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Is the resonance X(2900) a ground-state or radially excited
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We investigate properties of the ground-state and first radially excited four-quark mesons X, and X{, with
a diquark-antidiquark structure [ud][¢ 5] and spin-parities J¥ = 0. Our aim is to reveal whether or not one
of these states can be identified with the resonance X,(2900), recently discovered by the LHCb
Collaboration. We model X, and X{, as tetraquarks composed of either axial-vector or scalar diquark
and antidiquark pairs. Their spectroscopic parameters are computed by employing the QCD two-point sum
rule method and including vacuum condensates up to dimension 15 in the analysis. For an axial-axial

structure of Xg), we find partial widths of the decays Xg> — D K* and Xg) — DYKY, and estimate full

widths of the states X(()/). To this end, we calculate the strong couplings at the vertices Xg)DK in the
framework of the light-cone sum rule method. We also use technical approaches of the soft-meson
approximation necessary to analyze tetraquark-meson-meson vertices. We obtain m = (2545 + 160) MeV
and m’ = (3320 + 120) MeV [mg = (2663 & 110) MeV and mg = (3325 & 85) MeV for a scalar-scalar
current] for the masses of the particles X, and X, as well as estimates for their full widths 'y =
(140 £29) MeV and I, = (110 + 25) MeV, which allow us to interpret that neither is the resonance
X((2900). At the same time, these predictions provide important information about the ground-state and
radially excited diquark-antidiquark structures X, and X},, which should be objects of future experimental

and theoretical studies.

DOI: 10.1103/PhysRevD.106.014019

I. INTRODUCTION

One of the most important recent achievements in the
physics of multiquark hadrons is the observation of the
structures X((2900) and X, (2900) by the LHCb Collabo-
ration. These resonance-like peaks were discovered in the
invariant mass distribution D~K* of the decay channel
BT — D*D~K* [1,2]. The LHCb measured the masses
and widths of these structures and fixed their spin-parities. It
turned out that X,(2900) and X, (2900) are scalar and vector
resonances with quantum numbers J* = 0% and J* = 1-,
respectively.
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The appearance of the mesons D~ and K in the final
state of their decays implies that X,(2900) and X, (2900)
are composed of the quarks ¢ 5 ud, and may be considered
as particles containing four quarks of different flavors. In
other words, X((2900) and X;(2900) presumably consti-
tute new evidence for exotic mesons with full open-flavor
structures. This is an important fact, because the existence
of the resonance X (5568)—presumably built from sdb i
quarks and considered as a first candidate for a fully open-
flavor four-quark state [3]—was not confirmed by other
collaborations. Of course, this analysis is correct in the
context of the four-quark model of X,(2900) and
X1(2900), because there are theoretical analyses that claim
to explain the LHCb data using hadronic rescattering
effects. The LHCb Collaboration also did not exclude such
an interpretation of the observed structures.

New experimental information triggered intensive theo-
retical activities aimed at revealing the internal organization
of these resonances, calculating their parameters, and
studying the processes in which X;(2900) and X,(2900)
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can be produced [4-26]. In an overwhelming majority of
investigations the resonances X,(2900) and X (2900) were
modeled as diquark-antidiquark states or hadronic molecules.
In fact, the resonance X,(2900) was explored as a scalar
tetraquark [sc|[i d] in Refs. [4,5] using a phenomenological
model and the sum rule method, respectively. The predictions
for the mass [(2863 + 12) and (2910 £ 120) MeV] obtained
in these papers allowed the authors to interpret X,(2900) as
the ground-state scalar tetraquark [sc|[izd]. An interesting
assumption about the nature of X,(2900) was made in
Ref. [6], where it was studied as a radially excited state
[ud][c5]. In Refs. [7-10] the resonance X,(2900) was
examined as the S-wave molecule D*~K**. The tetraquark
and molecular models were used for the resonance X (2900),
as well [6,7,11]. But two resonance-like peaks in the D™ K"
mass distribution may have a different nature and emerge due
to triangle singularities in the rescattering diagrams
xaD*"K* and D;DYK° [12].

In Ref. [27], we investigated X(2900) as the molecule
D*K*0 and evaluated its spectroscopic parameters and width.
Comparing our results for the mass [(2868 + 198) MeV]
and width [(49.6 4 9.3) MeV] of D*°K*° with the corre-
sponding LHCb data [m = (2866 +7 +2) MeV and
I'=(57+ 12 +4) MeV], we decided that a molecular
model is acceptable for the resonance X(2900).

The vector resonance X;(2900) was considered in the
context of the diquark-antidiquark model in our article [28].
We studied it as a vector tetraquark composed of a diquark
u’Cysd and an antidiquark ¢y,ysCs’, and computed
relevant parameters. Though the predictions for the mass
[(2890 £ 122) MeV] and width [(93 & 13) MeV] of this
tetraquark are smaller than the relevant LHCb data, we
interpreted it as the resonance X;(2900) by keeping in
mind that theoretical and experimental investigations suffer
from certain errors.

Over the last few years, diquark-antidiquark states
containing four quarks/antiquarks (c, s, u, and d) in
different configurations have been a subject of investiga-
tion. Thus, a scalar tetraquark X, = [su][¢ d] was consid-
ered in our article [29], where it was modeled as an exotic
meson made of scalar-scalar and axial-axial diquarks
with Cys ® ysC and Cy, ® y*C type interpolating cur-
rents, respectively. The mass of X, found using these two
structures was (2634 + 62) and (2590 £ 60) MeV, respec-
tively. The result (2.55 £+ 0.09) GeV for the mass of X,
was also obtained in Ref. [30].

Though X, and X, = [ud][c 5] have similar content,
there are two differences between them: X, consists of a
relatively heavy diquark [su] and heavy antidiquark [¢ d],
whereas X, has a light diquark [ud] and heavy antidiquark
[¢ 5]. The second difference is the decay channels of these
particles. While the dominant decay mode of X, is
X, — Dyz", in the case of X, we have X, —» DK™,
Nevertheless, as we shall see below, the masses and widths
of X and X_. are similar mainly due to their quark contents.

In the current work, we explore the scalar tetraquark
Xo = [ud][c 5] in a detail. Thus, we compute the masses of
the ground-state 1§ and radially excited 2§ tetraquarks X,
and X{, using the QCD two-point sum rule method, and
two interpolating currents. The widths of X, and X{, are
calculated in the framework of the light-cone sum rules
(LCSR) method. This is necessary to find the strong

couplings at the vertices X\'D~K* and X{' DK, which
determine the partial widths of the decay channels X(()/) —

D™K* and X(()/) — DYK". Because aforementioned strong
couplings correspond to tetraquark-meson-meson type
vertices, the LCSR method should be applied alongside
technical tools of the soft-meson approximation.

This work is organized as follows. In Sec. II we calculate
the masses and couplings of the ground-state and radially
excited tetraquarks X(()'). To this end, we use both the scalar-
scalar and axial-axial type interpolating currents. The sum
rule computations are carried out by including effects of
vacuum condensates up to dimension 15. In Sec. III we

compute the strong couplings ¢} and G") that describe the
strong interaction of particles at the vertices X((]/)D‘K *and
Xg)l_)OKO. Here, we also evaluate the partial widths of the

decays X! » DK and X' - D'K®, and find the full

widths of the tetraquarks X(()/). Section IV is devoted to

discussions and conclusions.

II. MASS AND CURRENT COUPLING OF 18§
AND 2S TETRAQUARKS X, AND X|,

The masses and current couplings are important param-
eters of the tetraquarks X, and X{. The masses of these
states are necessary to compare them with the LHCb data
and fix whether one of these particles may be interpreted as
the resonance X((2900). The current couplings of X, and
X{, in conjunction with their masses are required to

calculate the partial widths of the decay channels X(()/) -

D~K* and Xg) — DYKO, and hence to evaluate the full
widths of these tetraquarks.

We compute the masses and couplings of X, and X{, in
the framework of the QCD two-point sum rule method,
which is one of the most effective nonperturbative
approaches in high-energy physics [31,32]. It rests on
fundamental principles of QCD and leads to reliable
predictions, using as input parameters only a few universal
vacuum condensates. Remarkably, sum rules derived by
means of this method are applicable to investigating both
ordinary and multiquark hadrons [33-36].

We start our study by considering the following two-
point correlation function:

(p) = i/d4xei"x<0|7{f(X)J+(0)}|0>, (1)
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where 7 is the time-ordered product, and J(x) is the
interpolating current for the tetraquarks X, and Xj,.
In general, the tetraquarks X, and X{, with the required
quantum numbers J* = 0T can be built from different
diquarks: either a scalar diquark and antidiquark pair
u” Cysd and ¢ysCs", or an axial-vector diquark u”Cy,d
and axial-vector antidiquark ¢y*Cs”, where C is the charge-
conjugation matrix. Interpolating currents that correspond
to these structures have the following forms:

Js(x) = €€luj, (x)Cysd. (x)][Ca(x)rsC5e (x)].  (2)

and

J(x) = €&[uy (x)Cy,d.(x)][ca(x)r"C5e ()], (3)

where €€ = €,,,.€,4., and a, b, ¢, d, and e are color indices.
In Egs. (2) and (3), c¢(x), s(x), u(x), and d(x) are
corresponding quark fields. In what follows, we consider
in a detailed manner the interpolating current J(x), and
provide only final results obtained while employing J(x).

To derive required sum rules, the correlation function
II(p) has to be expressed in terms of the X, and Xj,
tetraquarks’ physical parameters. The function TTP"S(p)
obtained after relevant manipulations constitutes the physi-
cal (phenomenological) side of the sum rules. We analyze
ground-state and first radially excited particles, and there-
fore include contributions of these states to the correlation
function explicitly. As a result, we obtain

0[J1Xo) (Xo|J710)  (01J|X5)(X5|/7]0)
[1Phys - { 0/\ 70 .
(p) m2— p? + m'? — p?

(4)

where m and m’ are the masses of the tetraquarks X, and
Xp. Equation (4) is derived by saturating the correlation
function I1(p) with a full set of scalar four-quark states and
performing an integration over x in Eq. (1). The dots in
Eq. (4) stand for effects of higher resonances and con-
tinuum states in the X channel.

Equation (4) contains two simple-pole terms, which in the
case of multiquark hadrons have to be used with some caution.
The reason is that the physical side may also contain two-
meson reducible contributions. Indeed, the current J(x) not
only couples to the tetraquarks X, and X, but also interacts
with conventional two-meson states [37,38]. These two-
meson contributions modify the quark propagator in Eq. (4),

1 1
2 7 . )
m-=p°  m?—p*—iy/p’I'(p)

where I'(p) is the finite width of the tetraquark generated by
two-meson effects. They should be subtracted from the sum
rules, or taken into account in the parameters of the pole terms.
For tetraquarks, the second method was applied Refs. [39—41]

(5)

and it was demonstrated that these contributions can be
absorbed into the current coupling, while at the same time
ensuring that the mass of the tetraquark is stable. Detailed
analyses proved that two-meson effects are small, and do not
exceed theoretical errors of the sum rule method itself [38—41].
Therefore, the physical side of the sum rules is written down
above by applying the zero-width single-pole approximation.
Using the matrix elements

011Xy = fOm0, (6)

it is possible to simplify the function TT?™s(p). Simple
operations for IT""$(p) lead to the expression

f2m2

2

HPhys(p) — 5
m-—=p- m-—=p

The function TT?™5(p) has a simple Lorentz structure ~/
and, depending on the problem under consideration, one or
a sum of two terms may form the corresponding invariant
amplitude TIPS (p?).

The second component of the sum rules TT°PE(p) should
be computed in the operator product expansion (OPE) with
a certain accuracy. It can be found by employing the
expression for the interpolating current J(x), and replacing
contracted quark fields with relevant propagators. After
these operations, for TT°PE(p) we obtain

MOPE(p) = i/d4xei”x€€‘€’é’Tr[S§/e(—x)y”
xS¢4(=x)y! | Te[SE (x)7, 55 (X)), (8)
where

Sc(q) ()C) = CSZ

@ (x)C. (9)

Here, S.(x) and S, (x) are the heavy c- and light ¢ = u(s, d)-
quark propagators, respectively. Their explicit expressions
are collected in the Appendix. The correlation function
[I°PE(p) also has a trivial Lorentz structure proportional
to /. We denote the invariant amplitude corresponding to this
structure by TTOPE(p?).

The correlation function ITP"$(p) corresponds to the
“ground-state+excited particle+continuum” scheme, and
encompasses contributions of two particles. As the first
step of our analysis, we employ the familiar “ground-state
+continuum” scheme, and find the mass and coupling of
the ground-state tetraquark X,. This means that we include
the second term in ITP"$(p) in a list of “higher resonances
and continuum states,” and get the standard expression for
the correlation function. Operations which are necessary to
derive sum rule for m and f are well- known and discussed
repeatedly in the literature. Therefore, we skip further
details and provide final formulas:
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,  IT(M?,s)
T TM, 5) (10)

and

m?/M? 2
fzze H(ZM,SO)’ (10
m
where M? and s, are the Borel and continuum threshold
parameters, respectively. Here, [TI(M?, s) is the Borel trans-
formed and subtracted invariant amplitude TIOPE(p?),
and IT' (M2, sy) = dI1(M?, s0)/d(—=1/M?).

At this stage, one should fix the working windows for the
parameters M? and sy, which are auxiliary quantities of
sum rule computations and should obey some important
restrictions. These restrictions are connected with domi-
nance of the pole contribution (PC) to the correlation
function IT1(M?, 5,)), with convergence of OPE and stability
of physical quantities against variations of the Borel
parameter. Fulfillment of aforementioned constraints can
be fixed using the following expressions

~ TI(M?, 50)
e .
and
RO2) = O 50). (13)

H(Mz, S())

and numerical limits on PC, R(M?), as well as fixing
acceptable variations of m and f. In Eq. (13) ITP™N(M2 5,)
is the last term or the sum of the last
few terms in the correlation function. In the present
paper, we employ the last three terms in the OPE, and
hence TIPMN (M2, 50) = [IPM(I3+14+15) (M2 0.

Having fixed the working regions for M? and s,, one
can extract the mass and coupling of the 1§ tetraquark X,.
The quantities m and f, strictly speaking, should not depend
on the Borel parameter. But real calculations demonstrate
that working regions for M? and s, have an impact on
extracted parameters and generate uncertainties, which
nevertheless should be kept within acceptable limits. On
the contrary, the continuum threshold parameter s, bears
physical information about the mass of the excited tetraquark
X In fact, the parameter s, separates the contribution of the
ground-state particle from those due to higher resonances
and continuum states. This means that the masses of X, and X{,
must obey the restrictions m < \/% <m.

After calculating the mass and coupling of X, we can
find the parameters of the excited state X{,. For this purpose,
we treat m and f as input parameters and look for new
working regions for M? and sj, which not only have to
satisfy Eqs. (12) and (13), but also have to obey s; > s.
The necessity of the last constraint is evident, because in the

“ground-state+excited particle+continuum” scheme the
parameter s; separates two states from remaining higher
resonances. The mass of the X|, extracted from the new sum
rule is bounded by the conditions /sy < m' < \/Eﬁ. The
regions for M? and sp, and extracted mass m’ should
comply with these regulations, then performed analysis can
be considered as being selfconsistent and giving reliable
predictions.
The sum rules for m’ and f’ obviously differ from those
for m and f. For the mass m’ we derive the expression
» H/(Mz, SZ;) _f2’,n4e—m2/M2
m= = YR (14)
H(Mz, S8> _f2m2e—m /M

whereas for ' we get

e’ IM? [H(MZ, SS) _ f2m2€_m2/M2]

m/2

f/Z _

(15)

It is evident that the parameters m’ and f’ of the excited
particle X{, depend explicitly on the mass and current
coupling of the ground-state tetraquark X,. Such a depend-
ence is natural, because Eq. (7) contains two terms, and m
and f appear as inputs when calculating m’ and f’. In turn,
the excited state X, also affects the mass m and coupling f
of the ground-state particle, but its effect is implicit and
encoded in the choice of the continuum threshold param-
eter 5. In fact, the parameters m and f extracted from the
sum rules depend on the correlation function IT(M?, s¢) at
s9, which is limited by the mass m’ of the excited state
V/So < m'. Because the two sets (m, f) and (m', f') are
determined by the same correlation function at different s,
and s}, one may consider the difference of TI(M?2, 5,) at s
and s; as a “measure” of this effect.

The correlation function TI(M?,sy) has the following
form:

M s0) = [ dsp™(5)e=/ 4 1I0P). (16
MZ

where M = m, + my. In this work, we neglect the masses
of the quarks u and d and terms ~m?, but take into account
the contributions from m;. The spectral density p°PE(s) is
calculated as an imaginary part of the correlator ITOPE(p).
The function I1(M?) is the Borel transformation of terms
in TI°PE(p) derived directly from their expressions. Com-
putations are performed by taking into account vacuum
condensates until dimension 15. In the Appendix, for the
sake of brevity, we provide analytical expressions for
pOPE(s) and TT1(M?) up to dimension 11.

Our analytical results contain nonperturbative terms up to
dimension 15, which makes it necessary to explain the
treatment of higher-dimensional vacuum condensates. The
propagator S, (x) contains various quark, gluon, and mixed
condensates of different dimensions, and terms proportional
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4.0""v""v""v""
3.5} 1
S
]
e
E ol 50=10.0 GeV? ]
..... 5=9.5 GeV?
1.5} ) 1
mmemmmn 5,=9.0 GeV
1.0 L L L
2.0 2.5 3.0 3.5 4.0
M?(GeV?)
FIG. 1.

to g?G* and g2 G are taken into accountin S, (x). Some of the
terms in the propagator S, (x), such as those proportional to
(49,6Gq). (q9)%. and (gq)(53G?). arc obtained using
the factorization hypothesis of higher-dimensional conden-
sates. These terms and their products with condensates from
other light quark propagators, as well as with relevant
components of S.(x), enter into p°PE(s) and IT(M?). We
carry out computations by taking into account all contribu-
tions up to dimension 15 obtained in this way, but the
factorization of higher-dimensional condensates is not pre-
cise and generates uncertainties [42], which are sometimes
difficult to estimate. Because contributions of higher-
dimensional terms are numerically very small, we neglect
the impact of such uncertainties on extracted quantities.
The sum rules for m) and f") contain universal quark,
gluon, and mixed vacuum condensates, which we list below:

) = —(0.24£0.01)° GeV?, (55) = (0.8 +0.1)(gq),

(qq

(29,06Gq) = m§(qq).

m3 = (0.8 £ 0.2) GeV>
a

(39,0Gs) = mj(5s).

> = (0.012 £ 0.004) GeV*,

T
my =937 MeV, m,=1.27+0.2 GeV. (17)
5.0 . . .
s5=13.0 GeV?
45
----- sp=12.5 GeV?
__ 4.0 . )
s emmmmeen $5=12.0 GeV
Qo
€
2.5
200 . .
2.5 3.0 3.5 4.0 45
M?(GeV?)

4.0 : : : :
3.5}F 1
__3.0¢ ]
2 —
o 2 5Fmmrmmmmm e e e e e e e
— M?=4.0 GeV?
E ool 3
----- M?=3.0 GeV?
1.5[ ) 5 3
anmmmmmn M“=2.0 GeV'
1.0 ‘ ‘ ‘ ‘
9.0 9.2 9.4 9.6 9.8 10.0
so(GeV?)

Mass m of the tetraquark X, as a function of the Borel parameter M> (left) and as a function of s, (right).

The masses of ¢ and s quarks are also included in Eq. (17).
We begin from analysis of the ground-state tetraquark
Xy, and fix regions M? and s,, where paremeters of Xcan
be extracted. To determine the region for M2, we require
fulfillment of the condition PC > 0.2 at maximal value of
M2, and convergence of OPE at its minimum, i.e.,
R(M2,) <0.01. Our calculations demonstrate that the
working regions
M? € [2,4] GeV?, 5o €19,10] GeV?  (18)
satisfy the aforementioned restrictions. Thus, at M2, =
4 GeV? the pole contribution is equal to 0.23, whereas at

M2, =2 GeV? itis equal to 0.7. At M2, =2 GeV?, we
get R(M2. ) < 0.01, and hence the convergence of the sum

rules is ensured. The mean values of m and f averaged over
the regions (18) read

m = (2545 + 160) MeV,

f=(3.0£0.5) x 1073 GeV*. (19)

The uncertainties of the results in Eq. (19) are within
acceptable limits: for the mass and coupling they form
4+6.3% and 4+16.7% of the corresponding central values,
respectively. Theoretical uncertainties of m are smaller,

5.0 : : : :
— M?=4.5 GeV?
45} 3
..... M?=3.5 GeV?
__ 4.0} ) ) 3
% wmnmmmnn V<=2.5 GeV
O 35 1
E 30 ]
251 1
2_0 T S S S S S S E S S
12.0 12.2 12.4 12.6 12.8 13.0
s5(GeV?)

FIG. 2. The same as in Fig. 1, but for the mass m’ of the excited tetraquark X,.
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TABLE I. Mass and current coupling of the tetraquarks Xg and
X, and the regions for the parameters M? and s used to calculate
them.

Tetraquarks Xg X5

M? (GeV?) 2-4 2545
so(sg) (GeV?) 9-10 12-13
mg (MeV) 2663 £ 110 3325 £85
fs - 10° (GeV*) 22+£03 27+04

because the relevant sum rule (10) is given as a ratio of
correlation functions, whereas f is determined by the
expression with the correlation function in the numerator
of Eq. (11). In Fig. 1, we depict the sum rule’s predictions
for m as functions of M? and s, in which one can see the
dependence of m on the Borel and continuum threshold
parameters.

To find the parameters of the first radially excited
tetraquark X{), we start our analysis from Eqs. (14) and
(15) and explore regions of M? and s, bearing in mind that
sy > So. It is not difficult to see that the working windows

M? € [2.5,4.5] GeV?,  s5€[12,13] GeV?  (20)
4.0 —
3.5} ]
s 1

4]
o ]
g 00l $0=10.0 GeV? ]
----- $=9.5 GeV? ]
1.5} ) 1
EEmEEa SO=9-0 GeV 1
10 L L L |

2.0 2.5 3.0 3.5 4.0
M?(GeV?)
FIG. 3.

fixed Borel parameter (right).

5.0 , , ,
55=13.0 GeV?
4.5} ]
----- sp=12.5 GeV?
— 4.0f ) ) ]
% mmmmmmnn 55=12.0 GeV
© 35 ]
. » mmmmm
E 30f ]
2.5} ]
X1 | ‘
2.5 3.0 3.5 4.0 4.5
M?(GeV?)

obey the necessary constraints. In these regions the pole
contribution to IT1(M?, s;)) changes inside of the interval

0.75 > PC > 0.34. (1)

The mass and coupling of the radially excited tetraquark are

m' = (3320 + 120) MeV,

f'=(3.740.6) x 1073 GeV*, (22)
respectively. The dependence of m’ on the parameters M?
and s; is shown on Fig. 2. Comparing Figs. 1 and 2, one
can see that theoretical ambiguities for the mass of the
tetraquark X{, are smaller than those for m.

With these final predictions in hand, one can check
correctness of performed analysis. Thus, using mean values
of the parameters \/ﬁ = 3.54 GeV and /s, = 3.08 GeV
it is easy to be convinced that all regulations discussed
above are correct.

The mass and coupling of the ground-state and excited
tetraquarks Xg and Xg extracted from the sum rules by
employing the interpolating current Jg(x) are shown in
Table I. We also plot the masses mg and my in Figs. 3 and 4

4.0 —
3.5) ]
_ 3.0} 1
S
> _ e —EE——EE——————
Q 2.5F 1
e —— M?=4.0 GeV?
€ 20 e ]
o mmmem M?=3.0 GeV?
1.5} ) ) 1
b ammmmmnn M=2.0 GeV'
10 L. L L I L L L I L L L I L L L I L L
9.0 9.2 9.4 9.6 9.8 10.0
so(GeV?)

Dependence of the mass mg on the Borel parameter M> at some fixed s, (left) and on the continuum threshold parameter s, at

5.0 : : : :
— M?=45GeV?
45} ]
..... M?=3.5 GeV?
— 4.0 ) ) ]
% anmmmmmn M“=2.5 GeV
O 35} ]
- 0
€ 30¢f 1
2.5F ]
2.0 ‘ ‘ ‘ ‘
12.0 12.2 12.4 126 128 13.0
s;(GeV?)

FIG. 4. The same as in Fig. 3, but for the mass mj of the excited state.
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as functions of the Borel and continuum threshold
parameters.

Results obtained for the masses of the states X and X, are
either smaller than the LHCb data for the resonance X,,(2900)
(as in the case of the ground-state tetraquark X,) or exceed it.
The same conclusions are valid also for the tetraquarks X and

X’ Even masses m") and m(sl> in which one takes into account
ambiguities of calculations, do not agree with experimental
data. It seems the diquark-antidiquark state X, and its radial
excitation X{, are exotic mesons not yet seen in experiments.
To gain detailed information on their properties, in the next
section we consider decays of the tetraquarks X, and X{, and
estimate their full widths.

IIL. PROCESSES X' - D-K* AND X}’ — D°K®

The masses of the tetraquarks Xg) calculated in the

previous section, as well as their quark content, allow us to
specify their decay channels. It is not difficult to see that
thresholds ~2364 MeV for the production of conventional
meson pairs DK+ and D°K° are smaller than the masses
of X(()/). Moreover, the modes X(()'> — DK™ and Xé’> -
DOK® are S-wave decay channels for the tetraquarks X\,
and decay to D™ K™ mesons is the dominant process for the
resonance X(2900).

In this section, we consider in a rather detailed form the

decays X(()’> — D™K*, and provide final results for the

channels X(()/) — DYK". The partial widths of the processes
Xo —» D™K* and X[, > D"K* are determined by strong
couplings at the corresponding tetraquark-meson-meson
vertices XoD~K™* and X{;D~ K™, respectively. We denote
strong couplings corresponding to these vertices by g and ¢
respectively, and use for their calculations the QCD sum
rules on the light cone [43,44], and techniques of the soft-
meson approximation [45].

The strong couplings g and ¢ are defined by the on-
mass-shell matrix element

(K(@D(P)IXS () =g"p-p. (23)
In the framework of the LCSR method the vertex X,D~K™

can be investigated by means of the correlation function

(p.q) = i/d“xe”’x<K(cJ)T{JD(X)JT(O)}IOX (24)

where the mesons K+ and D~ are denoted by K and D,
respectively. In Eq. (24), J(x) and J? (x) are the interpolat-
ing currents for the tetraquarks Xg> and meson D™ J(x) is

defined by Eq. (3), and for JP(x) we employ

TP (x) = ¢;(x)iysd;(x), (25)

with j being the color index.

The current J(x) couples to both the ground-state and
radially excited tetraquarks X and X{), and therefore in the
function ITP™S(p,q) we should take into account the
contribution of these particles explicitly. We are interested
in terms that have poles at the variables p? and p’?, where p
and p’ = p + ¢ are the momenta of the D~ meson and
tetraquarks Xfp, and ¢ is the momentum of the K™ meson.

The terms in TIPS (p, ¢) necessary for our analysis have the
following forms:

s fpmi gfm g1’
TP ) = —Dm%) (P2 =m?) ~ (p? —m?)
xpp'te, (26)

where mp and fp are the mass and decay constant of the
D™ meson. To derive Eq. (26) we use the vertex function
given by Eq. (23), the well-known matrix elements of the

tetraquarks X (()'> [Eq. (6)], and the new matrix element of the
D™ meson,

(07[D(p)) =272 27)

The terms presented explicitly in Eq. (26) correspond to a
ground-state meson in the D~ channel, and ground-state and
radially excites tetraquarks in the X, channel. Contributions
of remaining higher resonances and continuum states in the
D™ and X, channels are denoted by dots.

An expression for the same correlation function obtained
using quark-gluon degrees of freedom forms the second
component IT1%P(p, g) of the sum rule analysis. Calcula-
tions carried out using quark propagators give

°PE(p, q) = /d4xei”x€€[y”5'g"(x)y5
xS (=x)7,] (K (9)|#5(0)55(0)[0),  (28)

with @ and f being the spinor indices. The correlator
IT°PE(p, g) contains quark propagators, which determine
the hard part of this function, but it also depends on the s
operator’s local matrix elements; this is the soft factor
in T, q).

The matrix elements (K|izs|0) bear spinor and color
indices, and are inconvenient for further usage. To recast
them into color-singlet form and factor out spinor indices,
we expand iis over the full set of Dirac matrices I'/,
6uw/V2.  (29)

Fl = 1’ 755 y/u i}/S}/pw

and project them onto the colorless states

7(0)55(0) — éé”“l“/’,,a[ﬁ(o)l“’s(o)]. (30)
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New operators #(0)[Vs(0) sandwiched between the K
mason and vacuum states give rise to local matrix elements
of the K meson.

When considering the tetraquark-meson-meson vertices

X(()/)D‘K *, we encounter the correlation function contain-
ing only local matrix elements of quark operators. Let us
note that such behavior of TI°PE(p, q) is typical for all one
tetraquark-two conventional mesons’s vertices. The reason
is actually very simple: the tetraquark current J(0) is
composed of four quark fields at the same space-time
position. Contractions of relevant fields from the interpo-
lating currents J?(x) and J7(0) leave two free quark fields
at the space-time point x = 0. As a result, local matrix
elements of the K meson appear in the correlation function
as overall normalization factors.

It is instructive to compare this situation with three-
meson vertices, in which contractions of quark fields with
different space-time coordinates generate TI°PE(p, ¢) con-
taining nonlocal operators. Then, manipulations performed
in accordance with Egs. (29) and (30) lead to operators, the
matrix elements of which are distribution amplitudes (DAs)
of a final-state meson. In other words, for a three-meson
vertex a correlation function depends on integrals over DAs
of a meson. The situation described above in the LCSR
method emerges in the kinematical limit ¢ — 0, which is
known as the soft-meson approximation [44]. In this
approximation, instead of a light-cone expansion, one gets
an expansion in terms of local matrix elements of a final
meson. Because in the soft limit the phenomenological and
QCD sides of the light-cone sum rules acquire distinctive
features, they have to be treated in accordance with
elaborate methods [44,45]. It is important that strong
couplings at three-meson vertices calculated using the full
version of the LCSR method and soft-meson approxima-
tion lead to predictions that are numerically very simi-
lar [44].

The soft-meson approximation was applied to explore
tetraquark-meson-meson vertices in Ref. [46] and later used
in numerous similar studies [36]. It is worth emphasizing,
that correlation functions of tetraquark-tetraquark- meson
vertices contain integrals over DAs of a meson, and their
treatment does not differ from standard LCSR analysis [47].

Here we employ this technique to analyze the vertices

Xg) — D K. As is seen from Eq. (28), the soft-meson
approximation considerably simplifies the QCD side of the
sumrule: there are only local matrix elements of the K meson
in TI°PE(p?), and only a few of them contribute in the limit
g = 0. On the contrary, the physical side of the sum rule has a
more complicated structure than in the case of the full version
of the LCSR method. The soft limit implies the fulfillment of
the equality p = p’, and hence in the limit ¢ — 0 the
invariant amplitudes TTP"(p2, p'?) and TIOPE(p2, p'?) are
functions of the variable p?. Therefore, in Eq. (26) one should
take into account that p> = p’?, and we get

2 ~2
[1Phys ( 2 :fDmD m
(p) mc gfm( 2 ﬁ’l )2
~/2
+g/f' / - ~/2 :| , 31)

where m? = (m? + m3)/2 and M = (m"” + m3)/2. The
remaining problems are connected to the Borel transform of

the amplitude IT""*(p?) which, due to double poles at p> =
m? and p* = /m'?, has the following form:
e /M
1 () = 20 [ TCE
c M?
ﬁ,llze—lh/z/Mz
+g/f/m/ T] 4+ .. (32)

In general, the Borel transformation applied to a corre-
lation function suppresses contributions of higher reso-
nances and continuum states. This allows one to subtract
these terms from the QCD side of the sum rule using an
assumption about quark-hadron duality. In the soft approxi-
mation, after the Borel transformation there are still unsup-
pressed terms on the physical side of the sum rule, which
contribute to IT'™$(p?) on an equal footing with the
ground-state term. Because we are interested in analyzing
both the ground-state X, and excited X, particles, it is
necessary to clarify the nature of these unsuppressed terms.
The main contribution to IT""¥$(p?) comes from the vertex
XoD™K™", where the tetraquark and mesons are ground-
state particles. Unsuppressed terms correspond to vertices,
in which X is in its excited state. When considering the
vertex XoD~K™, such contributions should be treated as
contaminations and subtracted applying some procedures.
Such prescriptions are well known and were described in
Refs. [44,45]: to eliminate contaminations from IT™3(p?),
one has to apply the operator

P(M?, m?) = <1 - M? d}‘é >M2 m /M (33)

to both sides of the sum rule equality, and subtract the
remaining conventional terms in a standard manner.

But, we are also interested in extracting of the strong
coupling ¢ which corresponds to the vertex XD K.
Therefore, we use the following strategy: we determine the
strong coupling ¢ utilizing the “ground-state+continuum”
scheme and the first term in TTPWYS(p?). At this stage we
apply the operator P(M?, in?) that singles out the ground-
state term. Afterwards, we use g as an input parameter in
the “ground-state+excited-state+continuum” scheme, and
by employing the full expression for IT""$(p?) determine
the strong coupling ¢'.

Then, the sum rule for g reads

mC

g= s P(M?, m*)IIOPE(M?, 50),  (34)

fmem%,rh
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whereas for ¢ we obtain

502 M2 2
em / M m,. - -9 2
[ HOPE(Mz,s*)—gfmmze_m /M .
m2 0
D'"'p

g =

/m/m/z

(35)

The K meson is characterized by some local matrix
elements of different quark-gluon contents and twists.
Having performed our numerical computations, we see
that the correlator IT°E(p, ¢) receives a contribution from
the two-particle twist-3 element

me%(

Oluiyss|K) =
(Olmiyss|K) m,

(36)
The technical aspects of the required calculations of the
[°PE(p, g) in the soft limit were described in Ref. [46], and
hence we omit further details and write down the final
formula for the Borel-transformed and subtracted invariant
amplitude, which is computed with dimension-nine accu-
racy:
HOPE(M27 50) = _M_K/So dS(m% - S)2 s/
472 rp N

+ pgm Jyp(M?). (37)

The nonperturbative component of the correlation function
yp(M?) is determined by the expression

2 C_ld 2 2 ast mg
HNP(MZ) = %e_mc/M _|_ <—>

z /36M*
/1 dxe—" MPx(1-x)] _ (dgoGd)m? oM M?
3(1=x)3 N
o X (1 )C) 3M
aG\ - (MR
= ){dd) ~—— e /M
+< . >< YTV
a, G2\ - m¢ + 6M>m? + 6M*)n*
— (= <dg6Gd>( 10 )
108M
x e~/ M G8)

where ug = fxm%/m.

It is worth noting that the limit ¢ — 0 is performed in a
hard component of the amplitude. As a result, it does not
contain terms ~m?% which nevertheless would be small due
to m%/m?, m%/m’, m%/m% < 1. In the soft approxima-
tion the mass and decay constant of the K™ meson through
ux form the nonperturbative soft factor in TIOPE(M?, s).

The parameters of the mesons D~ and K that are
necessary to calculate g are shown in Table II. The values of
the masses and decay constants of these particles are taken
from Ref. [48]. In numerical computations of the strong
couplings ¢ and ¢/, the Borel and continuum subtraction

TABLE II. Masses and decay constants of the D and K mesons
required for numerical computations.

Quantity Value (in MeV)
mp 1869.65 £ 0.05
Mpo 1864.83 £ 0.05
mg 493.677 £ 0.016
Mo 497.611 £0.013
fo=/Fp 212.6 £0.7

fx=fxo 155.7+0.3

parameters are chosen as in the corresponding mass
analysis. Numerical computations yield

g = (1.06 £0.27) GeV! (39)
and

g = (0.52+0.13) GeV~. (40)

The partial widths of the processes X(()/) — D™K* can be
found by means of the expression

(12 22(/) /1(/)2
rixY - p-g+) =20 (1+ ) (41)

8n m3
where A") = A(m"), mp, my) and

1
Aa, b, c) = 2 [a* + b* + ¢*=2(a®b? + a*c? + b*c?))V/2.

(42)
Now it is easy to get
['[Xy — D"K'] = (64.7 £ 23.3) MeV,
I'[X\, - D"K*] = (53.3 £ 18.8) MeV. (43)

The partial widths of the decays X, — D°K° and X{, —
DPK? also contribute to the full widths of the tetraquarks
X, and Xj{. Investigation of these channels is performed in
accordance with the scheme described above, therefore we
write down only the final results. For the strong couplings
G and G’ corresponding to the vertices X,D°K® and
X,D°K®, we find

G = (1.14 £0.18) GeV~! (44)
and

G' = (0.54 £0.11) GeV~". (45)
For the partial widths of these decays, we get

['[X, —» D°K°] = (74.8 £ 16.7) MeV,
I'[X;, - DK’ = (56.3 £ 16.2) MeV. (46)
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Then, the full widths of the particles X, and X|, are

T, = (140 + 29) MeV,
I, = (110 + 25) MeV, (47)

respectively.

As is seen, the parameters of the tetraquarks X, and Xj,
differ considerably from the mass and width of the
resonance X (2900) measured by the LHCb Collaboration.

IV. DISCUSSION AND CONCLUSIONS

In the present paper, we examined the tetraquark X, and
its radial excitation X, by calculating their masses and
widths. The masses of X, and X{, were computed using the
axial-axial and scalar-scalar type interpolating currents J(s)
and Jg(x). The widths of these particles were estimated for
the axial-axial structure.

The diquark-antidiquark state X, consists of four quarks of
different flavors, Xy = [ud][c 5]. The properties of the ground-
state scalar tetraquark with similar content X, = [su][¢ d]
were investigated in Refs. [29,30]. The mass of X, found in
Ref. [29] using axial-axial and scalar-scalar structures is

my = (2590 £ 60) MeV, Iy = (63.4+14.2) MeV,

(48)
and

iy = (2634 +62) MeV, Ty = (5774 11.6) MeV,

(49)
respectively. The prediction
my = (2550 £90) MeV (50)

for the mass of the state X, was also made in Ref. [30]. It is
worth emphasizing that all of these results were extracted
using the QCD two-point sum rule method, and predictions for
the mass of X . from Refs. [29,30] are almost the same. Itis also
evident that m and mg in Eq. (19) and Table I are comparable
with predictions for my and iy within uncertainties of
computations. Stated differently, the masses of the ground-
state tetraquarks with different internal organizations, but
composed of ¢, s, u, d quarks, vary approximately in the

range 2550-2660 MeV.
The parameters of the tetraquark [cs][iz d] in the context
of the sum rule approach were also recently calculated in
|

Ref. [5]. There, the mass of this particle with either scalar-
scalar (SS) or axial-axial (AA) structure was found to be

Mgs = (3050 +100) MeV,  Man = (2910 4 120) MeV.

(51)

Because M,, is compatible with the LHCb data, the
resonance X,(2900) was interpreted there as a ground-state
tetraquark [cs][it d]. The results of that work differ consid-
erably from our findings, as well as from predictions made in
Ref. [30]. The X((2900) was considered as a radially excited
state X,(2S), with X, being the tetraquark [ud][¢ 5] [6]. The
mass of X,(2S) was estimated in Ref. [6] around of
2860 MeV, which is lower than our results for Xj, and X§.

Analysis performed in the present work, demonstrates that
tetraquarks X(()/) and X g) built of the axial-vector and scalar
diquarks (antidiquarks), are states that differ from the
resonance X(2900) observed by the LHCb Collaboration.
Therefore, the parameters calculated in the present work are
all the more important in searches for the tetraquarks X g) and

X g ) in various processes. The masses of the states Xg) and

X(S/> have been extracted with high enough accuracy.

Although m") and m(sl) contain uncertainties that are typical
for all sum-rule computations, they provide valuable infor-
mation on these exotic mesons. We also evaluated the full
widths of the tetraquarks X, and X{, by considering their
decays to pairs of conventional mesons D~K* and D°K°.
For the particles X, and XJ,, these two processes are their only
S-wave decay channels. Other possible modes of the tetra-
quarks X!, such as S-wave decays X! — Dj(2400)° x
K*(1430), are kinematically forbidden processes. Hence,
estimates for the full widths I' g) of the four-quark mesons X,
and X, are rather credible.

Our results imply that X,(2900) cannot be identified with
a ground-state or radially excited scalar tetraquark [ud][c 5].
It seems interpretation of the resonance X;,(2900) as had-
ronic molecules D**K*9 and D*~ K**, or their admixture is
correct and overcomes successfully present examination.

APPENDIX: QUARK PROPAGATORS AND
INVARIANT AMPLITUDE II(M?2s,)

In the current article, for the light-quark propagator
§4P(x) we employ the following expression:

a X m (aq) .. ¥m,(qq) x>
qu (X) = léab 27[2)64 - 5ab 4”2‘;2 - 5ab 12 + laab 2-78 - 5ab @ <ngGGq>
X% fm 9:Gap PAgiaq)’ . xq9)(5G)
) 1 (g9,06Gq) — i =—4b —i5 : - > VN
+1 ab 1152 <qgsa q> 2ﬂ2x2 [xaaﬂ + Uaﬁﬂ L0gp 7776 ab 27648 + ( )

For the heavy quark Q = ¢, we use the propagator S‘éb (x),
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S (x) = i/ 'k e ikx Gap (K + mo) _ QSG% Oap(K+mg) + (K + mg)o,s
¢ (2”)4 K- sz 4 (kz _ sz)z

202 2 33
gsG k +ka gsG (k_‘_mQ)
—+ 2 5(1me (k2 — m2Q)4 —+ 48 6ab (k2 — m2Q)6 Ué(kz - 3m2Q) + ZmQ(ZkZ — mZQ)](k + mQ) 4+l (A2)
Here, we have used the shorthand notation
Gh=Gli, 2. G=GAGY. G = frAECGA,GPRGSe, (A3)

where GZﬁ is the gluon field-strength tensor, and 14 and fA2C are the Gell-Mann matrices and structure constants of the
color group SU.(3), respectively. The indices A, B, C run in the range 1,2, ...8.

The invariant amplitude TI(M?2,s;), obtained using the interpolating current J(x) from Eq. (3), after the Borel
transformation and subtraction procedures is given by the expression

\Y
0 dspOPE(s)e=s/M +TI(M?),
2

T(M?, ) = /

M
where the spectral density p©FF(s) and the function TI(M?) are determined by the formulas
8 5.
pOPE(s) = p(s) + S0P ) M) = DTN a2), (Ad)
N=3 N=6
respectively. The components of pOPE(s) and I1(M?) are given by the expressions
. 1 . . 1 .
lemN (S) — / dalemN(& a)’ HDlmN (MZ) — / dal'[D‘mN(Mz, a)‘ (AS)
0 0

In Eq. (AS5) the variable « is the Feynman parameter.

The perturbative and nonperturbative components of the spectral density pP*"(s, a) and p
the following expressions:

Dim3(4.5.678) (s ) are given by

[m? —s(1 —a)]?a’O(L)

PP (s, a) = 153675 — 1)’ [4mmg + m2a + 3sa(l — a)], (A6)
‘ 55)0O(L
PP (s, a) = —%az[m% —s(1 —a)][m} +2m2my(a—1) + m.s(a—1) +dmgs(a—1)?], (A7)
367°(a—1)
. 2/7)O(L
PP (5, ) = —%oﬂ [652(a = 1)3(5a = 6) + mimy(=9 + 9a — 8a?) + mt(18 — 33a
9-27%(a—1)
+190%) + memgs(9 — 22a + 2502 — 12a%) + 3m2s(—18 + 51a — 50a° + 17a°)], (A8)
. 5 L
PP (s, ) = Mapmg +dm?my(a—1) + 3mes(a— 1) + 6smy(a—1)?], (A9)
967* (a — 1)
o(L)

PP (M2 ) =

=305 Pa(a 1)’ 27{g3 G Ym2a® + 34560(dd) (nu)n* (o — 1)3[-2m m, + 2m2a
. 7[ a f—

+3sa(a — 1)] + 320g%(dd)*x* (a — 1)} [~m m; + 4m2a + 6sa(a — 1)] + 320¢27% (a — 1)3
X [emom, (@2 + (55)? + (w)?) (b2 + 65a( — )]}, (A10)

(a,G?/7)(55)O(L)

DIm7 (112 o) =
M ) = P = 1)

Bmga(a—1)> +m.(2 = Ta + 5a* = 2a°)], (A11)
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(a,G?/7)*a + 96(dg,6Gd) (itu) (a — 1)
115272

pPm8(M? q) = o(L). (A12)

The components of the function IT1(M?) are

333,33 2
Dim6 (172 o) — (g:G")mea me 202
mPme (M ,a)—45'210M2ﬂ6(a_1)sexp[ W] mla(2 + a) +4m>m;(2a — 1) — 8mM?*(a®> — 1)
—-mM?*a(a?® + a—2)), (A13)

(a,G? /) (55)mza’ m;

288M° 72 (a—1)7 P {_ M2 (1 —a)

HDim7(M2,a) _ ] [m%ms + (m, — ms)Mz(a - 1)], (A14)

im <asG2/”>2mca mg
Pm8 (M2 q) = 5 P a~ 1) exp “(—a) 2mZmy(a—1) +mia — m.M?a(a—1)
-2mM?(a® — 1)], (A15)
i (dg,6Gd){uu)ym m; m?2
[Dm8 (M) = o exp | =15 (A16)

1 2

135 27M7 (a— 1) P [ M1 —a)
+mimy(2 + a)] + 5{a,G*/7) (59,6Gs)M>*7*(a — 1)?[=3m2im,M?*(a — 1)* + 3m;M*(a — 1)* + dmtm,a
+omiMa(a—1) + 3m M*(3 — da + 3a® — 2a%)]}, (A17)

Hll)im9(M27a) — _

}{3< N(ss)yma?[miM?(2 — 4a) + 8M*(a — 1)

486 M 7? M?
S [4mcM2 + ms<mc - Mz)]}’ (Alg)

D9 (12) — #p[ ’"2]{ 2[(dd)? + (i) [m2m, + (m, — my,)M?] + 54 (i) (dd)

GG /x) [ omg
729 25M* 2 (a—17 P T M (1—a)

+ [2(35) + (au)?][-3m2M?*(a — 1)> + 3M*(a — 1)3] + 8mia|(5s)? + (au)?] + (dd)*[-dmim (a — 1)

HllDimIO(MZ’ Q) = } {_4<ﬁu>2mgms(a -1)+ 8(ﬁu>2mcmsM2(a -1)

+8m.mM?*(a — 1) = 3m2M?*(a — 1)* + 3M*(a — 1) + 8mtal}, (A19)
. 1 m% _ _
[Dimi0(p2) = e ke [— MZ} {162(itg,6Gu){dg,cGd)(2m3ms + m*M?> — M*)

+o,G*/7) g3 ((dd)? + (au)*)M? (m + moms — M?) + 1447 (u) (dd) 2mim, +mZM* = M*)]}, (A20)

and

u exp| -
405 M7 a— 1) P | MP(1—a)
+3(g3G*) (59,6Gs)m a2mim (2 + a) + 6miM?>(2a — 1) = 3mM*(a — 1)*(5a — 7)

+ 12m.M*(3 — da + a?) = 3mim,M?*(1 — 4a + 30%)]}, (A21)

Hll)imll<M2’ a) — _

}{ 20{a,G?/7)*(5s)(m2 = 2M*)M*7*(a — 1)
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H2Dim11 (MZ) —

mC
729 - 2" M°x? M

+27(a,G? /) (5s)M*n* + 3456(59,0Gs)(dd) (au)r*m.(2m2m; + Om M?* + 6mM?)}.

2
exp [‘ m—] {1662(50,0Gs) [(@d)? + (@), (2mEm, + 3m M + 6m M)

(A22)

In the above expressions, ©(z) is the Unit Step function. We have also used the following shorthand notation:

L=L(s,a)=sa(l —a)—mla.

(A23)
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