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The propagation properties of spin degrees of freedom are analyzed in the framework of relativistic
hydrodynamicswith spin basedon the deGroot vanLeeuwen–vanWeert definitions of the energy-momentum
and spin tensors.Wederive the analytical expression for the spinwavevelocity for arbitrary statistics and show
that it goes to half the speed of light in the ultrarelativistic limit. We find that only the transverse degrees of
freedom propagate, analogously to electromagnetic waves. Finally, we consider the effect of dissipative
corrections and calculate the damping coefficients for the case of Maxwell-Jüttner statistics.

DOI: 10.1103/PhysRevD.106.014018

I. INTRODUCTION

Recent spin polarization measurements of ΛðΛ̄Þ hyper-
ons [1–8] have sparked a huge interest in the heavy-ion
physics community. In this context, many theoretical
studies have been performed referring to spin-orbit cou-
pling [9–12]. Fundamentally, the polarization of particles
with spin can be induced through the spin-orbit coupling
implied by the Dirac equation [13,14]. Starting with the
works by Vilenkin in the 1980s [15], it is now understood
that a gas of Dirac particles in rigid motion develops a flow
of chirality along the vorticity direction [16]. Due to its
close relation with the axial anomaly, the flow of chirality
due to either background vorticity or electromagnetic fields
is understood as “anomalous transport” [16]. Attempts to
incorporate such effects dynamically have lead to the
development of the so-called hydrodynamics with triangle
anomalies [17]. While the persistent polarization of mass-
less particles can be modeled via an axial chemical
potential, such an approach is not justified for massive
particles, where the conservation of the axial current is
explicitly broken (alternatively the helical chemical poten-
tial may be used, as discussed in Refs. [18–20]).
Various models based on the thermodynamic equilib-

rium of spin degrees of freedom [21–24] have shown good

agreement with experimental data of spin polarization,
for recent reviews and papers on this topic see, e.g.,
Refs. [25–32]. Nevertheless, the differential measurements
of polarization [4,8] lack a clear explanation. This led to the
idea of including spin degrees of freedom in standard
hydrodynamics, first proposed in Refs. [33,34] based on
the definitions of the energy-momentum and spin tensors
introduced by de Groot, van Leeuwen, and van Weert
(GLW) [35]. For recent studies on this formalism see
Refs. [36–41].
In this work we consider the propagation properties of

linear perturbations [42–46] in the framework of the perfect-
fluid spin hydrodynamics [26,36], for other similar studies
using the effective action approach, seeRefs. [47–49].At the
level of the spin conservation equation, we find that the spin
degrees of freedom are decoupled from the background
fluid, and therefore their wave spectrum can be analyzed
separately from the fluid degrees of freedom. Conversely,
the fluid degrees of freedomare also decoupled from the spin
ones leading to thewell-known soundwaves [42–45]. In this
study, we consider a linearized expression for the spin tensor
in which quadratic or higher order terms are neglected. For
this reason, our results are strictly valid only for the case of
propagation through an unpolarized background. In this
case, we obtain a general analytic expression for the spin
wave velocity, which we apply to the case of both Maxwell-
Jüttner (MJ) and Fermi-Dirac (FD) statistics. In addition, we
also derive the relativistic and nonrelativistic limits of
the spin wave velocity cspin. In both cases, cspin ¼ c=2 in
the ultrarelativistic limit, with c being the speed of light. The
spin degrees of freedom can be split into an electric part,Cκ,
and amagnetic part,Cω, in analogywith the electromagnetic
degrees of freedom. We find that the degrees of freedom
corresponding to the longitudinal direction (which is parallel
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to the wave vector k) do not propagate, while the four
transverse ones support the usual linear or circular polari-
zation, in perfect analogy to the case of electromagnetic
waves [50]. Finally, using the dissipative spin tensor derived
in Refs. [38,51] for the case of the ideal MJ gas, we discuss
the effect of dissipative corrections leading to exponential
damping of both the transverse and the longitudinal
components.
The paper is organized as follows. We begin with a brief

review of the formalism of spin hydrodynamics in Sec. II.
Then, in Sec. III, we study the propagation of perturbations
in the spin polarization components and present the spin
wave solutions. Subsequently, in Sec. IV, we analyze the
effects of dissipation on the spin wave propagation. Finally,
we conclude in Sec. V. Technical details about the spin
tensor for arbitrary statistics, the ideal gas, and the FD gas
can be found in Appendixes A, B, and C, respectively.
In this work, we use the convention of the Minkowski

metric gμν ¼ diagðþ1;−1;−1;−1Þ, while the dot product of
two four-vectors aα and bα reads a · b ¼ aαbα ¼ gαβaαbβ ¼
a0b0 − a · b, where boldface indicates three-vectors. For the
Levi-Civita tensor ϵαβγδ we use the convention ϵtxyz ¼ þ1.
We denote the antisymmetrization by a pair of square
brackets as M½μν� ¼ 1

2
ðMμν −MνμÞ. Moreover, we assume

natural (Planck) units, i.e., c ¼ ℏ ¼ kB ¼ 1 (unless stated
explicitly).

II. PERFECT-FLUID SPIN HYDRODYNAMICS

In this section, we briefly review the hydrodynamic
framework based on the GLW definitions of energy
momentum and spin tensors for the case of spin-1

2
particles

with massm [26,36]. In this framework, the spin effects are
assumed to be small so that the conservation laws for
charge, energy, and momentum are independent of the spin
tensor. The spin effects arise only from the conservation of
angular momentum [26,36]. The conservation laws of
baryon current and energy-momentum tensor are defined,
respectively, as [26,33,36]

∂αNαðxÞ ¼ 0; ∂βTαβðxÞ ¼ 0; ð1Þ

where the baryon current, Nα, and the energy-momentum
tensor, Tαβ, are of the form [33]

Nα ¼ NUα; Tαβ ¼ EUαUβ − PΔαβ; ð2Þ

with N , E, and P being the baryon charge density, energy
density, and pressure respectively. The fluid four-velocity is
denoted by Uμ and Δαβ ¼ gαβ −UαUβ is the projector onto
the hypersurface orthogonal to Uμ.
Due to the symmetric nature of the energy-momentum

tensor (2), the conservation of total angular momentum
dictates the separate conservation of spin [36]

∂αSα;βγðxÞ ¼ 0: ð3Þ
Violations of the above conservation equation can be
induced through quantum effects such as nonlocal colli-
sions [27,52–55], leading most likely to a relaxation of the
spin polarization tensor ωμν (6) towards the local thermal
vorticity. Since the exact form of this relaxation equation is
not known yet, we do not consider such effects in this
analysis. To the leading order in ωβγ , the spin tensor can be
decomposed as [26,36,41]

Sα;βγ ¼ Sα;βγph þ Sα;βγΔ ; ð4aÞ

where the phenomenological Sα;βγph and the auxiliary Sα;βγΔ
contributions are given by [33,41]

Sα;βγph ¼ ðA1 þA3ÞUαωβγ; ð4bÞ

Sα;βγΔ ¼ ð2A1 −A3ÞUαUδU½βωγ�
δ þA3ðΔαδU½βωγ�

δ

þ UαΔδ½βωγ�
δ þUδΔα½βωγ�

δÞ: ð4cÞ

The thermodynamic coefficients that appear above can be
expressed as follows (see Appendix A for details)

A1 ¼
s2

9

��
∂N
∂ξ

�
β

−
2

m2

�
∂E
∂β

�
ξ

�
;

A3 ¼
2s2

9

��
∂N
∂ξ

�
β

þ 1

m2

�
∂E
∂β

�
ξ

�
; ð5Þ

where we used general expressions for A1 and A3, which
are independent of the underlying statistics of the kinetic
model.1 In the above formula, ξ ¼ μ=T is the ratio of the
chemical potential to the temperature, β is the inverse of the
temperature, while s2 ¼ sðsþ 1Þ is the magnitude of spin
angular momentum, which is equal to 3=4 for spin-1

2

particles [26]. For future convenience, we also introduce
z ¼ m=T representing the ratio of particle mass m and the
temperature.
The (antisymmetric) spin polarization tensor ωμν can be

decomposed as [33]

ωμν ¼ κμUν − κνUμ þ ϵμναβUαωβ; ð6Þ

where κμ and ωμ together form six independent compo-
nents [26,36]. These four-vectors are orthogonal to Uμ by
construction, κμUμ ¼ ωμUμ ¼ 0, such that [26,36]

κμ ¼ ωμαUα; ωμ ¼
1

2
ϵμαβγω

αβUγ: ð7Þ

1See, e.g., Refs. [26,36,41,51] for the corresponding expressions
for the MJ statistics of an ideal gas, which we summarize in
Eq. (B7). The case of the FD statistics is discussed in Appendix C.
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In the fluid rest frame, κμ and ωμ reduce to

κμ ¼ ð0; CκÞ; ωμ ¼ ð0; CωÞ; ð8Þ

where Cκ ¼ ðCκX; CκY; CκZÞ and Cω ¼ ðCωX; CωY; CωZÞ
are the spin polarization components [26,36].

III. WAVE ANALYSIS

A. Dispersion relation for the spin modes

Let us now consider the propagation of infinitesimal
excitations in a fluid with spin degrees of freedom. Since
the conservation equations (1) corresponding to the back-
ground fluid are independent of polarization [26,36], their
solutions will give the well-known spectrum of sound
waves [42–45], which propagate with the sound speed
satisfying

c2s ¼
�
∂P
∂E

�
N
þ N
E þ P

�
∂P
∂N

�
E
: ð9Þ

Focusing now on the excitations propagating at the level
of the spin tensor (4), the background fluid can be regarded
as quiescent, i.e., Uμ ¼ gtμ. Treating ωμν as a small
quantity, which amounts to assuming that the background
fluid is unpolarized, Eqs. (4b) and (4c) reduce to

Sα;μνph ¼ ðA1 þA3Þgtαωμν;

Sα;μνΔ ¼ 2ðA1 − 2A3Þgtαgt½μων�t

þA3ðgt½μων�α þ gα½μων�t − gtαωμνÞ: ð10Þ

Considering that the system is homogeneous with respect
to the x and y directions, the divergence of Eq. (10) yields

∂αS
α;μν
ph ¼ ðA1 þA3Þ∂tωμν;

∂αS
α;μν
Δ ¼ ð2A1 − 3A3Þgt½μ∂tων�t

þA3ð∂½μων�t − ∂tω
μν þ gt½μ∂zων�zÞ: ð11Þ

For the cases μ ¼ 0, ν ¼ i and μ ¼ i, ν ¼ j, we find,
respectively,

∂αSα;ti ¼ A3

�
∂tω

ti þ 1

2
∂zω

iz

�
;

∂αSα;ij ¼ A1∂tω
ij þA3∂

½iωj�t: ð12Þ

Taking into account Eq. (8), the components of the spin
polarization tensor ωμν can be written in terms of the spin
polarization components Cκi and Cωk as

ωti ¼ −Cκi; ωij ¼ −ϵtijkCωk: ð13Þ

Demanding that ∂αSα;μν ¼ 0, we obtain

∂tCκi −
1

2
ϵtijz∂zCωj ¼ 0;

∂tCωi −
A3

2A1

ϵtijz∂zCκj ¼ 0: ð14Þ

Due to the presence of the Levi-Civita symbol, ∂tCκZ ¼
∂tCωZ ¼ 0, such that the longitudinal components do not
propagate. Thus, the polarization degrees of freedom
propagate only as transverse waves, similar to the electro-
magnetic waves [50]. Their equation can be obtained by
setting i ¼ x, y in Eq. (14), leading to

�
∂
2

∂t2
− c2spin

∂
2

∂z2

�
C ¼ 0; ð15Þ

where C ∈ fCκX; CκY; CωX; CωYg and the speed of the spin
wave satisfies

c2spin ¼ −
1

4

A3

A1

¼ 1

4

ð∂E=∂TÞξ − z2ð∂N =∂ξÞT
ð∂E=∂TÞξ þ z2

2
ð∂N =∂ξÞT

: ð16Þ

In the ultrarelativistic limit z → 0, we can observe that cspin
takes the value 1=2 irrespective of statistics.
The expression for c2spin can be written explicitly for the

(ideal) MJ gas [56]

c2spin ¼
1

4

K3ðzÞ
K3ðzÞ þ z

2
K2ðzÞ

; ð17Þ

hence being independent of ξ ¼ μ=T. In the case of the FD
gas [57,58], cspin becomes an even function of ξ2:

c2spin ¼
1
4

P∞
l¼1

ð−1Þlþ1

l coshðlξÞK3ðlzÞP∞
l¼1

ð−1Þlþ1

l coshðlξÞ½K3ðlzÞ þ lz
2
K2ðlzÞ�

: ð18Þ

For small values of z, we find

MJ∶ cspin ¼
1

2

�
1−

z2

16
þOðz4Þ

�
;

FD∶ cspin ¼
1

2

�
1−

15z2

4π2
1þ 3ξ2

π2

7þ 30 ξ2

π2
þ 15 ξ4

π4

þOðz4Þ
�
: ð19Þ

In the nonrelativistic limit, when z ≫ 1, we get

cspin ≃
1ffiffiffiffiffi
2z

p : ð20Þ

The details of these calculations are provided in
Appendixes B and C. The above limits are validated by

2Equation (18) is valid only when jξj < z. At higher values of
jξj, the formal series with respect to l diverge and the integral
representation in Eq. (C8) must be employed.
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comparison with the exact expressions in Eqs. (17) and (18)
in Figs. 1. It can be observed that cspin is a monotonically
decreasing function of z, such that

0 < cspin ≤
1

2
; ð21Þ

where the lower limit is reached for a cold gas of massive
particles (the nonrelativistic limit), while the upper limit is
achieved at high temperatures or for massless particles.

B. Linear and circular polarization of spin waves

We now construct explicit expressions for the spin wave.
Taking as before a wave propagating along the z direction,
Eqs. (14) reduce to

∂tCκX −
1

2
∂zCωY ¼ 0;

1

2
∂tCωY − c2spin∂zCκX ¼ 0;

∂tCκY þ
1

2
∂zCωX ¼ 0;

1

2
∂tCωX þ c2spin∂zCκY ¼ 0: ð22Þ

The linearly polarized solutions for the three-vectors Cκ
and Cω are

Cκ ¼ C0Re½e−ikðcspint−zÞ�ðe1 cos θ þ e2 sin θÞ;
Cω ¼ 2cspinC0Re½e−ikðcspint−zÞ�ðe1 sin θ − e2 cos θÞ; ð23Þ

where C0 is the real amplitude of the wave and θ is the
inclination angle with respect to the x axis. It can be
observed that

Cω ¼ 2cspinn̂ × Cκ; ð24Þ

where n̂ ¼ e3 is the direction vector of the wave. The above
equation is analogous to the relation H ¼ cn̂ × D from
electromagnetism [50] where c is the speed of light.
Right- and left-handed (R=L) circularly polarized waves

can be constructed in the standard fashion,

Cκ;R=L¼
C0ffiffiffi
2

p Re½e−ikðcspint−zÞðe1cosθ�ie2sinθÞ�;

Cω;R=L¼
2cspinC0ffiffiffi

2
p Re½e−ikðcspint−zÞðe1sinθ∓ ie2cosθÞ�; ð25Þ

where again Eq. (24) holds.

IV. DISSIPATIVE EFFECTS

In this section we consider the effects of dissipation on
the propagation of spin modes. In performing this analysis,
we rely on the analysis of dissipative effects presented in
Ref. [51]. Since Ref. [51] employs the MJ statistics of the
ideal gas, we restrict the discussion in this section to this
particular case.
In the context of the relaxation time approximation, the

dissipative corrections to Tμν and Nμ turn out to be
independent of the spin tensor. The correction to the spin
term due to dissipation can be written as follows

δSλ;μν ¼ τRðBλ;μν
Π θ þ Bκλ;μν

n ∇κξþ Bκδλ;μν
π σκδ

þ Bηβγλ;μν
Σ ∇ηωβγÞ; ð26Þ
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FIG. 1. Top, middle: the speed of the spin wave cspin as a
function of z ¼ m=T corresponding to the (top) MJ and (middle)
FD statistics, together with the asymptotic forms for small and
large z given in Eqs. (19) and (20), respectively. Bottom:
comparison between cspin obtained for the MJ and FD statistics,
for various values of ξ ¼ μ=T (the MJ result is independent of ξ).
The MJ curves are obtained using Eq. (17), while the FD curves
are obtained using Eqs. (18) and (C8) when z > jξj and z < jξj,
respectively.
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where τR is the relaxation time and ∇μ ¼ Δμ
ν
∂ν ¼

∂μ −UμUν
∂ν. As in the previous sections, we consider

small perturbations on top of a quiescent, unpolarized
background state in thermal equilibrium. In order to
investigate the effect of dissipation on the propagation of
small perturbations, and in particular to assert the stability
of the theory of spin hydrodynamics, we will regard the
perturbations amplitudes (including the magnitude of
δSλ;μν ∼ ωμν) as infinitesimal, while allowing the gradients,
proportional to the wave number k, to be arbitrarily large,
thereby retaining higher order terms with respect to k and
τR. Within this framework, we can test if any instabilities
emerge in the k → ∞ limit (small wavelengths). We note
that, due to the truncation procedure leading to Eq. (26), we
cannot expect the physics of the τR ≫ 1 and/or k ≫ 1
regimes to be correctly recovered.
Coming back to Eq. (26), the coefficients Bλ;μν

Π , Bκλ;μν
n ,

and Bκδλ;μν
π are proportional to the spin polarization tensor

ωμν [51], which we assume to be of first order with respect
to the perturbation amplitude (the background state is
assumed to be unpolarized). These terms are multiplied
by θ ¼ ∂μuμ, ∇κξ, and σκδ ¼ 1

2
ð∇κuδ þ∇δuκÞ − 1

3
θΔκδ,

respectively, which are already of first order with respect
to the gradients of the background state. Since they are of
second order with respect to the perturbation amplitude, the
first three terms appearing in Eq. (26) can be safely
neglected and we focus only on the last term given by [51]

Bηβγλ;μν
Σ ¼ Bð1Þ

Σ Δληgβ½μgν�γ þ Bð2Þ
Σ Δληuγu½μΔν�β

þ Bð3Þ
Σ ðΔληΔγ½μgν�β þ ΔλγΔη½μgν�β þ ΔγηΔλ½μgν�βÞ

þ Bð4Þ
Σ ΔγηΔλ½μΔν�β þ Bð5Þ

Σ uγΔλβu½μΔν�η: ð27Þ

The quantities BðiÞ
Σ are [51]

Bð1Þ
Σ ¼ −

4s2

3
cosh ξIð1Þ21 ;

Bð2Þ
Σ ¼ −

8s2

3m2
cosh ξ

�
Ið1Þ41 þ Ið1Þ41 I

ð0Þ
31

m2Ið0Þ10 − 2Ið0Þ31

�
;

Bð3Þ
Σ ¼ −

8s2

3m2
cosh ξIð1Þ42 ;

Bð4Þ
Σ ¼ −

8s2

3m2
cosh ξ

Ið1Þ41 I
ð0Þ
31

m2Ið0Þ10 − ðIð0Þ30 þ Ið0Þ31 Þ
;

Bð5Þ
Σ ¼ 8s2

3m2
cosh ξ

Ið1Þ41 I
ð0Þ
31

m2Ið0Þ10 − 2Ið0Þ31

; ð28Þ

where IðrÞnq are thermodynamic integrals of the form

IðrÞnq ¼ 1

ð2qþ1Þ!!
Z

dPðu ·pÞn−2q−rðΔαβpαpβÞqe−βu·p; ð29Þ

and dP ¼ d3p=ð2πÞ3p0 defines the invariant integration
measure. Since Aη∇ηωβγ reduces to Az

∂zωβγ , the index η
can be safely set to z. Performing the splitting

∂λδSλ;μν ¼ τR
X
i

BðiÞ
Σ TðiÞμν; ð30Þ

we find

Tð1Þμν ¼ −∂2zωμν;

Tð2Þμν ¼ −gt½μ∂2zων�t;

Tð3Þμν ¼ ∂
2
zω

μν þ gt½μ∂2zων�t þ 2gz½μ∂2zων�z;

Tð4Þμν ¼ gz½μ∂2zων�z − gz½μgν�t∂2zωtz;

Tð5Þμν ¼ gz½μgν�t∂2zωtz: ð31Þ

Grouping all terms together gives

1

τR
∂λδSλ;μν ¼ −ðBð1Þ

Σ − Bð3Þ
Σ Þ∂2zωμν

− ðBð2Þ
Σ − Bð3Þ

Σ Þgt½μ∂2zων�t þ 2Bð3Þ
Σ gz½μ∂2zων�z

− ðBð4Þ
Σ − Bð5Þ

Σ Þgz½μgν�t∂2zωtz þ Bð4Þ
Σ gz½μ∂2zων�z:

ð32Þ

Noting that ωti ¼ −Cκi and ωij ¼ −ϵ0ijkCωk, we have

∂λδSλ;tx ¼ νκ;⊥A3∂
2
zCκX; ∂λδSλ;yz ¼ νω;⊥A1∂

2
zCωX;

∂λδSλ;ty ¼ νκ;⊥A3∂
2
zCκY; ∂λδSλ;zx ¼ νω;⊥A1∂

2
zCωY;

∂λδSλ;tz ¼ νκ;jjA3∂
2
zCκZ; ∂λδSλ;xy¼ νω;jjA1∂

2
zCωZ: ð33Þ

In Eq. (33) we identified the longitudinal (νκ;jj, νω;jj) and
transverse (νκ;⊥, νω;⊥) kinematic viscosities,

νκ;jj ¼
τR
A3

�
Bð1Þ
Σ −

1

2
Bð2Þ
Σ −

3

2
Bð3Þ
Σ −

1

2
Bð5Þ
Σ

�
¼ τR

A3

Bð3Þ
Σ ;

νω;jj ¼
τR
A1

ðBð1Þ
Σ − Bð3Þ

Σ Þ;

νκ;⊥ ¼ τR
A3

�
Bð1Þ
Σ −

1

2
Bð2Þ
Σ −

1

2
Bð3Þ
Σ

�
;

νω;⊥ ¼ τR
A1

�
Bð1Þ
Σ − 2Bð3Þ

Σ −
1

2
Bð4Þ
Σ

�
: ð34Þ

The expression for νκ;jj follows after applying the recur-

rence relation IðrÞnq ¼ 1
2qþ1

ðm2IðrÞn−2;q−1 − IðrÞn;q−1Þ [51] to Ið1Þ42 .
Combining the above results with Eq. (12), one can find

that CκZ and CωZ exhibit exponential decay,

∂tCκZ − νκ;jj∂2zCκZ ¼ 0;

∂tCωZ − νω;jj∂2zCωZ ¼ 0: ð35Þ
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Setting now Cκ=ω;Z ∼ e−iωtþikzC̃κ=ω;Z, where C̃κ=ω;Z is a
constant, we find ω ¼ −ik2νκ=ω;jj with

νκ;jj ¼
4s2τR
45GðzÞ ½−5zþGðzÞð3þ z2Þ − z2GiðzÞ�;

≃
4s2τR
15

�
1 −

z2

12
þOðz4Þ

�
;

νω;jj ¼
4s2τR

15ð2GðzÞ þ zÞ ½5zþGðzÞð2 − z2Þ þ z2GiðzÞ�;

≃
4s2τR
15

�
1 −

z4

16
þOðz5Þ

�
; ð36Þ

where GðzÞ ¼ K3ðzÞ=K2ðzÞ and GiðzÞ ¼ Ki1ðzÞ=K2ðzÞ.
The above expressions are represented as functions of z
in Fig. 2.
Performing now the Fourier decomposition C ¼

C̃e−iωtþikz of the transverse modes, we find

�ωþ ik2νκ;⊥ −k=2
kA3

2A1
ωþ ik2νω;⊥

��
C̃κX

C̃ωY

�
¼ 0;

�ωþ ik2νκ;⊥ k=2

− kA3

2A1
ωþ ik2νω;⊥

��
C̃κY

C̃ωX

�
¼ 0: ð37Þ

The dispersion relation implied by the above system is

ω� ¼ −ik2ν⊥ � kcspin; ν⊥ ¼ νκ;⊥ þ νω;⊥
2

;

c2spin ¼ −
A3

4A1

−
k2

4
ðνκ;⊥ − νω;⊥Þ2: ð38Þ

The damping coefficient ν⊥ is just the average of the
damping coefficients found separately for the κ and ω
sectors,

ν⊥ ¼ 2s2τR½3GðzÞ þ 2z�
45GðzÞ½2GðzÞ þ z� ½−5zþGðzÞð3þ z2Þ − z2GiðzÞ�;

≃
s2τR
5

�
1 −

z2

24
þOðz4Þ

�
: ð39Þ

The above expression is represented as a function of z
in Fig. 2.
The speed of the spin wave receives a dissipative correc-

tion of negative sign, which can be estimated by writing
c2spin ¼ c2spin;0ð1 − δc2spinÞ, where c2spin;0 ¼ −A3=4A1 > 0

and

δc2spin ¼
k2ðνκ;⊥ − νω;⊥Þ2

−A3=A1

≃
k2s4τ2R
8100

z4½1þOðz6Þ�: ð40Þ

The above correction is heavily suppressed at small values
of z. At finite z, thewave number can become large enough to
render c2spin negative. This happens when k exceeds the
threshold value given by

kth ¼
2cspin;0

jνκ;⊥ − νω;⊥j
: ð41Þ

When k > kth, cspin becomes imaginary and the wave no
longer propagates. This is reminiscent of similar effects
occurring in first-order hydrodynamics for spinless systems.
One example is the case of sound modes in ultrarelativistic
fluids, where τRkth ¼ 5η

4P kth ¼ 15=2 [45]. Considering now
the regime when k ≫ kth, Eq. (38) shows that the modes
remain stable provided

ν⊥ −
1

2
jνκ;⊥ − νω;⊥j ¼ minðνκ;⊥; νω;⊥Þ > 0: ð42Þ

The above inequality holds truewithin the framework studied
here. We show this in the regime of small z, when

νκ;⊥ ≃
s2τR
5

�
1 −

z2

72
þOðz4Þ

�
;

νω;⊥ ≃
s2τR
5

�
1 −

5z2

72
þOðz4Þ

�
; ð43Þ

while τRkth ≃ 18=ð5z2s2Þ. Figure 2 confirms that both νκ;⊥
and νω;⊥ remain positive at large z, thus the theory is stable
under linear perturbations.
Let us now consider the impact of dissipation on the

propagation of the spin waves in the context of heavy-ion
collisions. For simplicity, let us focus on the z ≪ 1 case,
when the shear viscosity, η, can be related to the relaxation
time via η ¼ 4

5
τRP [42,45]. Assuming that the ratio η=S is

constant, where S ¼ ðE þ P − μN Þ=T ≃ 4P=T is the
entropy density (we considered also jξj ≪ 1), we have

FIG. 2. The z dependence of the damping coefficients for the
longitudinal (νω;jj, νκ;jj, starting at 0.2) and transverse (νκ;⊥, ν⊥
and νω;⊥, starting at 0.15) modes calculated for s2 ¼ 3=4 based
on Eqs. (34), (36), and (39).
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τR ≃
5

4π2T
× ð4πη=SÞ: ð44Þ

Setting now s2 ¼ 3=4, the damping time tdamp;⊥ ¼ 1=k2ν⊥
can be estimated as

tdamp;⊥ ≃
4λ2T=3
4πη=S

;

¼
�

λ

1 fm

�
2
�

T
600 MeV

�
×
4 fm=c
4πη=S

; ð45Þ

where λ ¼ 2π=k is the wavelength. Thus the lifetime of
spin waves is of the same order of magnitude as the lifetime
of the QGP fireball.

V. CONCLUSIONS

In this work we have studied the wave spectrum of the
theory of spin hydrodynamics based on the GLW pseu-
dogauge. As an antisymmetric tensor of rank two, the spin
chemical potential ωμν has six independent degrees of
freedom, which can be divided into three electric and three
magnetic ones. Our analysis has revealed the transverse
nature of the spin wave. In the limiting case of the ideal
fluid, the longitudinal magnetic and electric components do
not propagate, while the transverse ones oscillate, leading
to the linearly or circularly polarized waves known from the
theory of electromagnetism.
The speed of the spin wave, cspin, generally depends on

the parameters of the medium (temperature T, chemical
potential μ) and on the properties of the particles (particle
mass m or the statistics obeyed by the particles). A generic
feature of the modes is that in the ultrarelativistic limit
(z ¼ m=T ≪ 1), cspin ≃ 1=2, a property that is independent
of the statistics. In the case of the ideal MJ gas, cspin
becomes independent of ξ ¼ μ=T. In the case of FD
statistics, we found that the chemical potential enhances
cspin and maintains the ultrarelativistic threshold for small
values of z=ξ ¼ m=μ. At the other end of the spectrum,
when z ≫ 1, we find the leading-order behavior
cspin ∼ 1=

ffiffiffiffiffi
2z

p
, again independent of the statistics.

Finally, we have studied the effects of dissipation on the
spin waves. At the level of first-order spin hydrodynamics,
the transverse components are all damped via the same
coefficient ν⊥. The longitudinal components CκZ and CωZ
decay exponentially with different coefficients, νκ;jj and
νω;jj. The speed cspin receives a viscous correction which
becomes dominant at large wave numbers k. Above the
threshold τRkth ≃ 18=ð5z2s2Þ, cspin becomes imaginary and
the wave no longer propagates.
The approach considered in this paper, based on the

spin polarization tensor ωαβ, does not account for anoma-
lous transport phenomena. The addition of vortical terms
in Nα and Tαβ modifies the wave spectrum corresponding

to the fluid sector, giving rise to a rich spectrum of
excitations, such as the chiral magnetic wave, chiral
vortical wave, chiral heat wave, or helical vortical wave
[19,59,60]. An investigation of the interplay between
anomalous transport effects and the dynamics of the spin
polarization tensor represents an intriguing avenue for
future research.
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APPENDIX A: SPIN TENSOR DECOMPOSITION
FOR GENERAL STATISTICS

We start with the equilibrium phase-space distribution
function which is constructed after the identification of the
collisional invariants for MJ statistics [26,38]

f�eq ¼ exp ½−βp · U � ξ� exp
�
1

2
ωμνsμν

�
; ðA1Þ

where sαβ ¼ 1
m ϵ

αβμνpμsν is the internal angular momentum
and sμ is the spin four-vector [13,61].
The spin tensor (4a) is derived through the moments of

(A1) as [26]

Sλ;μν ¼
Z

dP dSpλsμν½fþeq þ f−eq�;

¼ 2 cosh ξ
Z

dPpλ exp ð−βp ·UÞ

×
Z

dS sμν exp

�
1

2
ωαβsαβ

�
; ðA2Þ

where dS ¼ m
πs d

4sδðs · sþ s2Þδðp · sÞ is the invariant spin
measure [26]. To the leading order in ωαβ the second
integral is expressed as
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Z
dS sμν exp

�
1

2
ωαβsαβ

�
≃
Z

dS sμν
�
1þ 1

2
ωαβsαβ

�

¼ 2s2

3m2
ðm2ωμν þ 2pαp½μων�

αÞ;
ðA3Þ

where the integral in the spin space was performed using
the following relations [26]:

Z
dS ¼ 2;

Z
dS sμ ¼ 0;

Z
dS sμsν ¼ 2s2

3m2
ðpμpν −m2gμνÞ; ðA4Þ

leading to
R
dS sμν ¼ 0 and

Z
dS sμνsαβ ¼ 4s2

3m2
ðm2gμ½αgβ�ν þ 2p½αgβ�½μpν�Þ: ðA5Þ

Using (A3) in (A2) we have [26]

Sλ;μν ¼ 4s2

3m2
cosh ξ

Z
dPpλe−p·βðm2ωμν þ 2pαp½μων�

αÞ;

ðA6Þ

which is the spin tensor for the MJ statistics (4a).
Now we extend the distribution function (A1) to general

statistics, where fσeq ≡ fσeqðyσÞ, and

yσ ¼ yσ;0 þ yspin; yσ;0 ¼ βp ·U − σξ;

yspin ¼ −
1

2
ωμνsμν: ðA7Þ

We consider yspin ≪ yσ;0, such that

fσeqðyσÞ ¼ fσeqðyσ;0Þ þ fσ0eqðyσ;0Þyspin þ…; ðA8Þ

where σ ¼ þ1 and −1 for particles and antiparticles,
respectively. The derivative of the distribution function is
evaluated at vanishing spin chemical potential, such that

f0σeqðyσ;0Þ ¼ −σ
�
∂fσeq
∂ξ

�
β

¼ 1

p · u

�
∂fσeq
∂β

�
ξ

: ðA9Þ

Therefore, Eq. (A2) can bewritten for the general statistics as

Sλ;μνeq ¼ −
2s2

3m2

X
σ¼�

Z
dPpλf0σeqðm2ωμν þ 2pαp½μων�

αÞ:

ðA10Þ

The integral of pλfσ0eq can be written in terms of the number
density via

2
X
σ¼�

Z
dPpλfσ0eq ¼ a1Uλ; a1 ¼ −

�
∂N
∂ξ

�
β

; ðA11Þ

where the factor of 2 accounts for the spin degeneracy
(
R
dS ¼ 2) and we used the perfect fluid form Nα ¼ NUα

for the charge current. The integral involving pλpμpαf0σeq
allows to perform the tensor decomposition

2
X
σ¼�

Z
dPfσ0eqpλpαpμ

¼ a2UλUαUμþb2ðUλΔαμþUαΔλμþUμΔλαÞ; ðA12Þ

where the coefficients a2 and b2 can be obtained by
contracting the above expression with UλUαUμ and
Uλgαμ, respectively:

a2 ¼
�
∂E
∂β

�
ξ

; a2 þ 3b2 ¼ −m2

�
∂N
∂ξ

�
β

: ðA13Þ

Substituting the above results in Eq. (A10) and comparing
with Eq. (4) shows that a1 ¼ − 3

s2 ðA1 þA3Þ, a2 ¼
3m2

2s2 ðA3 − 2A1Þ, and b2 ¼ − 3m2

2s2 A3, where the coefficients
A1 and A3 are given in Eq. (5) and are compatible
with Eq. (A13).

APPENDIX B: IDEAL GAS

The ideal gas is modeled using the MJ distribution,

fσeq ¼ e−βU·pþσξ; ðB1Þ

where β is the inverse of the temperature and ξ ¼ μβ. The
charge currentNμ and energy-momentum tensor Tμν can be
obtained as

Nμ ¼ 2
X
σ

σ

Z
dPpμfσeq;

Tμν ¼ 2
X
σ

Z
dPpμpνfσeq; ðB2Þ

where the factor of 2 accounts for the spin degeneracy. The
integrals yield the perfect fluid form in Eq. (2), whereN , E,
and P are given by [33,62,62]

N ¼ 4sinhðξÞN ð0Þ;
�
E

P

�
¼ 4coshðξÞ

�
Eð0Þ
Pð0Þ

�
: ðB3Þ

The number densityN ð0Þ, pressurePð0Þ, and energy density
Eð0Þ for the spinless and neutral classical massive particles
read [33,62]
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N ð0Þ ¼
T3

2π2
z2K2ðzÞ; Pð0Þ ¼ TN ð0Þ;

Eð0Þ ¼
1

2π2
T4z2½zK1ðzÞ þ 3K2ðzÞ�: ðB4Þ

In the above equations KnðzÞ are the modified Bessel
functions of the second kind [63]

KnðzÞ ¼
zn

ð2nþ 1Þ!!
Z

∞

1

dxðx2 − 1Þn−1
2e−xz: ðB5Þ

The derivatives of E with respect to β and ofN with respect
to ξ are

�
∂E
∂β

�
ξ

¼ −
2m3T2

π2
cosh ξ½zK2ðzÞ þ 3K3ðzÞ�;

�
∂N
∂ξ

�
β

¼ 2m2T
π2

cosh ξK2ðzÞ: ðB6Þ

Taking into account that ð∂E=∂TÞξ ¼ − 1
T2 ð∂E=∂βÞξ, the

functions A1 and A3 introduced in Eq. (5) can be readily
computed:

A1 ¼
4s2mT2

3π2
cosh ξ

�
K3ðzÞ þ

z
2
K2ðzÞ

�
;

A3 ¼ −
4s2mT2

3π2
cosh ξK3ðzÞ; ðB7Þ

in agreement with the results reported in Ref. [41] for the
ideal gas case. Substituting the above results in Eq. (16)
gives Eq. (17).
We now discuss the asymptotic properties of the spin

velocity cspin in Eq. (17) in the nonrelativistic and ultra-
relativistic limits. At large values of their argument, the
modified Bessel functions admit the following asymptotic
expansion [63]:

KνðzÞ ¼
ffiffiffiffiffi
π

2z

r
e−z

X∞
k¼0

akðνÞ
zk

;

akðνÞ ¼
ð1
2
− νÞkð12 þ νÞk
ð−2Þkk! : ðB8Þ

In particular,

K2ðzÞ ¼
ffiffiffiffiffi
π

2z

r
e−z

�
1þ 15

8z
þ 105

128z2
þ…

�
;

K3ðzÞ ¼
ffiffiffiffiffi
π

2z

r
e−z

�
1þ 35

8z
þ 945

128z2
þ…

�
: ðB9Þ

From here, we obtain

cspinðz ≫ 1Þ ≃ 1ffiffiffiffiffi
2z

p : ðB10Þ

For small values of their argument, the modified Bessel
functions of the second kind KnðzÞ of integer order n admit
the series representation [63]

KnðzÞ ¼
1

2

�
z
2

�
−nXn−1

k¼0

ðn − k − 1Þ!
k!

�
−
z2

4

�
k

þ ð−1Þnþ1 ln

�
z
2

�
InðzÞ

þ ð−1Þn
2

�
z
2

�
n X∞
k¼0

½ψðkþ 1Þ þ ψðnþ kþ 1Þ�

×
ðz2=4Þk

k!ðnþ kÞ! ; ðB11Þ

where ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ is the digamma function. The
modified Bessel functions of the first kind InðzÞ have the
series representation

InðzÞ ¼
�
z
2

�
n X∞
k¼0

ðz2=4Þk
k!ðnþ kÞ! : ðB12Þ

Thus, the leading order contributions to K2ðzÞ and K3ðzÞ
are given by the terms in the sum appearing on the first line
of Eq. (B11),

K2ðzÞ ¼
2

z2
−
1

2
þOðz2Þ;

K3ðzÞ ¼
8

z3
−
1

z
þOðzÞ: ðB13Þ

Substituting the above into Eq. (17) gives

c2spinðz ≪ 1Þ ≃ 1

4

�
1 −

z2

8
þOðz4Þ

�
: ðB14Þ

APPENDIX C: FERMI-DIRAC GAS

The FD distribution is

fσeq ¼
1

eβp·U−σξ þ 1
. ðC1Þ

The charge density, energy density, and pressure can be
computed as [64]

0
B@

N

E

P

1
CA ¼ 1

π2
X
σ

Z
∞

m
dEp

0
B@

σE

E2

1
3
p2

1
CA 1

eβE−σξ þ 1
: ðC2Þ
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In the case when ξ < z ¼ βm, the Fermi-Dirac factor
½eβE−σξ þ 1�−1 can be expanded as

1

eβE−σξ þ 1
¼

X∞
l¼1

ð−1Þlþ1e−lβEþlσξ: ðC3Þ

This allows N and E to be computed as

N ¼ 2m2T
π2

X∞
l¼1

ð−1Þlþ1

l
sinhðlξÞK2ðlzÞ;

E ¼ 2m2T2

π2
X∞
l¼1

ð−1Þlþ1

l2
coshðlξÞ½lzK1ðlzÞ þ 3K2ðlzÞ�;

ðC4Þ

which has as its l ¼ 1 contribution the result for the MJ
statistics given in Eqs. (B3) and (B4).
The derivatives of E and N with respect to β and ξ,

respectively, can be calculated as

�
∂E
∂β

�
ξ

¼ −
1

π2β

X
σ

Z
∞

m
dEE2

3pþ E2

p

eβE−σξ þ 1
;

�
∂N
∂ξ

�
β

¼ 1

π2β

X
σ

Z
∞

m
dE

pþ E2

p

eβE−σξ þ 1
: ðC5Þ

In the case when jξj < z, the above integrals can be
computed using the method introduced in Eq. (C3). This
allows the functions A1 and A3 introduced in Eq. (5) to be
expressed as

A1¼
4s2mT2

3π2
X∞
l¼1

ð−1Þlþ1

l
coshðlξÞ

�
K3ðlzÞþ

lz
2
K2ðlzÞ

�
;

A3¼−
4s2mT2

3π2
X∞
l¼1

ð−1Þlþ1

l
coshðlξÞK3ðlzÞ; ðC6Þ

where again the l ¼ 1 term coincides with the expressions
obtained in Eq. (B7) for theMJ statistics. The above result is
useful to derive the nonrelativistic and ultrarelativistic limits
of cspin. In the latter case, the modified Bessel functions can
be approximated by their large z expansion, given in
Eq. (B9). In this case, the terms with l > 1 are penalized
by the exponential function, KnðlzÞ ∼ e−lz=

ffiffiffiffiffi
lz

p
, such that

the l ¼ 1 term already provides a good approximation. For
this reason, the value of cspin corresponding to FD particles
converges to the MJ one, given in Eq. (B10).
In the relativistic limit, z can be assumed to be small

and the modified Bessel functions can be replaced
by their asymptotic expansions in Eq. (B13). Denoting

Sn ¼
P∞

l¼1
ð−1Þlþ1

ln coshðlξÞ, the functions A1 and A3

converge to

A1 ¼
32s2T4

3π2m2
½S4 þOðz4Þ�;

A3 ¼ −
32s2T4

3π2m2

�
S4 −

z2

8
S2 þOðz4Þ

�
: ðC7Þ

Taking into account that S4 ¼ 1
720

ð7π4 þ 30π2ξ2 þ 15ξ4Þ
and S2 ¼ 1

12
ðπ2 þ 3ξ2Þ, we arrive at

c2spin ¼
1

4

�
1 −

z2

8

S2
S4

þOðz4Þ
�
;

¼ 1

4

�
1 −

15z2

2π2
1þ 3ξ2

π2

7þ 30 ξ2

π2
þ 15 ξ4

π4

þOðz4Þ
�
: ðC8Þ

Before ending this section, we discuss another interest-
ing limit relevant for the FD statistics. In the degenerate
case (T → 0 and μ > m), we have

N ¼ p3
F

3π2
; E ¼ 1

8π2

�
pFμðp2

F þ μ2Þ þm4 ln
m

pF þ μ

�
;

where pF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
. Since in the degenerate limit,

E ≡ EðμÞ, we have ð∂E=∂βÞξ ¼ − μ
β ð∂E=∂μÞ, such that

�
∂E
∂β

�
ξ

¼ −
μ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
π2β

;

�
∂N
∂ξ

�
β

¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
π2β

: ðC9Þ

This leads to the approximate formula

| | = 0
| | = 10
| | = 20
| | = 50

0 2 4 6 8 10
0.25

0.30

0.35

0.40

0.45

0.50

z

c s
p

in
F

D

FIG. 3. Comparison between the numerical results for cspin
corresponding to FD statistics and the limits corresponding to the
degenerate Fermi gas derived in Eq. (C10) (thick gray lines, only
when jξj ¼ 10, 20, and 50) and to the small z limit (19) (dotted
black lines).
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c2spin ¼
1

4

ξ2 − z2

ξ2 þ z2=2
; ðC10Þ

which is valid when ξ ≫ z, see Fig. 3 for the comparison
between cspin and the degenerate limit for the FD gas. We
can attempt to link cspin to the sound speed for a degenerate
gas. Taking into account the expression for the pressure,

P ¼ 1

24π2

�
pFμð5p2

F − 3μ2Þ − 3m4 ln
m

pF þ μ

�
; ðC11Þ

it can be shown that

c2s ¼
dP
dE

¼ 1

3
−

z2

3ξ2
: ðC12Þ

Comparing the above expression with Eq. (C10), the
following relation can be established between the spin
wave velocity and the sound velocity in the degenerate limit
for the FD gas

c2spin ¼
c2s=2
1 − c2s

: ðC13Þ
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