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Dense compact star matter is studied by using the skyrmion crystal approach. The chiral effective theory
used includes the lightest scalar meson, the lowest-lying vector mesons, as well as pions. Consistency with
the vector manifestation and the dilaton limit fixed point at high density constrains the anomalous
dimension of the gluon field 1.0 ≲ jγG2 j≲ 2.0 and leads to the significance of the scale symmetry breaking
in the intrinsic parity-odd part of the effective theory. The speed of sound v2s ≃ 1=3 and the polytropic index
γ ≃ 1—both satisfy the conformal limits—after the dilaton limit fixed point at high density, but the matter is
still in the hadronic phase. This means that neither the conformal speed of sound nor the smallness of the
polytropic index can be used as a criterion of the onset of quark matter. These conclusions are significant
for constructing the equation of state of nuclear matter.
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I. INTRODUCTION

Dense nuclear matter relevant to the core of a compact
star is an uncharted domain although it has been studied for
several decades [1–8]. Several fundamental but significant
questions in dense nuclear matter, such as the pattern of
symmetry, the constituents, etc., are not yet well under-
stood. The recent observations of massive neutron stars
with about two times solar mass and detections of the
gravitational waves from binary neutron star mergers and
neutron star–black hole mergers open new laboratories for
dense nuclear matter (see, e.g., [5–8] and references
therein).
The access to dense nuclear matter is mainly based on

the models or effective theories anchored on the sym-
metries of QCD. The parameters are fixed by using the
nuclear matter properties around saturation density. The
properties of dense nuclear matter are predicted by extrapo-
lating such obtained equations of state (EOS) (e.g.,
Refs. [4,9]). Whether this extrapolation is reasonable is
questionable. An alternative access is to implement the
conjectured symmetry/constituent to the construction of
EOS (e.g., Ref. [10]). This construction is highly model
dependent. Therefore, it is valuable to obtain some infor-
mation of dense nuclear matter using a unified model.
It is widely accepted that when considered at the largeNc

limit, baryons can be described as skyrmions [11,12] and,
consequently, skyrmion matter can be regarded as nuclear
matter [13]. The skyrmion approach provides a model
independent way to study nucleon, nuclei, and nuclear

matter in a unified model in the sense of the large Nc limit
[14–16]. As a result, it is interesting to use the skyrmion
approach to extract some model independent information
of dense nuclear matter where the large Nc argument is
applicable [17–19]. It should be noted that since the nuclear
matter at low density is fermion gas or fermion liquid, the
crystalized structure used here is not expected to be valid at
low density, e.g., n≲ 2n0 [20].
Since the isoscalar scalar meson sigma and isoscalar

vector meson omega are indispensable ingredients for the
nuclear force [21,22],we include both in the calculation. The
scalar meson is introduced as the dilaton χ, the Nambu-
Goldstone boson of scale symmetry breaking [23,24]. The
omegameson and its flavor partners rhomesons are included
through the hidden local flavor symmetry [25–27]. Both
symmetries are hidden in the matter free space and are
expected to emerge in the (super-)highly condensed matter.
In summary, the effective theory (denoted as sHLS) used in
thiswork includes the lightest scalarmeson, omega, rho, and
the pseudo-Nambu Goldstone bosons pions.
Based on the Wilsonian renormalization group (RG)

approach, it is found that at high energy scale fπ → 0,
mρ → mπ → 0, i.e., there is a vector manifestation (VM)
fixed point in the hidden local symmetry (HLS) [27,28]. It
is not strange to expect that the VM appears at (super-)high
density. In addition, in the approach to the baryonic matter
using the dilaton compensated chiral effective theory,
others found that there is a dilaton limit (DL) fixed point
which states that the medium modified decay constant
f�σ → 0 in theory at high density [29,30]. We expect both
the VM fixed point and the DL fixed point to be realized in
the skyrmion crystal approach.*ylma@ucas.ac.cn
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The purpose of this work is to study how the scale
symmetry is realized in dense nuclear matter and what are
the possible constituents in the cores of the massive neutron
stars using the skyrmion crystal approach based on sHLS.
The sHLS to be specified later includes the leading order of
the chiral-scale counting, the intrinsic parity-odd terms, as
well as a dilaton potential that breaks the scale symmetry
both explicitly and spontaneously. Although the homo-
geneous Wess-Zumino (hWZ) term, the intrinsic parity-odd
term, is classically scale invariant, we couple the dilaton to
it to obtain the finite energy of the skyrmion matter [31].
Therefore, the classical scale symmetry is broken in the
dilatonic hWZ term. Different from Ref. [31], where
the dilaton couples to the hWZ term in an arbitrary way,
the general coupling between the dilaton and the hWZ term
is anchored to the genuine dilaton approach [23,24].
We found that the requirement 2≲ nDLFP=n0 ≲ 10, with

n0 being the saturation density of nuclear matter and nDLFP
being the onset of the DL fixed point (the same as the VM
fixed point in the present approach) yields the magnitude of
the anomalous dimension of gluon field 1.0≲ jγG2 j≲ 2.0,
which is consistent with [32]. More interestingly, we found
that after nDLFP, the speed of sound v2s → 1=3 and the
polytropic index γ → 1 at density relevant to the cores of
massive neutron stars, both satisfy the constraints from
conformal invariance. This indicates that the speed of
sound of the compact star matter could be v2s ≈ 1=3
[19,33–36], in contrast to the usual conclusion in the
literature [37–39]. Note that the conformal speed of sound
of the dense matter after nDLFP does not mean that the
matter is scale invariant since the trace of the energy-
momentum tensor (TEMT) is not zero but a density
independent constant. Therefore, the matter after nDLFP
is pseudoconformal [6,40–42]. In contrast to the usual
picture of dense nuclear matter in which the conformal
speed of sound v2s ¼ 1=3 and polytropic index γ → 1 are
regarded as the criterions of the emergence of the decon-
fined quark [43], there is no deconfined quark in the core of
massive stars in this pseudoconformal nuclear matter [44].
We organize this paper as follows: In Sec. II, we present

the key points of the sHLS used in this work. In Sec. III, we
discuss the nuclear matter properties calculated from the
skyrmion crystal in detail. Our conclusions and discussions
are presented in Sec. IV.

II. HIDDEN SCALE AND HIDDEN LOCAL
SYMMETRIC LAGRANGIAN

The Skyrme type model, we are going to consider in
the following is based on hidden local symmetry (HLS)
[25–27]. Among a variety of approaches to the model of the
lightest scalar meson [23,24,45,46], here we use the
genuine dilaton approach [23,24] in a minimal way such
that both the chiral and scale symmetries can (partially)
restore in matter.

The dilaton-HLS (denoted as sHLS) can be written
as [23,47]

LsHLS ¼ LsHLS
ð2Þ þ L̃hWZ þ VðχÞ: ð1Þ

The leading chiral-scale counting order Lagrangian
LsHLS
ð2Þ is

LsHLS
ð2Þ ¼ f2π

�
χ

fσ

�
2

Tr½â⊥μâ
μ
⊥� þ af2π

�
χ

fσ

�
2

Tr½âkμâμk�

−
1

2g2
Tr½VμνVμν� þ 1

2
∂μχ∂

μχ; ð2Þ

where the pion fields are UðxÞ ¼ expð2iπ=fπÞ ¼ ξ†LξR and

â⊥μ ¼
1

2i
ðDμξR · ξ†R −DμξL · ξ†LÞ;

âkμ ¼
1

2i
ðDμξR · ξ†R þDμξL · ξ†LÞ: ð3Þ

The covariant derivative DμξL;R ¼ ∂μξL;R − iVμξL;R with
Vμ being the gauge field of the HLS. In this work, we take
hidden local symmetry as Hlocal ¼ Uð2Þ and identify

Vμ ¼ gðρμ þ ωμÞ; ð4Þ

where g is the gauge coupling constant of HLS. In Eq. (2),
the conformal compensator field χðxÞ ¼ fσeσ=fσ with σ
being the dilaton field and fσ being the decay constant of
the dilaton. Throughout this work, we take the chiral limit.
The potential VðxÞ in our approach is responsible for

both the spontaneous and explicit breaking of scale
symmetry. After taking the saddle point equation, we
can write the dilaton potential in terms of dilaton mass as

Vχ ¼ −
f2σm2

σ

4β0

�
χ

fσ

�
4

þ f2σm2
σ

β0ð4þ β0Þ
�
χ

fσ

�
4þβ0

; ð5Þ

where β0 ¼ jγG2 j is the nonperturbative anomalous dimen-
sion of the gluon field which cannot be calculated analyti-
cally from QCD. Note that the dilaton potential (5) is
different from the logarithm form used in Ref. [32]. The
logarithm form in [32] can be reduced from Eq. (5) by
taking β0 ≪ 1, so then Eq. (5) is a more general form of the
potential. We will find that the general expression of
the dilaton potential (5) leads to a more stringent constraint
on the nonperturbative anomalous dimension of the gluon
field.
How the scale symmetry breaking effect is involved in

the intrinsic parity-odd part LhWZ is a subtle question. Here,
for simplicity and without lose of generality, we take a
universal scale symmetry breaking form

LONG-QI SHAO and YONG-LIANG MA PHYS. REV. D 106, 014014 (2022)

014014-2



L̃hWZ ¼
�
ch þ ð1 − chÞ

�
χ

fσ

�
β0
�
LhWZ; ð6Þ

where ch is a free parameter. When ch ¼ 1 or hχi ¼ fσ, the
dilaton compensator disappears and L̃hWZ reduces to
the scale invariant form LhWZ. The hWZ term LhWZ takes
the form

LhWZ ¼ Nc

16π2
X3
i¼1

ciLi; ð7Þ

where in terms of the 1-form and 2-form notations

L1 ¼ iTr½α̂3Lα̂R − α̂3Rα̂L�; ð8aÞ

L2 ¼ iTr½α̂Lα̂Rα̂Lα̂R�; ð8bÞ

L3 ¼ Tr½FVðα̂Lα̂R − α̂Rα̂LÞ�; ð8cÞ

with

α̂L ¼ α̂k − α̂⊥;
α̂R ¼ α̂k þ α̂⊥;
FV ¼ dV − iV2: ð9Þ

Since in the medium hχi�=fσ < 1, when ch ≠ 1 and β0 ≠ 0,
the scale symmetry breaking included in the intrinsic
parity-odd part affected the nuclear force from the vector
meson exchange. In this note, we take ch as well as the
anomalous dimension β0 as unknown parameters and fix
them by requiring the consistency to the VM and DL fixed
points. It should be noted that when ch ¼ 0 and β ¼ 3, a
specific choice of the low energy constants in HLS, one
reduces to the model of Ref. [31].

III. STRUCTURE OF COMPACT STAR MATTER

Now we are ready to calculate the nuclear matter by
using the skyrmion crystal approach. This is accessed by
putting the skyrmions calculated from Lagrangian (1) to a
specific crystal lattice [13]. Here, we take the face-centered-
cubic (FCC) lattice which we know yields the lowest
ground state energy so far [48].
In the numerical calculation, we take the typical values

mσ ¼ 640 Mev and fσ ¼ 240 MeV and run β0 ∈ ð0; 4Þ
and ch ∈ ð0; 1Þ. The low energy constants ci cannot be
determined phenomenologically so far. Here, we choose
c1 ¼ −c2 ¼ 2=3 and c3 ¼ 0 such that

L̃hWZ ¼ gωμBμ

�
ch þ ð1 − chÞ

�
χ

fσ

�
β0
�
; ð10Þ

with Bμ being the topology (baryon) current—the minimal
model [49]. To illustrate the parameter independence of the

existence of the DL fixed point, we compare the results with
another set of values c1 ¼ 2=3, c2 ¼ −1=3, and c3 ¼ 1
which are fixed by the possible Seiberg duality that identifies
the ω field with the Chern-Simons field together with the
consistence of vector meson dominance [50].

A. Dilaton limit fixed point and vector manifestation

We first study the constraints on ch and β0 by requiring
the consistency to the VM/DL fixed point, typically, at
density 2≲ nDLFP=n0 ≲ 10. From Lagrangian (1), one can
obtain

f�π ∝ m�
ρ ∝ f�σ: ð11Þ

Therefore, the VM fixed point is locked to the DL fixed
point. Note that since the general dilaton potential (5) is
different from that used in [32], which is valid only for
β0 ≪ 1, the constraints are found to be 0≲ ch ≲ 0.2 and
1.0≲ β0 ≲ 2.0, consistent with but slightly different from
that obtained in [32].
The density dependence of f�σ=fσ is shown in Fig. 1 with

some typical values of ch and β0. One can easily see that, for
a fixed β0, the bigger ch, the larger nDLFP. This is because,
the bigger ch, the less omega repulsive force is affected by
density and the less omega force is screened therefore the
more difficult it is to arrive at nDLFP. When ch is bigger than
a certain typical value—≈0.2—the omega force is not
screened enough so that the scale restoration cannot
happen. In addition, for a fixed ch, the smaller β0, the
larger nDLFP because of the larger repulsive force from
the omega meson. When β0 is smaller than a typical
value—≈0.5—the DL/VM fixed point cannot appear and
when β0 exceeds a typical value—≈2.0—the DL/VM fixed
point appears at a low density that is inconsistent with
nature.

FIG. 1. Density dependence of the medium modified dilaton
decay constant f�σ .
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The result from both ch ≠ 1 and β0 ≠ 0 implies the
significance of the scale symmetry breaking in the hWZ
part [31,32]. Moreover, it tells us that in between the
low density—which cannot be accessed in the present
approach—and the DL fixed point, the symmetry is not
visible, hence hidden [51].

B. Pseudocomformal dense nuclear matter

In the skyrmion crystal approach, the per-skyrmion
energy E=A in the medium can be calculated at a fixed
crystal size, or equivalently, density [13]. Interestingly, we
found that when n≳ nDLFP, E=A can be nicely fitted by the
following function:

E=A ¼ a

�
n
n0

�
1=3

þ b

�
n
n0

�
−1
: ð12Þ

The fitted curves compared to the crystal data points are
shown in Fig. 2.
From function (12) one can easily conclude that the

speed of sound satisfies the conformal limit

v2s ¼
∂PðnÞ
∂n

.
∂ϵðnÞ
∂n

→ 1=3; ð13Þ

where PðnÞ and ϵðnÞ are, respectively, the pressure density
and energy density. In addition, one finds that the poly-
tropic index γ in the nuclear matter approaches to

γ ¼ d lnP
d ln ϵ

→ 1; ð14Þ

when n ≳ nDLFP. It also satisfies the constraint from
conformal invariance.
How to understand v2s → 1=3 in the dense matter? Does

it mean that the matter becomes a conformal invariant
theory at high density? To have a deeper understanding of
the structure of the dense nuclear matter, let us check the
density dependence of the trace of the energy-momentum
tensor (TEMT) using the fitting function (12). Our result is

plotted in Fig. 3. From this figure, one can easily see that
the TEMT becomes a density independent nonzero con-
stant after nDLFP. This means that, the conformal symmetry
is NOT restored after nDLFP. Using the relation between
TEMT θμμ and the speed of sound

∂θμμ
∂n

¼ ∂ϵðnÞ
∂n

ð1 − 3v2sÞ; ð15Þ

one can see that, since θμμ is independent of density, the left-
hand side of this equation is zero. Because ϵðnÞ varies with
density, ∂ϵðnÞ

∂n ≠ 0, one has 1 − 3v2s ¼ 0, i.e., v2s ¼ 1=3.
Since the TEMT is not zero after nDLFP but the speed of
sound satisfies the conformal limit, the matter is pseudo-
conformal. Therefore, one can conclude neither the emer-
gent of the conformal symmetry nor an onset of the
deconfined quark matter from the conformal speed of
sound and unit of polytropic index.

C. Minimal model vs Seiberg duality

What we have discussed above is based on the minimal
model with parameter choice c1 ¼ −c2 ¼ 2=3 and c3 ¼ 0
[49]. So far, no phenomena can uniquely fix these
parameters. Here, to show that the existence of the DL
fixed point is independent of the choice of ci, we choose
another set of parameters c1 ¼ 2=3, c2 ¼ −1=3, and c3 ¼ 1
[50] (the Karasik model) that is consistent with the vector
meson dominance and the vector meson-gluon duality,
which realizes the Seiberg duality in the strong interaction
sector [52].
We plot f�σ from the minimal model and the Karasik

model in Fig. 4 for ch ¼ 0.2 and β0 ¼ 1.0. One can see that
the value of nDLFP is smaller in the Karasik model than that
in the minimal model. This is because, compared to the
minimal model, there is an extra attractive interaction from
the rho meson in the Karasik model. Effectively, the role of

FIG. 2. Comparison of the crystal data and fitted curves.

FIG. 3. Trace of energy-momentum tensor as a function
of density.
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this extra rho meson interaction is identical to increase β0 in
the minimal model.
More importantly, this comparison indicates that in a

dilatonic Skyrme type model with a proper choice of the
parameters, the existence of DL and VM fixed points is a
genuine conclusion.

D. The cores of massive stars

We finally confront the EOS calculated in the present
work with that constrained from astrophysics, including the
gravitational wave detection. The purpose is to simply give
a qualitative idea since only in the largeNc limit a skyrmion
can be regarded as a baryon. The constraint (green area) is
from [53] with the upper bound of neutron star ≳2.0 M⊙.
Since the EOS from the crystal approach has negative
pressure at n≲ 5.7n0, we only consider the EOS in the
region 5.7n0 ≲ n≲ 10n0.
The comparison of the presently calculated EOS with

the constraint is shown in Fig. 5. We find that at density
n≳ 7.5n0 > nDLFP the EOS falls into the region of the
constraint. This is not difficult to understand if one respects
the fact that a baryon can be regarded as a skyrmion in the
sense of the large Nc limit and the nuclear matter at low
density is not a crystal solid therefore the present numerical
results make sense at large density.

IV. CONCLUSION AND DISCUSSION

We study in this paper the properties of dense nuclear
matter using the skyrmion crystal approach based on sHLS,
including the lightest scalar meson σ, isovector vector
meson ρ, isoscalar vector meson ω, in addition to the
pseudo-Nambu-Goldstone boson π.

We found that the requirement of the scale symmetry
restoration in dense nuclear matter, a natural expectation
from physics, constrains the magnitudes of the scale
symmetry breaking as 0≲ ch ≲ 0.2 and 1.0≲ β0 ≲ 2.0.
We also found that after nDLFP, both the speed of sound
and the polytropic index approach to the conformal limit
v2s → 1=3 and γ → 1 while the TEMT does not vanish but
becomes a density independent constant. Therefore, the
dense nuclear matter is a pseudoconformal one. To have a
qualitative idea, we compare the EOS calculated in the
present approach and the constraints from heavy ion
physics and astrophysics.
Since the TEMT is a nonzero constant, our matter is still

in the hadronic phase after the DL fixed point, not in the
quark phase. This means that, in contrast to [43], in nuclear
matter, neither the conformal speed of sound nor the
smallness of the polytropic index can be used as a sufficient
criterion of the onset of the quark matter. The constant
TEMTafter the DL fixed point may be closely related to the
chiral invariant mass of the nucleon [54], which has been
found significant in constructing the EOS of nuclear matter
[55]. The chiral invariant mass of nucleons may be
attributed to the multiquark condensate and gluon con-
densate in the present approach.
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FIG. 4. Medium modified dilaton decay constant f�σ from the
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FIG. 5. Comparison of the EOS calculated in this work up to
10n0, and that from the constraint from astrophysics.
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