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We investigate properties of the ground-state and first radially excited four-quark mesons X0 and X0
0 with

a diquark-antidiquark structure ½ud�½c̄ s̄� and spin-parities JP ¼ 0þ. Our aim is to reveal whether or not one
of these states can be identified with the resonance X0ð2900Þ, recently discovered by the LHCb
Collaboration. We model X0 and X0

0 as tetraquarks composed of either axial-vector or scalar diquark
and antidiquark pairs. Their spectroscopic parameters are computed by employing the QCD two-point sum
rule method and including vacuum condensates up to dimension 15 in the analysis. For an axial-axial

structure of Xð0Þ
0 , we find partial widths of the decays Xð0Þ

0 → D−Kþ and Xð0Þ
0 → D0K0, and estimate full

widths of the states Xð0Þ
0 . To this end, we calculate the strong couplings at the vertices Xð0Þ

0 DK in the
framework of the light-cone sum rule method. We also use technical approaches of the soft-meson
approximation necessary to analyze tetraquark-meson-meson vertices. We obtainm ¼ ð2545� 160Þ MeV
and m0 ¼ ð3320� 120Þ MeV [mS ¼ ð2663� 110Þ MeV and m0

S ¼ ð3325� 85Þ MeV for a scalar-scalar
current] for the masses of the particles X0 and X0

0, as well as estimates for their full widths Γ0 ¼
ð140� 29Þ MeV and Γ0

0 ¼ ð110� 25Þ MeV, which allow us to interpret that neither is the resonance
X0ð2900Þ. At the same time, these predictions provide important information about the ground-state and
radially excited diquark-antidiquark structures X0 and X0

0, which should be objects of future experimental
and theoretical studies.

DOI: 10.1103/PhysRevD.106.014019

I. INTRODUCTION

One of the most important recent achievements in the
physics of multiquark hadrons is the observation of the
structures X0ð2900Þ and X1ð2900Þ by the LHCb Collabo-
ration. These resonance-like peaks were discovered in the
invariant mass distribution D−Kþ of the decay channel
Bþ → DþD−Kþ [1,2]. The LHCb measured the masses
and widths of these structures and fixed their spin-parities. It
turned out thatX0ð2900Þ andX1ð2900Þ are scalar and vector
resonances with quantum numbers JP ¼ 0þ and JP ¼ 1−,
respectively.

The appearance of the mesons D− and Kþ in the final
state of their decays implies that X0ð2900Þ and X1ð2900Þ
are composed of the quarks c̄ s̄ ud, and may be considered
as particles containing four quarks of different flavors. In
other words, X0ð2900Þ and X1ð2900Þ presumably consti-
tute new evidence for exotic mesons with full open-flavor
structures. This is an important fact, because the existence
of the resonance Xð5568Þ—presumably built from sdb̄ ū
quarks and considered as a first candidate for a fully open-
flavor four-quark state [3]—was not confirmed by other
collaborations. Of course, this analysis is correct in the
context of the four-quark model of X0ð2900Þ and
X1ð2900Þ, because there are theoretical analyses that claim
to explain the LHCb data using hadronic rescattering
effects. The LHCb Collaboration also did not exclude such
an interpretation of the observed structures.
New experimental information triggered intensive theo-

retical activities aimed at revealing the internal organization
of these resonances, calculating their parameters, and
studying the processes in which X0ð2900Þ and X1ð2900Þ
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can be produced [4–26]. In an overwhelming majority of
investigations the resonances X0ð2900Þ and X1ð2900Þ were
modeled as diquark-antidiquark states or hadronicmolecules.
In fact, the resonance X0ð2900Þ was explored as a scalar
tetraquark ½sc�½ū d̄� in Refs. [4,5] using a phenomenological
model and the sum rule method, respectively. The predictions
for themass [ð2863� 12Þ and ð2910� 120Þ MeV� obtained
in these papers allowed the authors to interpret X0ð2900Þ as
the ground-state scalar tetraquark ½sc�½ū d̄�. An interesting
assumption about the nature of X0ð2900Þ was made in
Ref. [6], where it was studied as a radially excited state
½ud�½c̄ s̄�. In Refs. [7–10] the resonance X0ð2900Þ was
examined as the S-wave molecule D�−K�þ. The tetraquark
andmolecularmodels were used for the resonanceX1ð2900Þ,
as well [6,7,11]. But two resonance-like peaks in the D−Kþ
mass distributionmay have a different nature and emerge due
to triangle singularities in the rescattering diagrams
χc1D�−K�þ and DsJD̄0

1K
0 [12].

In Ref. [27], we investigated X0ð2900Þ as the molecule
D̄�0K�0 andevaluated its spectroscopic parameters andwidth.
Comparing our results for the mass [ð2868� 198Þ MeV]
and width [ð49.6� 9.3Þ MeV] of D̄�0K�0 with the corre-
sponding LHCb data [m ¼ ð2866� 7� 2Þ MeV and
Γ ¼ ð57� 12� 4Þ MeV], we decided that a molecular
model is acceptable for the resonance X0ð2900Þ.
The vector resonance X1ð2900Þ was considered in the

context of the diquark-antidiquark model in our article [28].
We studied it as a vector tetraquark composed of a diquark
uTCγ5d and an antidiquark c̄γμγ5Cs̄T , and computed
relevant parameters. Though the predictions for the mass
[ð2890� 122Þ MeV] and width [ð93� 13Þ MeV] of this
tetraquark are smaller than the relevant LHCb data, we
interpreted it as the resonance X1ð2900Þ by keeping in
mind that theoretical and experimental investigations suffer
from certain errors.
Over the last few years, diquark-antidiquark states

containing four quarks/antiquarks (c, s, u, and d) in
different configurations have been a subject of investiga-
tion. Thus, a scalar tetraquark Xc ¼ ½su�½c̄ d̄� was consid-
ered in our article [29], where it was modeled as an exotic
meson made of scalar-scalar and axial-axial diquarks
with Cγ5 ⊗ γ5C and Cγμ ⊗ γμC type interpolating cur-
rents, respectively. The mass of Xc found using these two
structures was (2634� 62) and ð2590� 60Þ MeV, respec-
tively. The result ð2.55� 0.09Þ GeV for the mass of Xc
was also obtained in Ref. [30].
Though Xc and X0 ¼ ½ud�½c̄ s̄� have similar content,

there are two differences between them: Xc consists of a
relatively heavy diquark ½su� and heavy antidiquark ½c̄ d̄�,
whereas X0 has a light diquark ½ud� and heavy antidiquark
½c̄ s̄�. The second difference is the decay channels of these
particles. While the dominant decay mode of Xc is
Xc → D−

s π
þ, in the case of X0 we have X0 → D−Kþ.

Nevertheless, as we shall see below, the masses and widths
of X0 and Xc are similar mainly due to their quark contents.

In the current work, we explore the scalar tetraquark
X0 ¼ ½ud�½c̄ s̄� in a detail. Thus, we compute the masses of
the ground-state 1S and radially excited 2S tetraquarks X0

and X0
0, using the QCD two-point sum rule method, and

two interpolating currents. The widths of X0 and X0
0 are

calculated in the framework of the light-cone sum rules
(LCSR) method. This is necessary to find the strong

couplings at the vertices Xð0Þ
0 D−Kþ and Xð0Þ

0 D̄0K0, which

determine the partial widths of the decay channels Xð0Þ
0 →

D−Kþ and Xð0Þ
0 → D̄0K0. Because aforementioned strong

couplings correspond to tetraquark-meson-meson type
vertices, the LCSR method should be applied alongside
technical tools of the soft-meson approximation.
This work is organized as follows. In Sec. II we calculate

the masses and couplings of the ground-state and radially

excited tetraquarks Xð0Þ
0 . To this end, we use both the scalar-

scalar and axial-axial type interpolating currents. The sum
rule computations are carried out by including effects of
vacuum condensates up to dimension 15. In Sec. III we
compute the strong couplings gð0Þ and Gð0Þ that describe the
strong interaction of particles at the vertices Xð0Þ

0 D−Kþ and

Xð0Þ
0 D̄0K0. Here, we also evaluate the partial widths of the

decays Xð0Þ
0 → D−Kþ and Xð0Þ

0 → D̄0K0, and find the full

widths of the tetraquarks Xð0Þ
0 . Section IV is devoted to

discussions and conclusions.

II. MASS AND CURRENT COUPLING OF 1S
AND 2S TETRAQUARKS X0 AND X0

0

The masses and current couplings are important param-
eters of the tetraquarks X0 and X0

0. The masses of these
states are necessary to compare them with the LHCb data
and fix whether one of these particles may be interpreted as
the resonance X0ð2900Þ. The current couplings of X0 and
X0
0 in conjunction with their masses are required to

calculate the partial widths of the decay channels Xð0Þ
0 →

D−Kþ and Xð0Þ
0 → D̄0K0, and hence to evaluate the full

widths of these tetraquarks.
We compute the masses and couplings of X0 and X0

0 in
the framework of the QCD two-point sum rule method,
which is one of the most effective nonperturbative
approaches in high-energy physics [31,32]. It rests on
fundamental principles of QCD and leads to reliable
predictions, using as input parameters only a few universal
vacuum condensates. Remarkably, sum rules derived by
means of this method are applicable to investigating both
ordinary and multiquark hadrons [33–36].
We start our study by considering the following two-

point correlation function:

ΠðpÞ ¼ i
Z

d4xeipxh0jT fJðxÞJ†ð0Þgj0i; ð1Þ
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where T is the time-ordered product, and JðxÞ is the
interpolating current for the tetraquarks X0 and X0

0.
In general, the tetraquarks X0 and X0

0 with the required
quantum numbers JP ¼ 0þ can be built from different
diquarks: either a scalar diquark and antidiquark pair
uTCγ5d and c̄γ5Cs̄T , or an axial-vector diquark uTCγμd
and axial-vector antidiquark c̄γμCs̄T , whereC is the charge-
conjugation matrix. Interpolating currents that correspond
to these structures have the following forms:

JSðxÞ ¼ ϵϵ̃½uTbðxÞCγ5dcðxÞ�½c̄dðxÞγ5Cs̄Te ðxÞ�; ð2Þ
and

JðxÞ ¼ ϵϵ̃½uTbðxÞCγμdcðxÞ�½c̄dðxÞγμCs̄Te ðxÞ�; ð3Þ

where ϵϵ̃ ¼ ϵabcϵ̃ade, and a, b, c, d, and e are color indices.
In Eqs. (2) and (3), cðxÞ, sðxÞ, uðxÞ, and dðxÞ are
corresponding quark fields. In what follows, we consider
in a detailed manner the interpolating current JðxÞ, and
provide only final results obtained while employing JSðxÞ.
To derive required sum rules, the correlation function

ΠðpÞ has to be expressed in terms of the X0 and X0
0

tetraquarks’ physical parameters. The function ΠPhysðpÞ
obtained after relevant manipulations constitutes the physi-
cal (phenomenological) side of the sum rules. We analyze
ground-state and first radially excited particles, and there-
fore include contributions of these states to the correlation
function explicitly. As a result, we obtain

ΠPhysðpÞ ¼ h0jJjX0ihX0jJ†j0i
m2 − p2

þ h0jJjX0
0ihX0

0jJ†j0i
m02 − p2

� � � ;

ð4Þ

where m and m0 are the masses of the tetraquarks X0 and
X0
0. Equation (4) is derived by saturating the correlation

function ΠðpÞ with a full set of scalar four-quark states and
performing an integration over x in Eq. (1). The dots in
Eq. (4) stand for effects of higher resonances and con-
tinuum states in the X0 channel.
Equation (4) contains two simple-pole terms, which in the

case ofmultiquark hadrons have to be usedwith some caution.
The reason is that the physical side may also contain two-
meson reducible contributions. Indeed, the current JðxÞ not
only couples to the tetraquarks X0 and X0

0, but also interacts
with conventional two-meson states [37,38]. These two-
meson contributions modify the quark propagator in Eq. (4),

1

m2 − p2
→

1

m2 − p2 − i
ffiffiffiffiffi
p2

p
ΓðpÞ

; ð5Þ

where ΓðpÞ is the finite width of the tetraquark generated by
two-meson effects. They should be subtracted from the sum
rules, or taken into account in the parameters of the pole terms.
For tetraquarks, the secondmethodwas applied Refs. [39–41]

and it was demonstrated that these contributions can be
absorbed into the current coupling, while at the same time
ensuring that the mass of the tetraquark is stable. Detailed
analyses proved that two-meson effects are small, and do not
exceed theoretical errors of the sum rulemethod itself [38–41].
Therefore, the physical side of the sum rules is written down
above by applying the zero-width single-pole approximation.
Using the matrix elements

h0jJjXð0Þ
0 i ¼ fð0Þmð0Þ; ð6Þ

it is possible to simplify the function ΠPhysðpÞ. Simple
operations for ΠPhysðpÞ lead to the expression

ΠPhysðpÞ ¼ f2m2

m2 − p2
þ f02m02

m02 − p2
� � � : ð7Þ

The function ΠPhysðpÞ has a simple Lorentz structure ∼I
and, depending on the problem under consideration, one or
a sum of two terms may form the corresponding invariant
amplitude ΠPhysðp2Þ.
The second component of the sum rules ΠOPEðpÞ should

be computed in the operator product expansion (OPE) with
a certain accuracy. It can be found by employing the
expression for the interpolating current JðxÞ, and replacing
contracted quark fields with relevant propagators. After
these operations, for ΠOPEðpÞ we obtain

ΠOPEðpÞ ¼ i
Z

d4xeipxϵϵ̃ϵ0ϵ̃0Tr½Se0es ð−xÞγμ

×S̃d
0d

c ð−xÞγν�Tr½Sbb0u ðxÞγνS̃cc0d ðxÞγμ�; ð8Þ

where

S̃cðqÞðxÞ ¼ CSTcðqÞðxÞC: ð9Þ

Here, ScðxÞ andSqðxÞ are the heavy c- and light q ¼ uðs; dÞ-
quark propagators, respectively. Their explicit expressions
are collected in the Appendix. The correlation function
ΠOPEðpÞ also has a trivial Lorentz structure proportional
to I. We denote the invariant amplitude corresponding to this
structure by ΠOPEðp2Þ.
The correlation function ΠPhysðpÞ corresponds to the

“ground-state+excited particle+continuum” scheme, and
encompasses contributions of two particles. As the first
step of our analysis, we employ the familiar “ground-state
+continuum” scheme, and find the mass and coupling of
the ground-state tetraquark X0. This means that we include
the second term in ΠPhysðpÞ in a list of “higher resonances
and continuum states,” and get the standard expression for
the correlation function. Operations which are necessary to
derive sum rule for m and f are well- known and discussed
repeatedly in the literature. Therefore, we skip further
details and provide final formulas:
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m2 ¼ Π0ðM2; s0Þ
ΠðM2; s0Þ

ð10Þ

and

f2 ¼ em
2=M2ΠðM2; s0Þ

m2
; ð11Þ

where M2 and s0 are the Borel and continuum threshold
parameters, respectively. Here,ΠðM2; s0Þ is the Borel trans-
formed and subtracted invariant amplitude ΠOPEðp2Þ,
and Π0ðM2; s0Þ ¼ dΠðM2; s0Þ=dð−1=M2Þ.
At this stage, one should fix the working windows for the

parameters M2 and s0, which are auxiliary quantities of
sum rule computations and should obey some important
restrictions. These restrictions are connected with domi-
nance of the pole contribution (PC) to the correlation
function ΠðM2; s0Þ, with convergence of OPE and stability
of physical quantities against variations of the Borel
parameter. Fulfillment of aforementioned constraints can
be fixed using the following expressions

PC ¼ ΠðM2; s0Þ
ΠðM2;∞Þ ; ð12Þ

and

RðM2Þ ¼ ΠDimNðM2; s0Þ
ΠðM2; s0Þ

; ð13Þ

and numerical limits on PC, RðM2Þ, as well as fixing
acceptable variations ofm and f. In Eq. (13)ΠDimNðM2; s0Þ
is the last term or the sum of the last
few terms in the correlation function. In the present
paper, we employ the last three terms in the OPE, and
hence ΠDimNðM2; s0Þ ¼ ΠDimð13þ14þ15ÞðM2; s0Þ.
Having fixed the working regions for M2 and s0, one

can extract the mass and coupling of the 1S tetraquark X0.
The quantitiesm and f, strictly speaking, should not depend
on the Borel parameter. But real calculations demonstrate
that working regions for M2 and s0 have an impact on
extracted parameters and generate uncertainties, which
nevertheless should be kept within acceptable limits. On
the contrary, the continuum threshold parameter s0 bears
physical information about the mass of the excited tetraquark
X0
0. In fact, the parameter s0 separates the contribution of the

ground-state particle from those due to higher resonances
andcontinuumstates. Thismeans that themasses ofX0 andX0

0

must obey the restrictions m <
ffiffiffiffiffi
s0

p ≤ m0.
After calculating the mass and coupling of X0, we can

find the parameters of the excited state X0
0. For this purpose,

we treat m and f as input parameters and look for new
working regions for M2 and s�0, which not only have to
satisfy Eqs. (12) and (13), but also have to obey s�0 > s0.
The necessity of the last constraint is evident, because in the

“ground-state+excited particle+continuum” scheme the
parameter s�0 separates two states from remaining higher
resonances. The mass of the X0

0 extracted from the new sum
rule is bounded by the conditions

ffiffiffiffiffi
s0

p ≤ m0 <
ffiffiffiffiffi
s�0

p
. The

regions for M2 and s�0, and extracted mass m0 should
comply with these regulations, then performed analysis can
be considered as being selfconsistent and giving reliable
predictions.
The sum rules for m0 and f0 obviously differ from those

for m and f. For the mass m0 we derive the expression

m02 ¼ Π0ðM2; s�0Þ − f2m4e−m
2=M2

ΠðM2; s�0Þ − f2m2e−m
2=M2 ; ð14Þ

whereas for f0 we get

f02 ¼ em
02=M2 ½ΠðM2; s�0Þ − f2m2e−m

2=M2 �
m02 : ð15Þ

It is evident that the parameters m0 and f0 of the excited
particle X0

0 depend explicitly on the mass and current
coupling of the ground-state tetraquark X0. Such a depend-
ence is natural, because Eq. (7) contains two terms, and m
and f appear as inputs when calculating m0 and f0. In turn,
the excited state X0

0 also affects the mass m and coupling f
of the ground-state particle, but its effect is implicit and
encoded in the choice of the continuum threshold param-
eter s0. In fact, the parameters m and f extracted from the
sum rules depend on the correlation function ΠðM2; s0Þ at
s0, which is limited by the mass m0 of the excited stateffiffiffiffiffi
s0

p ≤ m0. Because the two sets ðm; fÞ and ðm0; f0Þ are
determined by the same correlation function at different s0
and s�0, one may consider the difference of ΠðM2; s0Þ at s0
and s�0 as a “measure” of this effect.
The correlation function ΠðM2; s0Þ has the following

form:

ΠðM2; s0Þ ¼
Z

s0

M2

dsρOPEðsÞe−s=M2 þ ΠðM2Þ; ð16Þ

where M ¼ mc þms. In this work, we neglect the masses
of the quarks u and d and terms ∼m2

s , but take into account
the contributions from ms. The spectral density ρOPEðsÞ is
calculated as an imaginary part of the correlator ΠOPEðpÞ.
The function ΠðM2Þ is the Borel transformation of terms
in ΠOPEðpÞ derived directly from their expressions. Com-
putations are performed by taking into account vacuum
condensates until dimension 15. In the Appendix, for the
sake of brevity, we provide analytical expressions for
ρOPEðsÞ and ΠðM2Þ up to dimension 11.
Our analytical results contain nonperturbative terms up to

dimension 15, which makes it necessary to explain the
treatment of higher-dimensional vacuum condensates. The
propagator SqðxÞ contains various quark, gluon, and mixed
condensates of different dimensions, and terms proportional
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to g2sG2 andg3sG3 are taken into account inScðxÞ. Someof the
terms in the propagator SqðxÞ, such as those proportional to
hq̄gsσGqi, hq̄qi2, and hq̄qihg2sG2i, are obtained using
the factorization hypothesis of higher-dimensional conden-
sates. These terms and their products with condensates from
other light quark propagators, as well as with relevant
components of ScðxÞ, enter into ρOPEðsÞ and ΠðM2Þ. We
carry out computations by taking into account all contribu-
tions up to dimension 15 obtained in this way, but the
factorization of higher-dimensional condensates is not pre-
cise and generates uncertainties [42], which are sometimes
difficult to estimate. Because contributions of higher-
dimensional terms are numerically very small, we neglect
the impact of such uncertainties on extracted quantities.
The sum rules for mð0Þ and fð0Þ contain universal quark,

gluon, andmixed vacuum condensates, which we list below:

hq̄qi ¼ −ð0.24� 0.01Þ3 GeV3; hs̄si ¼ ð0.8� 0.1Þhq̄qi;
hq̄gsσGqi ¼ m2

0hq̄qi; hs̄gsσGsi ¼ m2
0hs̄si;

m2
0 ¼ ð0.8� 0.2Þ GeV2

�
αsG2

π

�
¼ ð0.012� 0.004Þ GeV4;

ms ¼ 93þ11
−5 MeV; mc ¼ 1.27� 0.2 GeV: ð17Þ

The masses of c and s quarks are also included in Eq. (17).
We begin from analysis of the ground-state tetraquark

X0, and fix regions M2 and s0, where paremeters of X0can
be extracted. To determine the region for M2, we require
fulfillment of the condition PC ≥ 0.2 at maximal value of
M2

max and convergence of OPE at its minimum, i.e.,
RðM2

minÞ ≤ 0.01. Our calculations demonstrate that the
working regions

M2 ∈ ½2; 4� GeV2; s0 ∈ ½9; 10� GeV2 ð18Þ
satisfy the aforementioned restrictions. Thus, at M2

max ¼
4 GeV2 the pole contribution is equal to 0.23, whereas at
M2

min ¼ 2 GeV2 it is equal to 0.7. At M2
min ¼ 2 GeV2, we

get RðM2
minÞ < 0.01, and hence the convergence of the sum

rules is ensured. The mean values ofm and f averaged over
the regions (18) read

m ¼ ð2545� 160Þ MeV;

f ¼ ð3.0� 0.5Þ × 10−3 GeV4: ð19Þ

The uncertainties of the results in Eq. (19) are within
acceptable limits: for the mass and coupling they form
�6.3% and �16.7% of the corresponding central values,
respectively. Theoretical uncertainties of m are smaller,

FIG. 1. Mass m of the tetraquark X0 as a function of the Borel parameter M2 (left) and as a function of s0 (right).

FIG. 2. The same as in Fig. 1, but for the mass m0 of the excited tetraquark X0
0.

IS THE RESONANCE X0ð2900Þ A GROUND-STATE OR … PHYS. REV. D 106, 014019 (2022)

014019-5



because the relevant sum rule (10) is given as a ratio of
correlation functions, whereas f is determined by the
expression with the correlation function in the numerator
of Eq. (11). In Fig. 1, we depict the sum rule’s predictions
for m as functions of M2 and s0 in which one can see the
dependence of m on the Borel and continuum threshold
parameters.
To find the parameters of the first radially excited

tetraquark X0
0, we start our analysis from Eqs. (14) and

(15) and explore regions ofM2 and s�0, bearing in mind that
s�0 > s0. It is not difficult to see that the working windows

M2 ∈ ½2.5; 4.5� GeV2; s�0 ∈ ½12; 13� GeV2 ð20Þ

obey the necessary constraints. In these regions the pole
contribution to ΠðM2; s�0Þ changes inside of the interval

0.75 ≥ PC ≥ 0.34: ð21Þ

The mass and coupling of the radially excited tetraquark are

m0 ¼ ð3320� 120Þ MeV;

f0 ¼ ð3.7� 0.6Þ × 10−3 GeV4; ð22Þ

respectively. The dependence of m0 on the parameters M2

and s�0 is shown on Fig. 2. Comparing Figs. 1 and 2, one
can see that theoretical ambiguities for the mass of the
tetraquark X0

0 are smaller than those for m.
With these final predictions in hand, one can check

correctness of performed analysis. Thus, using mean values
of the parameters

ffiffiffiffiffi
s�0

p ¼ 3.54 GeV and
ffiffiffiffiffi
s0

p ¼ 3.08 GeV
it is easy to be convinced that all regulations discussed
above are correct.
The mass and coupling of the ground-state and excited

tetraquarks XS and X0
S extracted from the sum rules by

employing the interpolating current JSðxÞ are shown in
Table I. We also plot the massesmS andm0

S in Figs. 3 and 4

TABLE I. Mass and current coupling of the tetraquarks XS and
X0
S, and the regions for the parametersM2 and s0 used to calculate

them.

Tetraquarks XS X0
S

M2 (GeV2) 2–4 2.5–4.5
s0ðs⋆0Þ (GeV2) 9–10 12–13
mS (MeV) 2663� 110 3325� 85

fS · 103 (GeV4) 2.2� 0.3 2.7� 0.4

FIG. 3. Dependence of the mass mS on the Borel parameterM2 at some fixed s0 (left) and on the continuum threshold parameter s0 at
fixed Borel parameter (right).

FIG. 4. The same as in Fig. 3, but for the mass m0
S of the excited state.
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as functions of the Borel and continuum threshold
parameters.
Results obtained for the masses of the states X0 and X0

0 are
either smaller than theLHCbdata for the resonanceX0ð2900Þ
(as in the case of the ground-state tetraquarkX0) or exceed it.
The same conclusions are valid also for the tetraquarksXs and

X0
s. Evenmassesmð0Þ andmð0Þ

S inwhich one takes into account
ambiguities of calculations, do not agree with experimental
data. It seems the diquark-antidiquark state X0 and its radial
excitation X0

0 are exotic mesons not yet seen in experiments.
To gain detailed information on their properties, in the next
section we consider decays of the tetraquarks X0 and X0

0 and
estimate their full widths.

III. PROCESSES Xð0Þ
0 → D −K + AND Xð0Þ

0 → D̄0K0

The masses of the tetraquarks Xð0Þ
0 calculated in the

previous section, as well as their quark content, allow us to
specify their decay channels. It is not difficult to see that
thresholds ≈2364 MeV for the production of conventional
meson pairs D−Kþ and D̄0K0 are smaller than the masses

of Xð0Þ
0 . Moreover, the modes Xð0Þ

0 → D−Kþ and Xð0Þ
0 →

D̄0K0 are S-wave decay channels for the tetraquarks Xð0Þ
0 ,

and decay to D−Kþ mesons is the dominant process for the
resonance X0ð2900Þ.
In this section, we consider in a rather detailed form the

decays Xð0Þ
0 → D−Kþ, and provide final results for the

channels Xð0Þ
0 → D̄0K0. The partial widths of the processes

X0 → D−Kþ and X0
0 → D−Kþ are determined by strong

couplings at the corresponding tetraquark-meson-meson
vertices X0D−Kþ and X0

0D
−Kþ, respectively. We denote

strong couplings corresponding to these vertices by g and g0
respectively, and use for their calculations the QCD sum
rules on the light cone [43,44], and techniques of the soft-
meson approximation [45].
The strong couplings g and g0 are defined by the on-

mass-shell matrix element

hKðqÞDðpÞjXð0Þ
0 ðp0Þi ¼ gð0Þp · p0: ð23Þ

In the framework of the LCSR method the vertex X0D−Kþ
can be investigated by means of the correlation function

Πðp; qÞ ¼ i
Z

d4xeipxhKðqÞjT fJDðxÞJ†ð0Þgj0i; ð24Þ

where the mesons Kþ and D− are denoted by K and D,
respectively. In Eq. (24), JðxÞ and JDðxÞ are the interpolat-
ing currents for the tetraquarks Xð0Þ

0 and meson D−. JðxÞ is
defined by Eq. (3), and for JDðxÞ we employ

JDðxÞ ¼ c̄jðxÞiγ5djðxÞ; ð25Þ

with j being the color index.

The current JðxÞ couples to both the ground-state and
radially excited tetraquarks X0 and X0

0, and therefore in the
function ΠPhysðp; qÞ we should take into account the
contribution of these particles explicitly. We are interested
in terms that have poles at the variables p2 and p02, where p
and p0 ¼ pþ q are the momenta of the D− meson and

tetraquarks Xð0Þ
0 , and q is the momentum of the Kþ meson.

The terms inΠPhysðp; qÞ necessary for our analysis have the
following forms:

ΠPhysðp; qÞ ¼ fDm2
D

mcðp2 −m2
DÞ

�
gfm

ðp02 −m2Þ þ
g0f0m0

ðp02 −m02Þ
�

× p · p0 þ � � � ; ð26Þ

where mD and fD are the mass and decay constant of the
D− meson. To derive Eq. (26) we use the vertex function
given by Eq. (23), the well-known matrix elements of the

tetraquarks Xð0Þ
0 [Eq. (6)], and the new matrix element of the

D− meson,

h0jJDjDðpÞi ¼ fDm2
D

mc
: ð27Þ

The terms presented explicitly in Eq. (26) correspond to a
ground-state meson in theD− channel, and ground-state and
radially excites tetraquarks in the X0 channel. Contributions
of remaining higher resonances and continuum states in the
D− and X0 channels are denoted by dots.
An expression for the same correlation function obtained

using quark-gluon degrees of freedom forms the second
component ΠQCDðp; qÞ of the sum rule analysis. Calcula-
tions carried out using quark propagators give

ΠOPEðp; qÞ ¼
Z

d4xeipxϵϵ̃½γμS̃jcd ðxÞγ5
×S̃jdc ð−xÞγμ�αβhKðqÞjūbαð0Þseβð0Þj0i; ð28Þ

with α and β being the spinor indices. The correlator
ΠOPEðp; qÞ contains quark propagators, which determine
the hard part of this function, but it also depends on the ūs
operator’s local matrix elements; this is the soft factor
in ΠOPEðp; qÞ.
The matrix elements hKjūsj0i bear spinor and color

indices, and are inconvenient for further usage. To recast
them into color-singlet form and factor out spinor indices,
we expand ūs over the full set of Dirac matrices ΓJ,

ΓJ ¼ 1; γ5; γμ; iγ5γμ; σμν=
ffiffiffi
2

p
; ð29Þ

and project them onto the colorless states

ūbαð0Þsaβð0Þ →
1

12
δbaΓJ

βα½ūð0ÞΓJsð0Þ�: ð30Þ
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New operators ūð0ÞΓJsð0Þ sandwiched between the K
mason and vacuum states give rise to local matrix elements
of the K meson.
When considering the tetraquark-meson-meson vertices

Xð0Þ
0 D−Kþ, we encounter the correlation function contain-

ing only local matrix elements of quark operators. Let us
note that such behavior of ΠOPEðp; qÞ is typical for all one
tetraquark-two conventional mesons’s vertices. The reason
is actually very simple: the tetraquark current Jð0Þ is
composed of four quark fields at the same space-time
position. Contractions of relevant fields from the interpo-
lating currents JDðxÞ and J†ð0Þ leave two free quark fields
at the space-time point x ¼ 0. As a result, local matrix
elements of the K meson appear in the correlation function
as overall normalization factors.
It is instructive to compare this situation with three-

meson vertices, in which contractions of quark fields with
different space-time coordinates generate ΠOPEðp; qÞ con-
taining nonlocal operators. Then, manipulations performed
in accordance with Eqs. (29) and (30) lead to operators, the
matrix elements of which are distribution amplitudes (DAs)
of a final-state meson. In other words, for a three-meson
vertex a correlation function depends on integrals over DAs
of a meson. The situation described above in the LCSR
method emerges in the kinematical limit q → 0, which is
known as the soft-meson approximation [44]. In this
approximation, instead of a light-cone expansion, one gets
an expansion in terms of local matrix elements of a final
meson. Because in the soft limit the phenomenological and
QCD sides of the light-cone sum rules acquire distinctive
features, they have to be treated in accordance with
elaborate methods [44,45]. It is important that strong
couplings at three-meson vertices calculated using the full
version of the LCSR method and soft-meson approxima-
tion lead to predictions that are numerically very simi-
lar [44].
The soft-meson approximation was applied to explore

tetraquark-meson-meson vertices in Ref. [46] and later used
in numerous similar studies [36]. It is worth emphasizing,
that correlation functions of tetraquark-tetraquark- meson
vertices contain integrals over DAs of a meson, and their
treatment does not differ from standard LCSR analysis [47].
Here we employ this technique to analyze the vertices

Xð0Þ
0 → D−Kþ. As is seen from Eq. (28), the soft-meson

approximation considerably simplifies the QCD side of the
sum rule: there are only localmatrix elements of theKmeson
in ΠOPEðp2Þ, and only a few of them contribute in the limit
q ¼ 0. On the contrary, the physical side of the sum rule has a
more complicated structure than in the case of the full version
of the LCSRmethod. The soft limit implies the fulfillment of
the equality p ¼ p0, and hence in the limit q → 0 the
invariant amplitudes ΠPhysðp2; p02Þ and ΠOPEðp2; p02Þ are
functions of thevariablep2. Therefore, inEq. (26) one should
take into account that p2 ¼ p02, and we get

ΠPhysðp2Þ ¼ fDm2
D

mc

�
gfm

m̃2

ðp2 − m̃2Þ2

þg0f0m0 m̃02

ðp2 − m̃02Þ2
�
þ � � � ; ð31Þ

where m̃2 ¼ ðm2 þm2
DÞ=2 and m̃02 ¼ ðm02 þm2

DÞ=2. The
remaining problems are connected to the Borel transform of
the amplitude ΠPhysðp2Þwhich, due to double poles at p2 ¼
m̃2 and p2 ¼ m̃02, has the following form:

ΠPhysðp2Þ ¼ fDm2
D

mc

�
gfm

m̃2e−m̃
2=M2

M2
;

þg0f0m0 m̃
02e−m̃02=M2

M2

�
þ � � � : ð32Þ

In general, the Borel transformation applied to a corre-
lation function suppresses contributions of higher reso-
nances and continuum states. This allows one to subtract
these terms from the QCD side of the sum rule using an
assumption about quark-hadron duality. In the soft approxi-
mation, after the Borel transformation there are still unsup-
pressed terms on the physical side of the sum rule, which
contribute to ΠPhysðp2Þ on an equal footing with the
ground-state term. Because we are interested in analyzing
both the ground-state X0 and excited X0

0 particles, it is
necessary to clarify the nature of these unsuppressed terms.
The main contribution to ΠPhysðp2Þ comes from the vertex
X0D−Kþ, where the tetraquark and mesons are ground-
state particles. Unsuppressed terms correspond to vertices,
in which X0 is in its excited state. When considering the
vertex X0D−Kþ, such contributions should be treated as
contaminations and subtracted applying some procedures.
Such prescriptions are well known and were described in
Refs. [44,45]: to eliminate contaminations from ΠPhysðp2Þ,
one has to apply the operator

PðM2; m2Þ ¼
�
1 −M2

d
dM2

�
M2em

2=M2 ð33Þ

to both sides of the sum rule equality, and subtract the
remaining conventional terms in a standard manner.
But, we are also interested in extracting of the strong

coupling g0 which corresponds to the vertex X0
0D

−Kþ.
Therefore, we use the following strategy: we determine the
strong coupling g utilizing the “ground-state+continuum”
scheme and the first term in ΠPhysðp2Þ. At this stage we
apply the operator PðM2; m̃2Þ that singles out the ground-
state term. Afterwards, we use g as an input parameter in
the “ground-state+excited-state+continuum” scheme, and
by employing the full expression for ΠPhysðp2Þ determine
the strong coupling g0.
Then, the sum rule for g reads

g ¼ mc

fmfDm2
Dm̃

2
PðM2; m2ÞΠOPEðM2; s0Þ; ð34Þ
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whereas for g0 we obtain

g0 ¼ em̃
02=M2

f0m0m̃02

�
M2mc

fDm2
D
ΠOPEðM2; s�0Þ−gfmm̃2e−m̃

2=M2

�
:

ð35Þ

The K meson is characterized by some local matrix
elements of different quark-gluon contents and twists.
Having performed our numerical computations, we see
that the correlator ΠOPEðp; qÞ receives a contribution from
the two-particle twist-3 element

h0jūiγ5sjKi ¼
fKm2

K

ms
: ð36Þ

The technical aspects of the required calculations of the
ΠOPEðp; qÞ in the soft limit were described in Ref. [46], and
hence we omit further details and write down the final
formula for the Borel-transformed and subtracted invariant
amplitude, which is computed with dimension-nine accu-
racy:

ΠOPEðM2; s0Þ ¼ −
μK
4π2

Z
s0

M2

dsðm2
c − sÞ2
s

e−s=M
2

þ μKmcΠNPðM2Þ: ð37Þ

The nonperturbative component of the correlation function
ΠNPðM2Þ is determined by the expression

ΠNPðM2Þ ¼ 2hd̄di
3

e−m
2
c=M2 þ

�
αsG2

π

�
m3

c

36M4

×
Z

1

0

dxe−m
2
c=½M2xð1−xÞ�

x3ð1 − xÞ3 −
hd̄gσGdim2

c

3M4
e−m

2
c=M2

þ
�
αsG2

π

�
hd̄di ðm

2
c þ 3M2Þπ2
27M6

e−m
2
c=M2

−
�
αsG2

π

�
hd̄gσGdi ðm

4
c þ 6M2m2

c þ 6M4Þπ2
108M10

× e−m
2
c=M2

; ð38Þ

where μK ¼ fKm2
K=ms.

It is worth noting that the limit q → 0 is performed in a
hard component of the amplitude. As a result, it does not
contain terms ∼m2

K which nevertheless would be small due
to m2

K=m
2, m2

K=m
02, m2

K=m
2
D ≪ 1. In the soft approxima-

tion the mass and decay constant of the Kþ meson through
μK form the nonperturbative soft factor in ΠOPEðM2; s0Þ.
The parameters of the mesons D− and Kþ that are

necessary to calculate g are shown in Table II. The values of
the masses and decay constants of these particles are taken
from Ref. [48]. In numerical computations of the strong
couplings g and g0, the Borel and continuum subtraction

parameters are chosen as in the corresponding mass
analysis. Numerical computations yield

g ¼ ð1.06� 0.27Þ GeV−1 ð39Þ
and

g0 ¼ ð0.52� 0.13Þ GeV−1: ð40Þ

The partial widths of the processes Xð0Þ
0 → D−Kþ can be

found by means of the expression

Γ½Xð0Þ
0 → D−Kþ� ¼ gð0Þ2m2

Dλ
ð0Þ

8π

�
1þ λð0Þ2

m2
D

�
; ð41Þ

where λð0Þ ¼ λðmð0Þ; mD;mKÞ and

λða; b; cÞ ¼ 1

2a
½a4 þ b4 þ c4−2ða2b2 þ a2c2 þ b2c2Þ�1=2:

ð42Þ
Now it is easy to get

Γ½X0 → D−Kþ� ¼ ð64.7� 23.3Þ MeV;

Γ½X0
0 → D−Kþ� ¼ ð53.3� 18.8Þ MeV: ð43Þ

The partial widths of the decays X0 → D̄0K0 and X0
0 →

D̄0K0 also contribute to the full widths of the tetraquarks
X0 and X0

0. Investigation of these channels is performed in
accordance with the scheme described above, therefore we
write down only the final results. For the strong couplings
G and G0 corresponding to the vertices X0D̄0K0 and
X0
0D̄

0K0, we find

G ¼ ð1.14� 0.18Þ GeV−1 ð44Þ

and

G0 ¼ ð0.54� 0.11Þ GeV−1: ð45Þ
For the partial widths of these decays, we get

Γ½X0 → D̄0K0� ¼ ð74.8� 16.7Þ MeV;

Γ½X0
0 → D̄0K0� ¼ ð56.3� 16.2Þ MeV: ð46Þ

TABLE II. Masses and decay constants of the D and K mesons
required for numerical computations.

Quantity Value (in MeV)

mD 1869.65� 0.05
mD0 1864.83� 0.05
mK 493.677� 0.016
mK0 497.611� 0.013
fD ¼ fD0 212.6� 0.7
fK ¼ fK0 155.7� 0.3
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Then, the full widths of the particles X0 and X0
0 are

Γ0 ¼ ð140� 29Þ MeV;

Γ0
0 ¼ ð110� 25Þ MeV; ð47Þ

respectively.
As is seen, the parameters of the tetraquarks X0 and X0

0

differ considerably from the mass and width of the
resonance X0ð2900Þmeasured by the LHCb Collaboration.

IV. DISCUSSION AND CONCLUSIONS

In the present paper, we examined the tetraquark X0 and
its radial excitation X0

0 by calculating their masses and
widths. The masses of X0 and X0

0 were computed using the
axial-axial and scalar-scalar type interpolating currents JðsÞ
and JSðxÞ. The widths of these particles were estimated for
the axial-axial structure.
The diquark-antidiquark state X0 consists of four quarks of

different flavors,X0 ¼ ½ud�½c̄ s̄�. Theproperties of theground-
state scalar tetraquark with similar content Xc ¼ ½su�½c̄ d̄�
were investigated in Refs. [29,30]. The mass of Xc found in
Ref. [29] using axial-axial and scalar-scalar structures is

mXc
¼ ð2590� 60Þ MeV; ΓXc

¼ ð63.4� 14.2Þ MeV;

ð48Þ
and

m̃Xc
¼ ð2634� 62Þ MeV; Γ̃Xc

¼ ð57.7� 11.6Þ MeV;

ð49Þ
respectively. The prediction

mXc
¼ ð2550� 90Þ MeV ð50Þ

for the mass of the state Xc was also made in Ref. [30]. It is
worth emphasizing that all of these results were extracted
using theQCDtwo-point sumrulemethod, andpredictions for
themass ofXc fromRefs. [29,30] are almost the same. It is also
evident thatm andmS in Eq. (19) and Table I are comparable
with predictions for mXc

and m̃Xc
within uncertainties of

computations. Stated differently, the masses of the ground-
state tetraquarks with different internal organizations, but
composed of c, s, u, d quarks, vary approximately in the
range 2550–2660 MeV.
The parameters of the tetraquark ½cs�½ū d̄� in the context

of the sum rule approach were also recently calculated in

Ref. [5]. There, the mass of this particle with either scalar-
scalar (SS) or axial-axial (AA) structure was found to be

MSS ¼ ð3050� 100ÞMeV; MAA ¼ ð2910� 120ÞMeV:

ð51Þ

Because MAA is compatible with the LHCb data, the
resonance X0ð2900Þ was interpreted there as a ground-state
tetraquark ½cs�½ū d̄�. The results of that work differ consid-
erably from our findings, as well as from predictionsmade in
Ref. [30]. TheX0ð2900Þwas considered as a radially excited
state X̃cð2SÞ, with X̃c being the tetraquark ½ud�½c̄ s̄� [6]. The
mass of X̃cð2SÞ was estimated in Ref. [6] around of
2860 MeV, which is lower than our results for X0

0 and X0
S.

Analysis performed in thepresentwork, demonstrates that

tetraquarks Xð0Þ
0 and Xð0Þ

S built of the axial-vector and scalar
diquarks (antidiquarks), are states that differ from the
resonance X0ð2900Þ observed by the LHCb Collaboration.
Therefore, the parameters calculated in the present work are

all themore important in searches for the tetraquarksXð0Þ
0 and

Xð0Þ
S in various processes. The masses of the states Xð0Þ

0 and

Xð0Þ
S have been extracted with high enough accuracy.

Although mð0Þ and mð0Þ
S contain uncertainties that are typical

for all sum-rule computations, they provide valuable infor-
mation on these exotic mesons. We also evaluated the full
widths of the tetraquarks X0 and X0

0 by considering their
decays to pairs of conventional mesons D−Kþ and D̄0K0.
For the particlesX0 andX0

0, these two processes are their only
S-wave decay channels. Other possible modes of the tetra-

quarks Xð0Þ
0 , such as S-wave decays Xð0Þ

0 → D̄�
0ð2400Þ0 ×

K�ð1430Þ, are kinematically forbidden processes. Hence,

estimates for the full widths Γð0Þ
0 of the four-quarkmesonsX0

and X0
0 are rather credible.

Our results imply that X0ð2900Þ cannot be identified with
a ground-state or radially excited scalar tetraquark ½ud�½c̄ s̄�.
It seems interpretation of the resonance X0ð2900Þ as had-
ronic molecules D̄�0K�0 and D�−K�þ, or their admixture is
correct and overcomes successfully present examination.

APPENDIX: QUARK PROPAGATORS AND
INVARIANT AMPLITUDE ΠðM2;s0Þ

In the current article, for the light-quark propagator
Sabq ðxÞ we employ the following expression:

Sabq ðxÞ ¼ iδab
=x

2π2x4
− δab

mq

4π2x2
− δab

hq̄qi
12

þ iδab
=xmqhq̄qi

48
− δab

x2

192
hq̄gsσGqi

þ iδab
x2=xmq

1152
hq̄gsσGqi − i

gsG
αβ
ab

32π2x2
½=xσαβ þ σαβ=x� − iδab

x2=xg2shq̄qi2
7776

− δab
x4hq̄qihg2sG2i

27648
þ � � � : ðA1Þ

For the heavy quark Q ¼ c, we use the propagator SabQ ðxÞ,
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SabQ ðxÞ ¼ i
Z

d4k
ð2πÞ4 e

−ikx
	
δabð=kþmQÞ
k2 −m2

Q
−
gsG

αβ
ab

4

σαβð=kþmQÞ þ ð=kþmQÞσαβ
ðk2 −m2

QÞ2

þ g2sG2

12
δabmQ

k2 þmQ=k

ðk2 −m2
QÞ4

þ g3sG3

48
δab

ð=kþmQÞ
ðk2 −m2

QÞ6
½=kðk2 − 3m2

QÞ þ 2mQð2k2 −m2
QÞ�ð=kþmQÞ þ � � �



: ðA2Þ

Here, we have used the shorthand notation

Gαβ
ab ≡Gαβ

A λAab=2; G2 ¼ GA
αβG

αβ
A ; G3 ¼ fABCGA

αβG
BβδGCα

δ ; ðA3Þ

where Gαβ
A is the gluon field-strength tensor, and λA and fABC are the Gell-Mann matrices and structure constants of the

color group SUcð3Þ, respectively. The indices A, B, C run in the range 1; 2;…8.
The invariant amplitude ΠðM2; s0Þ, obtained using the interpolating current JðxÞ from Eq. (3), after the Borel

transformation and subtraction procedures is given by the expression

ΠðM2; s0Þ ¼
Z

s0

M2

dsρOPEðsÞe−s=M2 þ ΠðM2Þ;

where the spectral density ρOPEðsÞ and the function ΠðM2Þ are determined by the formulas

ρOPEðsÞ ¼ ρpertðsÞ þ
X8
N¼3

ρDimNðsÞ; ΠðM2Þ ¼
X15
N¼6

ΠDimNðM2Þ; ðA4Þ

respectively. The components of ρOPEðsÞ and ΠðM2Þ are given by the expressions

ρDimNðsÞ ¼
Z

1

0

dαρDimNðs; αÞ; ΠDimNðM2Þ ¼
Z

1

0

dαΠDimNðM2; αÞ: ðA5Þ

In Eq. (A5) the variable α is the Feynman parameter.
The perturbative and nonperturbative components of the spectral density ρpertðs; αÞ and ρDim3ð4;5;6;7;8Þðs; αÞ are given by

the following expressions:

ρpertðs; αÞ ¼ ½m2
c − sð1 − αÞ�3α3ΘðLÞ
1536π6ðα − 1Þ3 ½4mcms þm2

cαþ 3sαð1 − αÞ�; ðA6Þ

ρDim3ðs;αÞ ¼ −
hs̄siΘðLÞ

36π2ðα − 1Þ2 α
2½m2

c − sð1 − αÞ�½m3
c þ 2m2

cmsðα − 1Þ þmcsðα − 1Þ þ 4mssðα − 1Þ2�; ðA7Þ

ρDim4ðs; αÞ ¼ −
hαsG2=πiΘðLÞ
9 · 29π4ðα − 1Þ3 α

2½6s2ðα − 1Þ3ð5α − 6Þ þm3
cmsð−9þ 9α − 8α2Þ þm4

cð18 − 33α

þ19α2Þ þmcmssð9 − 22αþ 25α2 − 12α3Þ þ 3m2
csð−18þ 51α − 50α2 þ 17α3Þ�; ðA8Þ

ρDim5ðs;αÞ ¼ hs̄gsσGsiΘðLÞ
96π4ðα − 1Þ α½3m3

c þ 4m2
cmsðα − 1Þ þ 3mcsðα − 1Þ þ 6smsðα − 1Þ2�; ðA9Þ

ρDim6ðM2; αÞ ¼ −
ΘðLÞ

405 · 29π6ðα − 1Þ3 f27hg
3
sG3im2

cα
5 þ 34560hd̄dihūuiπ4ðα − 1Þ3½−2mcms þ 2m2

cα

þ3sαðα − 1Þ� þ 320g2shd̄di2π2ðα − 1Þ3½−mcms þ 4m2
cαþ 6sαðα − 1Þ� þ 320g2sπ2ðα − 1Þ3

× ½−mcmshūui2 þ ðhs̄si2 þ hūui2Þð4m2
cαþ 6sαðα − 1ÞÞ�g; ðA10Þ

ρDim7ðM2; αÞ ¼ hαsG2=πihs̄siΘðLÞ
288π2ðα − 1Þ2 ½3msαðα − 1Þ2 þmcð2 − 7αþ 5α2 − 2α3Þ�; ðA11Þ
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ρDim8ðM2; αÞ ¼ hαsG2=πi2αþ 96hd̄gsσGdihūuiðα − 1Þ
1152π2

ΘðLÞ: ðA12Þ

The components of the function ΠðM2Þ are

ΠDim6ðM2; αÞ ¼ −
hg3sG3im3

cα
3

45 · 210M2π6ðα − 1Þ5 exp
�
−

m2
c

M2ð1 − αÞ
�
½m3

cαð2þ αÞ þ 4m2
cmsð2α − 1Þ − 8msM2ðα2 − 1Þ

−mcM2αðα2 þ α − 2Þ�; ðA13Þ

ΠDim7ðM2; αÞ ¼ hαsG2=πihs̄sim2
cα

2

288M2π2ðα − 1Þ3 exp

�
−

m2
c

M2ð1 − αÞ
�
½m2

cms þ ðmc −msÞM2ðα − 1Þ�; ðA14Þ

ΠDim8
1 ðM2; αÞ ¼ hαsG2=πi2mcα

9 · 29M2π2ðα − 1Þ3 exp
�
−

m2
c

M2ð1 − αÞ
�
½2m2

cmsðα − 1Þ þm3
cα −mcM2αðα − 1Þ

−2msM2ðα2 − 1Þ�; ðA15Þ

ΠDim8
2 ðM2Þ ¼ hd̄gsσGdihūuimcms

12π2
exp

�
−
m2

c

M2

�
; ðA16Þ

ΠDim9
1 ðM2; αÞ ¼ −

1

135 · 27M6π4ðα − 1Þ5 exp
�
−

m2
c

M2ð1 − αÞ
�
f3hg3sG3ihs̄sim3

cα
2½m2

cM2ð2 − 4αÞ þ 8M4ðα − 1Þ

þm3
cmsð2þ αÞ� þ 5hαsG2=πihs̄gsσGsiM2π2ðα − 1Þ2½−3m2

cmsM2ðα − 1Þ2 þ 3msM4ðα − 1Þ3 þ 4m4
cmsα

þ6m3
cM2αðα − 1Þ þ 3mcM4ð3 − 4αþ 3α2 − 2α3Þ�g; ðA17Þ

ΠDim9
2 ðM2Þ ¼ hs̄si

486M2π2
exp

�
−
m2

c

M2

�
fg2s ½hd̄di2 þ hūui2�½m2

cms þ ðmc −msÞM2� þ 54hūuihd̄diπ2

× ½4mcM2 þmsðm2
c −M2Þ�g; ðA18Þ

ΠDim10
1 ðM2; αÞ ¼ g2shαsG2=πi

729 · 26M4π2ðα − 1Þ3 exp
�
−

m2
c

M2ð1 − αÞ
�
f−4hūui2m3

cmsðα − 1Þ þ 8hūui2mcmsM2ðα − 1Þ

þ ½2hs̄si2 þ hūui2�½−3m2
cM2ðα − 1Þ2 þ 3M4ðα − 1Þ3� þ 8m4

cα½hs̄si2 þ hūui2� þ hd̄di2½−4m3
cmsðα − 1Þ

þ8mcmsM2ðα − 1Þ − 3m2
cM2ðα − 1Þ2 þ 3M4ðα − 1Þ3 þ 8m4

cα�g; ðA19Þ

ΠDim10
2 ðM2Þ ¼ 1

243 · 26M4π2
exp

�
−
m2

c

M2

�
f162hūgsσGuihd̄gsσGdið2m3

cms þm2
cM2 −M4Þ

þhαsG2=πi½g2sðhd̄di2 þ hūui2ÞM2ðm2
c þmcms −M2Þ þ 144π2hūuihd̄dið2m3

cms þm2
cM2 −M4Þ�g; ðA20Þ

and

ΠDim11
1 ðM2; αÞ ¼ −

mc

405 · 28M8π4ðα − 1Þ5 exp
�
−

m2
c

M2ð1 − αÞ
�
f−20hαsG2=πi2hs̄siðm2

c − 2M2ÞM4π4ðα − 1Þ3

þ 3hg3sG3ihs̄gsσGsimcα½2m4
cmsð2þ αÞ þ 6m3

cM2ð2α − 1Þ − 3msM4ðα − 1Þ2ð5α − 7Þ
þ 12mcM4ð3 − 4αþ α2Þ − 3m2

cmsM2ð1 − 4αþ 3α2Þ�g; ðA21Þ
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ΠDim11
2 ðM2Þ ¼ −

mc

729 · 27M6π2
exp

�
−
m2

c

M2

�
f16g2shs̄gsσGsi½hd̄di2 þ hūui2�mcð2m2

cms þ 3mcM2 þ 6msM2Þ

þ27hαsG2=πi2hs̄siM4π2 þ 3456hs̄gsσGsihd̄dihūuiπ2mcð2m2
cms þ 9mcM2 þ 6msM2Þg: ðA22Þ

In the above expressions, ΘðzÞ is the Unit Step function. We have also used the following shorthand notation:

L≡ Lðs; αÞ ¼ sαð1 − αÞ −m2
cα: ðA23Þ
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