þ ¼

Z
d2Δ⊥
ð2πÞ2 e

−ix⊥·Δ⊥GIMF
C1;C2;Q;WðΔ2⊥Þ: ð43Þ

The 2D IMF distributions can be expressed in terms of 2D
BF distributions through the given differential equations

ρIMF
C1 ðx⊥Þ¼ ρð2DÞC ðx⊥Þþ

2

3
ΔQðx⊥Þþ2τ̂G̃IMF

W ðx⊥Þ;

ρIMF
C2 ðx⊥Þ¼ ρð2DÞC ðx⊥Þ−

1

3
ΔQðx⊥Þþ τ̂G̃IMF

W ðx⊥Þ;

ρIMF
Q ðx⊥Þ¼ ρð2DÞQ ðx⊥Þ−

1

2m2
x⊥

d
dx⊥

1

x⊥
d

dx⊥
G̃IMF

W ðx⊥Þ; ð44Þ

with the dimensionless Laplacian τ̂ ≔
∂
2
ð2DÞ
4m2 . One might

notice that we encounter the notorious differential equa-
tions, since G̃W possesses the infinite order of the deriva-
tives as pointed out in Refs. [24,37]. However, we are still
able to find their moments from Eq. (35) and truncate the
differential equation up to a certain order, which may be a
plausible approximation if a spin-one particle is a suffi-
ciently heavy object. Here we provide the charge radii and
the quadrupole moment in the IMF as follows:

hx2⊥iIMF
C1 GCð0Þ ¼

�
2

3
hr2iCGCð0Þ þ

2

3m2
GQð0Þ

�
þ 2

m2
GCð0Þ −

2

m2
GMð0Þ;

hx2⊥iIMF
C2 GCð0Þ ¼

�
2

3
hr2iCGCð0Þ −

1

3m2
GQð0Þ

�
þ 1

m2
GCð0Þ −

1

m2
GMð0Þ;

QIMF ¼ 1

4

Z
d2x⊥x2⊥ρIMF

Q ðx2⊥Þ ¼ ½−GCð0Þ þGMð0Þ þ GQð0Þ�
1

m2
: ð45Þ

IV. DEUTERON 2D CHARGE DISTRIBUTIONS

To verify the formalism constructed in the previous
section we present and discuss the numerical results of
the charge distributions of the deuteron in the three different
frames, focusing on the origin of their spin-polarization

dependences. To estimate them, we take the empirical
parametrization of the EM form factors of the deuteron
proposed in Ref. [38]. We first present how the charge
distribution in the 3D BF changes into that in the 2D BF
under the projection or line integral over the z axis. We draw
the 3D BF charge distribution in the left panel of Fig. 1. It
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has a hole in the center, which is a typically well-known
shape of the deuteron charge distribution. If we integrate it
over the z axis, all of the information on the 3D distribution
is gathered on the 2D plane. It can be performed by the Abel
transformation as shown in Eq. (36). However, it is true only
when a spherical-symmetric hadron is considered. As
shown in Eq. (23), the situation gets more complicated
for the deuteron, since it has a quadrupole structure.
To carry out the angle-dependent Abel transformation,

we first slice the quadrupole distribution ρQðrÞYij
2 ðΩrÞwith

respect to each 3D angle Ωr. We then perform the Abel
transformations for each 3D angle and obtain the corre-
sponding Abel images. After then, we reconstruct them on
a 2D plane. They are explicitly given by

Z
dzρQðrÞYij

2 ðΩrÞ

¼ ρð2DÞQ ðx⊥Þ

0
B@

1
2
cos 2θx⊥ cos 2θx⊥ sin θx⊥ 0

cos 2θx⊥ sin θx⊥
1
2
sin 2θx⊥ 0

0 0 0

1
CA

ij

þ ΔQðx⊥Þ

0
B@

1
3

0 0

0 1
3

0

0 0 − 2
3

1
CA

ij

: ð46Þ

As presented in Eq. (46), the 3D 2-rank irreducible tensor is
reduced to the 2D 2- and 0-rank irreducible tensors. Since
the off-diagonal components ði ¼ 1; j ¼ 3Þ, ði ¼ 2; j ¼ 3Þ,
and (i ↔ j) are proportional to the integral variable z, they
are odd functions with respect to the plane z ¼ 0. Thus, the
corresponding components vanish. On the other hand, the
components ði ¼ 1; j ¼ 2Þ and ði ¼ 2; j ¼ 1Þ have pure
quadrupole structures. While the diagonal component
ði ¼ 3; j ¼ 3Þ possesses monopole structure, the compo-
nents ði ¼ 1; j ¼ 1Þ and ði ¼ 2; j ¼ 2Þ have both the
monopole and quadrupole structures. It means that a part
of the quadrupole distributions flows into the monopole
one which is named induced monopole distribution.

Interestingly, it differently contributes to the charge distri-
bution according to the spin-polarization of the deuteron.
To see them more clearly, in Fig. 2, we visualize each

component of the quadrupole distribution ρQYij in the 3D
space and its Abel image on the bottom plane. Indeed, the
off-diagonal components proportional to the single z
vanish. While the remaining the off-diagonal components
ði ¼ 1; j ¼ 2Þ and ði ¼ 2; j ¼ 1Þ exhibit the quadrupole
pattern, the diagonal components ði ¼ 1; j ¼ 1Þ and
ði ¼ 2; j ¼ 2Þ are distorted due to the presence of both
the monopole and quadrupole patterns. Interestingly, the
component ði ¼ 3; j ¼ 3Þ has only a monopole pattern,
which means that it entirely flows into the charge dis-
tribution. Therefore, the quadrupole patterns in the diago-
nal part together with those in the off-diagonal part
constitute the 2D 2-rank irreducible tensor. The remaining
monopole patterns in the diagonal part differently affect

the charge distribution ρð2DÞC . As a result, the charge

distribution is split into the ρð2DÞC1 and ρð2DÞC2 .
In the left panel of Fig. 3, we present the split charge

distributions of the deuteron, depending on its spin polari-
zation. If the deuteron spin is longitudinally polarized to the
z axis, then its charge distribution decreases as much as
2ΔQ=3. On the other hand, if it is transversely polarized to
the z axis, its charge distribution increase as much as
−ΔQ=3. We thus naturally recover the fact that if a particle
has a null quadrupole distribution, the charge distribution
degenerates in the spin polarization. We also present the
induced monopole distribution ΔQ in the right panel of
Fig. 3. Since the contribution of the inner part of the nodal
point cancels out that of the outer part, ΔQ does not affect
the normalization of the charge. It can be seen by the given
obvious relation

Z
d2x⊥ΔQðx⊥Þ ¼

Z
d2x⊥

∂
2
ð2DÞG̃

ð2DÞ
Q ðx⊥Þ

4m2
¼ 0: ð47Þ

However, this function contributes to the shape of the charge
distribution and can be quantified by the charge radius.

/fm// 3

0.01
0.02
0.03
0.04
0.05
0.06

FIG. 1. In the left panel, we depict the 3D BF charge distribution of the deuteron as a function of r, and it is visualized in the 3D space in
the right panel. We also present the 2D BF charge distribution on the bottom plane by integrating the 3D BF distribution over the z axis.
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FIG. 2. Each component of the 3D electric quadrupole distribution ρQYij is visualized, and the corresponding Abel image is drawn at
the bottom plane of the box frame.

FIG. 3. In the left panel, we present the charge distributions ρð2DÞC1 and ρð2DÞC2 when the deuteron spin is longitudinally and transversely
polarized to the z axis, respectively. In the right panel, we present the induced monopole distribution ΔQðx⊥Þ.
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Interestingly, the difference between charge radii hx2⊥ið2DÞC1

and hx2⊥ið2DÞC2 is found to be the quadrupole moment of the
deuteron Qd:

hx2⊥ið2DÞC1 − hx2⊥ið2DÞC2 ¼
Z

d2x⊥x2⊥ΔQðx⊥Þ

¼ Qd ¼ 0.286 ½fm2�: ð48Þ

It indicates that the large value of the quadrupole moment is
responsible for the sizable difference between the charge

distributions ρð2DÞC1 and ρð2DÞC2 . In Fig. 4, we present quadru-

pole distributions in 3D BF ρQ and 2D BF ρð2DÞQ for
completeness. We find that the quadrupole distribution in
the 2D BF gets concentrated on the center of the deuteron in
comparison with that in the 3D BF.
When the deuteron is boosted to the IMF, its EM

distributions are subjected to the relativistic corrections as
well as the geometrical (or induced monopole) contribution
ΔQ. In Fig. 5, we present the spin-dependent charge
distributions ρIMF

C1 and ρIMF
C2 in the IMF. As shown in

Eq. (44), they can be decomposed into the pure charge

ρð2DÞC , induced monopole ΔQ, and relativistic G̃W contribu-
tions. As discussed in the previous section, the leakage of
the quadrupole distribution to the monopole one is solely

responsible for the spin dependence of the charge distri-
bution in the 2D BF. When the deuteron is boosted to the z
direction, the relativistic contributions come into play and
differently contribute to charge distribution ρIMF

C1 and ρIMF
C2 .

This is the other origin of the spin dependence of the charge
distribution. As shown in Fig. 5, while the deuteron is
considerably affected by the induced monopole contribution
ΔQ due to the sizable quadrupole form factor, it is

FIG. 4. In the left (right) panel, we present the electric quadrupole distribution ρQ (ρð2DÞQ ) in the 3D BF (2D BF).

FIG. 5. The left (right) panel presents the 2D charge distribution ρIMF
C1 (ρIMF

C2 ) in the IMF for the deuteron. The long-dashed, dot-dashed,
and short-dashed curves denote the induced monopole (Induced mono.) ΔQ, relativistic (Rel.) G̃W , and pure monopole (Pure mono.)

ρð2DÞC contributions, respectively. The solid curve depicts the sum of the separate contributions. The EM form factors of the deuteron are
taken from the parametrization given in Ref. [38].

FIG. 6. The 2D electric quadrupole distribution ρIMF
Q for the

deuteron in the IMF. The dot-dashed and short-dashed curves
denote the relativistic (Rel.) G̃W , and pure quadrupole (Pure

quad.) ρð2DÞQ contributions, respectively. The solid curve depicts
the sum of the separate contributions. The EM form factors of the
deuteron are taken from the parametrization given in Ref. [38].
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marginally subjected to relativistic effects G̃W . It indicates
that the main reason for the spin dependence of the charge
distribution is attributed to the geometrical difference
between 2D and 3D distributions. It should be distinguished
from the Lorentz boost effects. This spin-dependent charge
distribution will appear for any higher-spin particle such as
ρ meson, Δ baryon, and so on. In Fig. 6, we present the
electric quadrupole distribution ρIMF

Q . It is also decomposed

into the relativistic G̃W and pure quadrupole ρð2DÞQ contri-
butions. There is no induced multipole contribution and is a
rather small relativistic contribution.
To quantify the relativistic and induced monopole

contributions we estimate the values of the charge radii
and the electric quadrupole moment in Table I. We found
that the induced monopole contributions indeed dominate
over the relativistic ones for the charge radii. We also
found that the relativistic contributions to the electric
quadrupole moment are negligible.

V. SUMMARY AND CONCLUSIONS

In this work, we aimed at investigating how the charge
distributions of a spin-one particle are related in the three
different frames 3D Breit, 2D Breit, and 2D infinite
momentum frames. Since, in the various Refs. [7–11,15],
the helicity-amplitude form factors have been used instead
of the multipole form factors, it was rather difficult to grasp
the physical meaning of each form factor. We thus provide
the electromagnetic multipole form factors and the corre-
sponding multipole distributions in the Wigner sense. In
addition, while the spin-dependent charge distribution of a
higher-spin particle has been observed in the infinite
momentum frame, there was no relevant explanation for
that. In this work, by employing the angle-dependent Abel
transformation, we found that the geometrical difference
between the 3D and 2D Breit frames brings about the spin
dependence of the charge distributions. Specifically, if one
projects the 2-rank irreducible tensor in the 3D space to the

2D space, it is reduced to the 2-rank and 0-rank irreducible
tensors in the 2D space. It indicates that the presence of the
quadrupole structure causes the induced monopole distri-
bution. It finally results in the spin-dependent monopole
distribution, which is also true for the mass distributions of a
higher-spin particle. Therefore, the unique mass radius in
the 2D space cannot be determined for the higher-spin
particle [31,39,40]. To have strict probabilistic distribution
defined in the infinite momentum frame, we mapped the 2D
charge distribution in the Breit frame to that in the infinite
momentum frame through differential equations. They
include the information on the Lorentz boost of the target.
This Lorentz boost causes relativistic effects which consist
of the contributions of the Wigner spin rotations and the
mixture of the temporal and spatial components of the
electromagnetic current. Interestingly, the Lorentz boost
also differently contributes to respective spin-dependent
charge distributions. It is the other origin of the split
monopole distributions. To estimate the typical contribu-
tions of the induced monopole and Lorentz boost to the
spin-dependent charge distributions, we employ the para-
metrization given in Ref. [38] for the electromagnetic form
factors of the deuteron. We found that the induced monop-
ole contributions to the spin-dependent charge distributions
dominate over the relativistic ones. It indicates that the main
reason for the spin dependence of the charge distribution for
the deuteron is the geometrical difference between the 2D
and 3D spaces in the presence of the quadrupole structure.
It is straightforward and interesting to formulate the

energy-momentum tensor distributions of a higher-spin
particle in both the 2D Breit and 2D infinite momentum
frames in terms of the multipole expansion. Since the
energy-momentum tensor has a far more complicated
structure in comparison with the electromagnetic one, it
is essential to classify them in terms of the multipole
expansion and connect them to the 3D ones [41–45].
Especially, the 2D quadrupole structure of the pressure
and shear forces are expected to affect the monopole
structure of them in the infinite momentum frame which
may bring about the nontrivial stability conditions for a
higher-spin particle. It is a distinctive feature, unlike the
nucleon and the pion.
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TABLE I. Separate pure multipole (Pure mul.), induced mo-
nopole (Induced mono.), and relativistic (Rel.) contributions to
the charge radii hx2⊥iIMF

C1 and hx2⊥iIMF
C2 and the electric quadrupole

moment QIMF
d of the deuteron.

Deuteron hx2⊥iIMF
C1 (fm2) hx2⊥iIMF

C2 (fm2) QIMF
d (fm2)

Pure mul. 2.90 2.90 0.286
Induced mono. 0.19 −0.10 � � �
Rel. −0.02 −0.01 0.008
Total 3.08 2.80 0.294
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