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We investigate the electromagnetic response of a viscous quark-gluon plasma in the framework of the
relativistic Boltzmann equation with current conserving collision term. Our formalism incorporates
dissipative effects at all orders in linear response to the electromagnetic field while accounting for the full
space and time dependence of the perturbing fields. As an example, we consider the collision of two nuclei
in a stationary, homogeneous quark-gluon plasma. We show that for large collision energies the induced
magnetic fields are governed by the response of quark-gluon plasma along the light cone. In this limit, we
derive an analytic expression for the magnetic field along the beam axis between the receding nuclei and
show that its strength varies only weakly with collision energy for

ffiffiffiffiffiffiffiffi
sNN

p ≥ 30 GeV.
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I. INTRODUCTION

The electromagnetic fields generated by colliding rela-
tivistic heavy ions at the Relativistic Heavy Ion Collider
and LHC are some of the largest in nature, on the order
of m2

π=e ≈ 1014 T, but they are very short lived with a time
constant tcoll ¼ 2R=γ ∼ 10−25 s, where R is the nuclear
radius and γ is the Lorentz factor. These fields occur in the
presence of a quark-gluon plasma (QGP), the high temper-
ature matter that forms in the region of overlap between the
colliding ions. Within the plasma, these strong electromag-
netic fields generate a response that scales with Zα, where
Z is the charge of the ions and α is the fine-structure
constant. The polarization current is subject to the strong
dissipative effects in the QGP that render the QGP an
overdamped system which sustains slowly decaying mag-
netic wake fields.
In the past, most analytic calculations [1–7] assumed that

the response of the QGP is static and obtained the late-time

dependence of the induced magnetic field by solving
Maxwell’s equations in the presence of static electric
conductivity in a hydrodynamically evolving QGP. These
approaches ignore the fact that the timescale of variation of
the electromagnetic fields, tcoll, is shorter than the charac-
teristic timescales of the plasma response, given by the
plasma frequency ωp and the collisional damping rate κ, as
shown in Table I. Some numerical calculations [8,9] have
attempted to incorporate the dynamical response of QGP by
numerically solving the coupled magnetohydrodynamic
equations for a conducting quark-gluon plasma in the
presence of the colliding nuclear charges. More recent
calculations [10,11] also incorporate the frequency and
wave-vector dependence of QGP response to electromag-
netic fields by solving the coupled Vlasov-Boltzmann–
Maxwell equations. The disadvantage of these approaches,
apart from the fact that they are prone to numerical
imprecision, is that they do not easily allow for parametric
predictions of how the medium response depends on the
properties of the QGP and energy of the colliding nuclei.
Here, we address this issue by calculating the response of

a QGP to heavy ion fields using the full frequency and
wave vector–dependent relativistic polarization tensor pre-
viously obtained in Ref. [13] by using relativistic kinetic
theory to derive a gauge invariant polarization tensor within
the linear response formalism. As we are interested in
high collision energies, we consider the case of a baryon
number-symmetric plasma. The result of Ref. [13] accounts
for both collective plasma response and viscous effects and
allows us to obtain analytical expressions for the induced
fields and currents that depend parametrically on the
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electromagnetic Debye mass mD and the average collision
rate κ. We expect our results to have validity as an effective
description of the plasma response that is independent of
the detailed assumptions for the QGP transport model.
The average collision rate κ is inversely related to the

mean-free time of partons in the plasma, κ ¼ 1=τrel, also
called relaxation time. We will show in Sec. III C that, for a
particle-antiparticle plasma, current conservation implies
energy-momentum conservation to first order in the plasma
response. The collision term generates damping in the
evolution of the one-particle distribution function fðx; pÞ
in response of the electromagnetic currents and velocity
gradients. This gives the plasma dissipative properties
parametrized by the shear viscosity and the electric
conductivity, which are related to the collision rate κ by
(see, e.g., Ref. [14]),

η ¼ sT
5κ

; σ0 ¼
e2T2

3κ
; ð1Þ

where s denotes the entropy density and T is the temper-
ature. The treatment of conservation laws in transport
coefficients in the relaxation time approximation is dis-
cussed in Ref. [15], in which it is shown that in the case of
electrical conductivity and shear viscosity the Bhatnagar-
Gross-Krook (BGK) term [16] is the only required cor-
rection to the collision term.
Here, we focus on the damping effect of the collision rate

κ on the induced magnetic fields in nuclear collisions. The
collision term generates a nonvanishing conductivity via
the imaginary part of the polarization tensor. This conduc-
tivity manifests itself in poles of the resummed propagator
in the lower complex ω plane that generate long-range tails
or wake fields that extend far beyond the collision time. In
Table I, we collect the relevant timescales of the problem in
ascending order. The collision time tcoll is much shorter
than all other relevant timescales. The collective oscilla-
tions of the plasma are highly damped by the large value of
the relaxation time giving rise to overdamped behavior.

The layout of this work is as follows. We begin by
solving Maxwell’s equations in a homogeneous, stationary,
polarizable medium in the limit of linear response in Sec. II.
We go on to summarize the calculation of the electromag-
netic polarization tensor of QGP following Ref. [13] and
briefly discuss energy-momentum conservation in Sec. III,
in which we also present our choice of the QGP parameters.
We then explore the magnetic fields generated in a nuclear
collision in Sec. IV. We compare the magnetic field
calculated with full space-time dependence in the polari-
zation tensor to previously used approximations and find an
analytic expression for the late-time magnetic field at the
collision center. We summarize our results in Sec. V.

II. MAXWELL EQUATIONS IN QGP

We begin by solving Maxwell’s equations in an infinite
homogeneous and stationary polarizable medium. In this
medium, Maxwell’s equations take on the usual form

∂
½μFνρ�ðxÞ ¼ 0; ∂μFμνðxÞ ¼ μ0JνðxÞ ð2Þ

or in Fourier space using the replacement ∂μ → −ikμ,

−ik½μF̃νρ�ðkÞ ¼ 0; −ikμF̃μνðkÞ ¼ μ0J̃νðkÞ: ð3Þ

The properties of the medium are introduced by writing the
4-current J̃μ in terms of its induced and external parts

J̃μðkÞ ¼ j̃μextðkÞ þ j̃μindðkÞ: ð4Þ

The induced current j̃μind to leading order is given by the
polarization tensor through the covariant formulation of
Ohm’s law [17],

j̃μindðkÞ ¼ Πμ
νðkÞÃνðkÞ; ð5Þ

where Πμ
ν is the polarization tensor and Ãμ is the 4-vector

potential. The electromagnetic tensor F̃μν can be written in
terms of the 4-vector potential

F̃μνðkÞ ¼ −iðkμÃνðkÞ − kνÃμðkÞÞ: ð6Þ

Solving Maxwell’s equations in the Lorentz gauge
k · Ã ¼ 0, one finds the usual expression

ÃμðkÞ ¼ −
μ0
k2

ðj̃μextðkÞ þ j̃μindðkÞÞ; ð7Þ

where μ0 denotes the magnetic permittivity of the vacuum.
We proceed by algebraically solving for the self-

consistent potential that contains the backreaction of the
induced current on the field to all orders in the Debye
screening mass mD. To do this, we first note that in a
homogeneous medium the response depends only on two
independent scalar polarization functions Πk and Π⊥

TABLE I. Approximate timescales relevant to the electromag-
netic response of QGP for an Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV with QGP temperature T ¼ 300 MeV. Timescales are
shown in ascending order.

Timescale Formula Time ( fm=c)

Collision time tcoll ¼ 2R=γ 0.086a

Relaxation time τrel ¼ 1=κ 0.36
Freeze-out time tf 5b

Decay time tσ ¼ 1=σ0 ¼ κ=ω2
p 59c

aCalculated using the Gaussian radius R ¼ 4.33 fm defined
in Eq. (A3).

bEstimated using 2þ 1-dimensional hydrodynamic evolu-
tion [12].

cThe decay time is the large damping κ=ωp expansion of the
plasma oscillation frequency, Eq. (36).
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describing polarization in the parallel and transverse
directions relative to the wave vector k [18]. The polari-
zation tensor may be written in terms of these polarization
functions as

Πμνðk; uÞ ¼ ΠkðkÞLμνðk; uÞ þ Π⊥ðkÞSμνðk; uÞ; ð8Þ

where kμ is the 4-momentum of the field and uμ is the
4-velocity of the medium. Conventions for the longitudinal
and transverse projection tensors, Lμν and Sμν, respectively,
may be found in Ref. [19]. These tensors are reproduced
here for convenience:

Lμν≡ k2

ðk ·uÞ2 − k2

�
kμuν

ðk ·uÞþ
kνuμ

ðk ·uÞ−
k2uμuν

ðk ·uÞ2−
kμkν

k2

�
; ð9Þ

Sμν ≡ gμν þ 1

ðk · uÞ2 − k2
½kμkν − ðk · uÞðkμuν þ kνuμÞ

þ k2uμuν�: ð10Þ

These projections are equivalent to ones defined in
Ref. [18] up to an overall normalization. To simplify the
calculation, the wave-vector k is chosen, without loss of
generality, to point along the third spatial direction (μ ¼ 3):

Πμ
νðω; kÞ ¼

2
666664

− jkj2
ω2 Πk 0 0

jkj
ω Πk

0 Π⊥ 0 0

0 0 Π⊥ 0

− jkj
ω Πk 0 0 Πk

3
777775
: ð11Þ

Utilizing this decomposition, the spatial component of the
potential Ã is expressed as

Ã ¼ Ãkk̂þ Ã⊥; ð12Þ

which implies

Ãk ¼
k · Ã
jkj ; Ã⊥ ¼ Ã − Ãkk̂; ð13Þ

with analogous definitions for the current, j̃k and j̃⊥. Note
that the Lorentz gauge condition ∂μAμ ¼ 0 implies

Ãk ¼
ω

jkj ϕ̃ ð14Þ

with ϕ ¼ A0. The resulting induced charge can be calcu-
lated using the projected polarization tensor (11):

ρ̃indðω; kÞ ¼ Π0
νÃ

ν ¼ −
jkj2
ω2

Πkϕ̃þ jkj
ω

ΠkÃk: ð15Þ

For the Lorentz gauge condition (14), one finds

ρ̃indðω; kÞ ¼ Πkϕ̃
�
1 −

jkj2
ω2

�
: ð16Þ

Similarly,

j̃kindðω; kÞ ¼ Πz
νÃ

ν ¼ Πk
ω

jkj ϕ̃
�
1 −

jkj2
ω2

�
; ð17Þ

expressing current conservation, ∂μjμ ¼ 0. The induced
transverse current is

j⊥indðω; kÞ ¼ Π⊥Ã⊥: ð18Þ

Solving for the potential on both sides of Eq. (7) with the
help of Eqs. (16)–(18) gives the self-consistent solutions,

ϕ̃ðω; kÞ ¼ ρ̃extðω; kÞ
ε0ðk2 − ω2ÞðΠk=ðω2ε0Þ þ 1Þ ; ð19Þ

Ã⊥ðω; kÞ ¼
μ0 j̃⊥extðω; kÞ

k2 − ω2 − μ0Π⊥
: ð20Þ

The gauge condition (14) gives the self-consistent potential
Ãk. These self-consistent potentials determine the electric
and magnetic fields via the usual relations

B̃ðω; kÞ ¼ ik × Ã⊥; Ẽðω; kÞ ¼ −ikϕ̃þ iωÃ: ð21Þ

The magnetic field of interest to us is obtained by Fourier
transforming these expressions back to position space (for
details, see Appendix B). We note here that it is important
to calculate the fields with the resummed propagator in
Eqs. (19)–(20), rather than by using its series representa-
tion, in order to correctly capture the pole structure of
the propagator that governs the late-time dependence of
the magnetic field. For ease of calculation, we specify the
external 4-current using two colliding Gaussians charge
distributions normalized to the nuclear rms radius R and
charge Z,

ρext�ðt; xÞ ¼
Zqγ

π3=2R3
e−

1

R2
ðx∓b=2Þ2e−

1

R2
y2e−

γ2

R2
ðz∓βtÞ2 ; ð22Þ

where γ and β are the Lorentz factor and speed, respec-
tively, and b is the impact parameter of the collision. The
plus and minus signs indicate motion in the �ẑ-direction
(beam axis). This charge distribution corresponds to the
vector current

jext�ðt; xÞ ¼ �βẑρext�ðt; xÞ: ð23Þ

Further details of the external charge distribution for two
colliding nuclei are presented in Appendix A.
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III. QGP POLARIZATION TENSOR

A. Derivation of Πμ
ν

In this section, we derive the polarization tensor, includ-
ing damping, for the idealized case where the QGP is
homogeneous and stationary. We follow the derivation
presented in Ref. [13] for the damped polarization tensor of
an electron-positron plasma. The calculation differs slightly
from Ref. [13], since in QGP we consider three quark
species: up, down, and strange. We start from the Vlasov-
Boltzmann equation for each quark flavor:

ðp · ∂Þffðx; pÞ þ qfFμνpν
∂ffðx; pÞ

∂pμ ¼ ðp · uÞCfðx; pÞ:

ð24Þ

The collision term Cfðx; pÞ in the BGK form is given by

Cfðx; pÞ ¼ κf

�
fðeqÞf ðpÞ nfðxÞ

nðeqÞf

− ffðx; pÞ
�
; ð25Þ

where plasma constituents collide on a momentum-
averaged timescale τrel ¼ κ−1. The collision term is con-
structed such that Eq. (24) retains current conservation
[16]. We show in Sec. III C that energy is also conserved for
the case of a neutral particle-antiparticle plasma at linear
order in the external field.
The induced current jμind can be written in terms of the

phase-space distribution of quarks and antiquarks as

jμindðxÞ ¼ 2Nc

Z
ðdpÞpμ

X
u;d;s

qfðffðx;pÞ− ff̄ðx;pÞÞ; ð26Þ

where Nc is the number of colors, and we sum over the
quark flavors with charges qf. One can calculate the
induced current for small perturbations away from equi-
librium for each quark flavor

ffðx; pÞ ¼ fðeqÞf ðpÞ þ δffðx; pÞ; ð27Þ

Note that the equilibrium contributions fðeqÞf ðpÞ do not
contribute to Eq. (26) because of the opposite sign of
the charges of particles and antiparticles, but the perturba-
tions δf add up due to the change in sign of the external
force qFμνpν:

jμindðxÞ ¼ 2Nc

Z
ðdpÞpμ

X
u;d;s

qfðδffðx; pÞ − δff̄ðx; pÞÞ

¼ 4Nc

Z
ðdpÞpμ

X
u;d;s

q2fδfðx; pÞ

¼ 4NQe2
Z

ðdpÞpμδfðx; pÞ: ð28Þ

In the second line, we pulled out a factor of electric charge
δff ¼ qfδf. The perturbations δf are identical for all quark
species in the ultrarelativistic limit. The result (28) differs
from that found in the case of an electron-positron plasma
by the factor

NQ ≡ Nc

X
f

ðqf=eÞ2 ¼ 2; ð29Þ

where the numerical value holds for three light quarks
flavors (u, d, s). We refer to Ref. [13] for the derivation of
the polarization tensor in terms of integrals over the phase-
space distribution δf because the only difference is the
overall factor NQ.
As noted in the previous section, the polarization tensor

in Eq. (8) may be written in terms of two independent
components: the longitudinal polarization function Πk,
which describes response parallel to wave-vector k, and
the transverse polarization function Π⊥, which describes
response in the plane perpendicular to wave-vector k. When
the μ ¼ 3 (z) axis is chosen along the wave vector k, the
longitudinal and transverse polarization functions relate
to the components of the polarization tensor Eq. (11)
along the coordinate axes as

Πk ¼ Π3
3; Π⊥ ¼ Π1

1 ¼ Π2
2: ð30Þ

In the ultrarelativistic limit, neglecting quark masses,
one finds [13]

Πkðω; jkjÞ ¼ m2
D
ω2

k2

�
1 −

ωΛ
2jkj − iκΛ

�
; ð31Þ

Π⊥ðω; jkjÞ ¼
m2

Dω

4jkj
�
Λ
�
ω02

k2
− 1

�
−
2ω0

jkj
�
; ð32Þ

where Λðω; kÞ is defined as

Λ≡ ln
ω0 þ jkj
ω0 − jkj ; with ω0 ¼ ωþ iκ: ð33Þ

The natural logarithm leads to a branch cut in the complex
ω plane running from −jkj − iκ to jkj − iκ as noted in [20].
The parallel and transverse polarization functions have
the same form as in Ref. [13] except for an overall factor
NQ that is contained in the leading-order electromagnetic
Debye mass for the QGP plasma [21],

mD
2
ðEMÞ ¼

X
u;d;s

q2fT
2
Nc

3
¼ NQ

e2T2

3
≡ CemT2; ð34Þ

where Cem ¼ 2e2=3. In the following, we will use mD as
short-hand notation for the electromagnetic screening mass
since we do not discuss color screening here.

GRAYSON, FORMANEK, RAFELSKI, and MÜLLER PHYS. REV. D 106, 014011 (2022)

014011-4



The polarization tensor may be written in any general
frame by using Eq. (8), but for our purposes, it will be
simpler to carry out calculations in the coordinate system
where k aligns with the z axis so that the polarization tensor
takes the form shown in Eq. (11).

B. QGP parameters

The strength of the plasma response to an external
magnetic field depends on the values of two physical
parameters: the quark damping rate κ and the electromag-
netic screening mass mD. In this section, we provide
estimates for these parameters.
We adopt the perturbative result (34) to estimate mD.

Higher-order corrections to this expression can been
derived from higher-order calculation of the vector spectral
function in thermal perturbation theory (see Ref. [22] and
references cited therein).
The scale of the collisional quark damping κ is much

larger than the electromagnetic Debye mass mD because
it depends on the strong coupling constant αs, not the
electromagnetic coupling α. Solving the dispersion relation

1

ðk · uÞ2 ðk
2 þ μ0Πkðω; kÞÞðk2 þ μ0Π⊥ðω; kÞÞ2 ¼ 0; ð35Þ

see Ref. [19], in the limit k → 0, one finds for the plasma
oscillation frequency [13]

ω�
p ¼ −

iκ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D

3
−
κ2

4

r
: ð36Þ

We see that if κ > 2ffiffi
3

p mD the plasma oscillations are

overdamped.
The collision rate κ is related to the inverse of the mean-

free time of quarks in QGP. In kinetic theory, the mean-free
time is given by the product of the parton density in the
QGP and the quark-parton transport cross section, leading
to the expression [23]

κðTÞ ¼ 10

17π
ð9Nf þ 16Þζð3Þα2s ln

�
1

αs

�
T; ð37Þ

where Nf is the number of flavors, ζðxÞ denotes the
Riemann zeta function, and αsðTÞ is the running QCD
coupling. We model the running of the QCD coupling
constant as a function of temperature in the range T < 5Tc
using a fit provided in Ref. [24],

αsðTÞ ≈
αsðTcÞ

1þ C lnðT=TcÞ
; ð38Þ

where C ¼ 0.760� 0.002. For the QCD (pseudo)critical
temperature, we use Tc ¼ 160 MeV and αsðTcÞ ¼ 0.5.
The QED Debye mass is compared to κðTÞ in Fig. 1.

From κðTÞ in Eq. (37) and the running of the coupling
in Eq. (38), we calculate the static conductivity using
the leading-order electromagnetic Debye mass mD. The
momentum-dependent transverse conductivity σ⊥, which
controls the response of the plasma to magnetic fields, is
related to the imaginary part of the transverse polarization
function Π⊥ as follows [19]:

σ⊥ðω; kÞ ¼ −i
Π⊥ðω; kÞ

ω
: ð39Þ

In the long wavelength limit k → 0, the branch cut in
Eq. (33) shrinks to a single pole at ω ¼ −iκ, and the
conductivity has the simple form

σ⊥ðω; 0Þ ¼ σkðω; 0Þ ¼
σ0

1 − iω=κ
: ð40Þ

We will refer to σ⊥ðω; 0Þ as the Drude model [25]. In the
static limit ω → 0, the parallel and perpendicular
conductivities are the same, and the static conductivity
σ0 is given by

σ0 ¼
m2

D

3κ
: ð41Þ

The static conductivity determines the late-time behavior of
the magnetic field.

C. Energy-momentum conservation

In general, the modified BGK collision term (25)
violates energy and momentum conservation. Rocha et al.
[15] recently showed how energy-momentum conservation
can be restored by introducing a linearized collision
operator that is projected on eigenfunctions of the con-
served quantities with eigenvalue zero. Here, we show
explicitly that for a symmetric particle-antiparticle plasma

FIG. 1. Plot of the QED Debye mass and the QCD dampening
rate κ as a function of temperature. At temperature T ¼ 300 MeV
used in the plots below, κ ¼ 4.86mD.
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the energy-momentum violations cancel at linear order in
the external field.
Recall that the energy-momentum tensor Tμν of the

plasma is given by

Tμν ¼ 2

Z
ðdpÞpμpνðf−ðx; pÞ þ fþðx; pÞÞ; ð42Þ

where the factor of 2 accounts for spin and f�ðx; pÞ
represent the distributions of particles (þ) and antiparticles
(−), respectively. We recall that for Tμν to be conserved the
covariant divergence

∂μTμν ¼ 2∂μ

Z
ðdpÞpμpνðf−ðx; pÞ þ fþðx; pÞÞ ð43Þ

must vanish. In linear response, the distribution functions
f�ðx; pÞ are given by

f�ðx; pÞ ¼ δf�ðx; pÞ þ fðeqÞðpÞ: ð44Þ

Equation (28) indicates that the perturbation δf� is linear
in the quark charge

δf� ¼ �qδf: ð45Þ

This leads to a cancellation of the particle and antiparticle
perturbations in the energy-momentum tensor at linear
order:

∂μTμν ¼ 4∂μ

�Z
ðdpÞpμpνfðeqÞðpÞ

�
¼ 0: ð46Þ

Thus, for a symmetric particle-antiparticle, plasma correc-
tions to the energy-momentum tensor appear only at second
order in external field. This is a general consequence of
CPT symmetry of the medium.

IV. MAGNETIC FIELD IN A
NUCLEAR COLLISION

In this section, we calculate the magnetic field at the
center of the heavy ion collision by Fourier transforming
the momentum space magnetic field (21) to position space.
We find the self-consistent magnetic field using the
potentials given in Eqs. (19)–(20) and model the response
of QGP using the idealized case of a homogeneous,
stationary plasma detailed in Secs. II and III. The external
fields are specified by the moving Gaussian charge dis-
tributions defined in Eqs. (22)–(23).
The magnetic field is of particular interest due to its role

in the separation of electric charge in the QGP through the
chiral magnetic effect (CME) [26]. In the large magnetic
fields that occur in heavy ion collisions, the electric current
generated by the CME could lead to a charge separation
along the direction of the magnetic field. Whether this

effect is observable depends strongly on the size of the
magnetic field. If a magnetic field of meaningful strength
survives until the time of hadronization of the QGP, it could
also lead to a difference in the global polarization of Λ
hyperons and antihyperons [27].
We chose the collision center as the origin of our spatial

coordinate system and align the spatial z axis with the beam
direction. We calculate the magnetic field along the z axis
by Fourier transforming the momentum space expressions
given in Eqs. (20)–(21),

Bðt; zÞ ¼
Z

d4k
ð2πÞ4 e

−iωtþikzz
μ0ik × j̃⊥extðω; kÞ

k2 − ω2 − μ0Π⊥ðω; kÞ
; ð47Þ

to position space. It is convenient to perform the Fourier
integrals in cylindrical coordinates ðx⊥; zÞ. The angular
integral dθ and the integral over momentum along the
beam axis dkz can be performed exactly. The dkz integral is
trivial due to the delta function in the external charge
distribution (A8). The frequency integral dω and the
transverse momentum integral dkρ must, in general, be
done numerically. We present the details of this calculation
in Appendix B. Due to the symmetry of the colliding ions,
the only nonzero component of the magnetic field along the
z axis points out of the collision plane (x–y plane). In our
coordinate system, described in Appendix A, this corre-
sponds to the y-component of the magnetic field. The
numerical results for the position-space magnetic field are
shown in Fig. 3 and compared with earlier results.
To connect to these previous studies, we compute the

magnetic field in position space at the origin in various
levels of approximation defined in Eqs. (39)–(41) and (51).
These conductivities, collected in Table II, refer to different
treatments of the frequency ω and wave vector k depend-
ence of the conductivity σ⊥ðω; kÞ. For instance, solving for
the magnetic field in the limit k → 0 assumes that the
spatial dependence of the external field can be neglected,
not superficially a good approximation because at any
given time t the field varies rapidly with z. The levels of
approximation we consider include the full space and time
dependence of the conductivity σ⊥ðω; kÞ, the Drude model
Eq. (40), and the static response σ⊥ð0; 0Þ. We list these
limits in Eqs. (39)–(41), respectively.

TABLE II. Conductivity models used to calculate the resulting
magnetic field. Each conductivity represents the response of QGP
with a different space-time dependence.

Conductivity Dependence Formula

Full σ⊥ðω; kÞ −iΠ⊥ðω; kÞ=ω
Light cone σ⊥ðω ¼ jkjÞ Eq. (51)
Drude σ⊥ðω; 0Þ σ0=ð1 − iω=κÞ
Static σ0 m2

D=ð3κÞ
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The fourth limit we are considering is the conductivity
along the light cone σ⊥ðω; kz ¼ �ω; kρ ¼ 0Þ. To show the
applicability of this limit, we first recall that the frequency
dependence of the free charge distribution in cylindrical
coordinates (A8) has the form

ρ̃ext�ðω; kÞ ¼ 2πZqe−ðk2ρþk2z=γ2ÞR24 e∓
ikρb cos θ

2 δðω ∓ kzβÞ: ð48Þ

After performing the Fourier transform over the parallel
component of the wave vector kz using the delta function,
the magnitude of the wave vector jkj is effectively set to
the light cone ω ≈ jkj, with a small deviation due to the
transverse dependence of the field,

jkj2 ¼ k2z þ k2ρ → ðω=βÞ2 þ k2ρ: ð49Þ

Inspecting the external charge distribution after this
replacement,

ρ̃ext�ðω; kρÞ ¼ 2πZqe−ðk2ρþω2=ðβγÞ2ÞR2
4 e∓

ikρb cos θ
2 ; ð50Þ

we can see that the size of the deviation from the light
cone due to kρ is of order Oð1=RÞ, while the width of the
current distribution in frequency space is of orderOðβγ=RÞ.
The region of two-sigma support of the Gaussian charge
distribution is shown as the region enclosed by the dashed
line in Fig. 2. The polarization tensor is approximately
constant as a function of kρ in this region. This implies that
one can approximate the integral in Eq. (47) using the
polarization function at kρ ¼ 0, i.e., on the light cone.
This means that the fields of the ions, traveling near the
speed of light, probe the polarization tensor along the light
cone. In this limit, the transverse conductivity near the light
cone is

σ⊥ðω ¼ jkjÞ ¼ i
m2

D

4ω

�
κ2

ω2
ξ ln ξþ iκ

ω
ðξþ 1Þ

�
; ð51Þ

where ξ is defined as

ξ≡ 1 − 2i
ω

κ
: ð52Þ

Since the light-cone conductivity only depends on a single
variable (ω ¼ jkj), it simplifies integrals involved in the
Fourier transform of fields back into position space.
Our results for the magnetic field at the collision center

Byðt; 0Þ are shown in Fig. 3. The right panel of the figure
shows the field at early times (jtj < 0.25 fm=c) on a linear
scale, and the left panel shows the field over a wider time
range on a logarithmic scale. The most general case
σ⊥ðω; kÞ, shown as the dashed red curve in Fig. 3, includes
the full time- and space-dependent response of the medium
to the fields of the colliding ions. The blue dashed
curve shows the magnetic field in the Drude model

approximation (40), where the response depends only on
time. The magnetic field using the light-cone conductivity
is seen as the gray line overlapping the red dashed line in
Fig. 3, where σ0 is defined in Eq. (41). The result of Fourier
transforming this expression is shown as the brown dotted
curve in Fig. 3. Our results differ slightly from those of
Ref. [3] because here we account for the finite size of the
ions and use a slightly different conductivity value.
The magnetic field in the presence of a QGP was

previously calculated using a static conductivity in
Ref. [3]. In this case, the magnetic field in Fourier space
has the form

B̃ðω; kÞ ¼ μ0ik × j̃⊥ext

k2 − ω2 − iωσ0
: ð53Þ

Looking at the left panel of Fig. 3, one can see that every
model of the response function predicts similar values for
the magnetic field approaching the freeze-out time tf. This
is because the static conductivity determines the late-time
dependence of the magnetic field. As we discuss in
Appendix B, we can expect the static solution to match
the full solution when t > 1=κ. The static conductivity
initially overestimates the magnetic field after the external
field begins to fall, since the effect of dynamic screening
is not captured. This matches the qualitative picture given
by the detailed numerical transport calculation done in
Ref. [11]. The full space time–dependent model and the

FIG. 2. The magnitude of the polarization tensor is plotted in
momentum space showing deviations in kρ from the light cone
ω ¼ jkj on the horizontal axis. The contours show lines of
constant magnitude of Π⊥ðω; jkjÞ; lighter shading indicates
increasing magnitude. The dashed line encapsulates the 2σ
support of the external charge distribution. The width of the
external charge distribution in momentum space is

ffiffiffi
2

p
=R in the

transverse direction and βγ
ffiffiffi
2

p
=R along the light cone. One can

see that in the region sampled by the external charge distribution
the polarization tensor is effectively constant as a function of kρ.
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Drude model behave similarly for most times and are
almost identical for t > 1=κ ≈ 0.36 fm=c. The magnetic
field calculated using the polarization tensor evaluated on
the light cone tracks the general solution at all times.
We can use the light-cone conductivity in Eq. (51) to

understand why the Drude model σ⊥ðω; 0Þ matches the
full solution for times t > 1=κ. Late times probe the small
frequency limit of the conductivity. An expansion of
Eq. (51) in ω=κ yields

σ⊥ðω ¼ jkjÞ ¼ σ0ð1þ iω=κÞ − 6σ0
5

ω2

κ2
þO

�
ω3

κ3

�
: ð54Þ

We then compare to the same expansion for the Drude
conductivity

σ⊥ðω; 0Þ ¼
σ0

1 − iω=κ

≈ σ0ð1þ iω=κÞ − σ0
ω2

κ2
þO

�
ω3

κ3

�
: ð55Þ

The lowest-order term, which coincides with the expression
for the Drude model, closely approximates the full solution
when κ ≫ ω as shown in Fig. 4. Since κtf ≫ 1 for the
QGP, the series converges rapidly for times of the order of
the freeze-out time tf.
The simple form of the Drude approximation (40) allows

one to find the poles of the denominator in Eq. (47),
analytically. The frequency integral can then be done using
the residue theorem, allowing for an approximate analytical
expression for the late-time magnetic field. This is done in

Appendix B. In the ultrarelativistic limit γ ≫ 1 and large
times, t ≫ 1=κ gives

ByðtÞ ¼ −μ0
Zqβ
ð2πÞ

bσ0
4t2

e
−b2σ0
16t ; ð56Þ

This result differs from the “diffusive” solution of Tuchin
[3] by a factor 1=4 in the exponent, due to their convention
for impact parameter b → 2b. The reason why κ does not
appear in the expression (56) for the late-time magnetic

FIG. 3. The magnetic field at the collision center as a function of time, with T ¼ 300 MeV for a Au-Au collisions (Z ¼ 79) atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV and impact parameter b ¼ 6.4 fm. The left panel shows the magnetic field on a semilogarithmic scale up to
ct ¼ 5 fm. The right panel shows the early-time magnetic field on a linear scale. At the chosen temperature, the electromagnetic Debye
mass is mD ¼ 74 MeV, and the quark damping rate is κ ¼ 4.86mD. This gives a static conductivity of σ0 ¼ 5.10 MeV. Comparing the
different approximations, we see that all of them have similar asymptotic behavior. Only the Drude conductivity, the light-cone limit
of the conductivity, and the full conductivity σ⊥ðω; kÞ describe the field at early times. Note here that the plasma is considered
homogeneous and stationary. In a more realistic situation, the field would become screened only after the QGP is formed in the
collision.

FIG. 4. Comparison of the conductivity on the light cone to
σ⊥ðω; k → 0Þ, scaled with the static conductivity. We see that at
small ω=κ, i.e., times much larger than 1=κ, both approximations
converge to the static case, while they diverge ω=κ > 1. This
predicts that the Drude model will underestimate screening at
small times, which is exactly what we observe in Fig. 3.
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field lies in the hierarchy of timescales tcoll ≪ 1=κ ≪ tf,
which makes plasma damping irrelevant during the spike of
the external field as well as at freeze-out.
Interestingly, this solution has a finite limit when γ → ∞

as it depends only on β, but not on γ. This property, which
was first observed by Tuchin [3], can be understood as
follows: for late times, the Fourier integral of Eq. (A8) is
dominated by contributions from small frequencies ω, and
it is sufficient to consider the ω → 0 limit of the Fourier
spectrum of the external charge distributions ρ̃f� given in
Eq. (B4). In this limit, Eq. (A8) takes the form

ρ̃ext�ð0; kÞ → 2πZe e−k
2
ρR2=4e∓

ikρb cos θ
2 δðkzβÞ; ð57Þ

which is independent of γ. This occurs because

ρ̃ext�ð0; kÞ ¼
Z

dt
Z

d3xe−k·xρext�ð0; xÞ ð58Þ

integrates over the passage of the entire nucleus at a given
location x and thus is independent of γ as the total charge
is Lorentz invariant. We conclude that, quite generally,
for high collision energies the remnant magnetic field at
late times is determined by the time-integrated action of
the external electromagnetic pulse on the QGP. In a more
realistic calculation, where the QGP is not present for
the entire duration of the pulse, because it is created
during the collision, the remnant magnetic field will be
diminished as only a fraction of the pulse acts on the
QGP. We therefore expect our result to represent an
upper bound to the late-time magnetic field in a realistic
collision scenario.
The approximation used to derive this solution holds for

γβ ≫
ffiffiffiffiffiffiffiffiffiffi
κ=σ0

p
≈ 12. In Fig. 5, we compare Eq. (B15) to the

full numerical result to explore its dependence on γ. One
can see that the ultrarelativistic case (black solid line)
begins to diverge from the numerical solution at around
γ ≈ 15 for the times shown. The early-time magnetic field is
not shown because the initial temperature of QGP will
depend strongly on the collision energy. The times are
chosen such that they cover the range of freeze-out times
predicted for QGP for the range of experimental collision
energies used [28]. We do not show curves for γ < 10
because we expect the effects of chemical potential will
become important, yet here chemical potential μ is set to
zero. In Fig. 5, one can see that the late-time magnetic field
has a very soft dependence on collision energy. The time
at which the magnetic field freezes out, which varies
with collision energy, has a much stronger effect on the
magnitude of the freeze-out field.
As the QGP begins to hadronize at time tf, one may

expect hadrons to be statistically polarized with respect to
the magnetic field. In Ref. [27], the measured difference in
global polarization of hyperons and antihyperons is used
to give an upper bound on the magnetic field at QGP

freeze-out, B ∼ 2.7 × 10−3m2
π for Auþ Au collisions atffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. Looking at Fig. 5, the magnetic field for
γ ¼ 100 at QGP freeze-out tf ≈ 5 fm=c is predicted to be
B ≈ 1.2 × 10−3m2

π , somewhat below this upper bound.
Note that this assumes the polarization rapidly equilibriates
in the plasma. It also neglects any interactions during the
hadron gas phase of the collision.

FIG. 5. Plot of the freeze-out magnetic field for
T ¼ 150 MeV. We expect that around this temperature QGP
will hadronize into a mixed phase [29]. The approximate late-
time solution (56) shown as a black line is compared to
numerical calculations using the full polarization tensor (47).
The approximate solution does not fully match the ultra-
relativistic limit until times t > tσ ≈ 59 fm=c. The magnetic
field is independent of the beam energy over a wide range of γ
but begins to diverge slowly from the ultrarelativistic case at
around γ ≤ 15 for the time window shown in the figure. Lower
beam energies result in a somewhat larger field at late time.

FIG. 6. Comparison of the magnetic field for different values of
quark damping rate or, equivalently, electric conductivity. Larger
values of the damping rate κ represent smaller conductivities and
vice versa as indicated by Eq. (41). The black dashed line and the
solid black line represent the limits of zero and infinite conduc-
tivity, respectively. One can see that as κ increases the asymptotic
value of the magnetic field decreases.
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In Fig. 6, we look at the magnetic field at the origin for
different values of κ. Increasing κ reduces the static
conductivity σ0 which decreases the asymptotic value of
the magnetic field as indicated by Eq. (56). As κ goes to
zero, the results converge to the case of ideal conductivity
σ0 → ∞ where the magnetic field quickly approaches a
constant value. This case was studied in Ref. [2], in which
the authors considered a magnetic field that falls to a
constant value and then decreases with 1=t due to Bjorken
flow. More recent calculations [10,11] solve the Vlasov-
Boltzmann equation numerically with parton-parton
scattering. The magnetic field predicted by Ref. [10] is
around ∼10−4m2

π after t ≈ 2 fm=c, which is 2 orders of
magnitude lower than the value found here (see Fig. 5).
However, the magnetic field predicted by Ref. [11] is
around ∼10−2m2

π after t ≈ 2 fm=c, which is in agreement
with our model.
In Fig. 7, we show a space-time contour plot of the

magnetic field. The field at the higher collision energy
(on the left) has a higher peak magnetic field. For lower
collision energy (on the right), the field is less Lorentz
contracted and leads to a magnetic field at late times that is
a factor of ∼1.1 larger. The freeze-out magnetic field will
increase at lower collision energy mainly due to the
decreasing freeze-out time.

V. CONCLUSION

We have studied the linear response of a stationary,
homogeneous QGP to the electromagnetic field of two
colliding nuclei in relativistic kinetic theory with collisional
damping. As an application, we calculated the magnetic

field between the two nuclei. We showed that the response
to the external field is controlled by the polarization
function along the light cone, Πμ

νðω; jkj ≈ ωÞ. This allowed
us to derive an approximate analytic solution for the
magnetic field that takes into account the dynamical
medium response. We showed that the late-time magnetic
field is mainly determined by the static electric conductivity
of the QGP. Since the remnant magnetic field at hadroni-
zation does not depend strongly on the collision energy, an
experimental measurement of the magnetic field at different
collision energies could permit a determination of the
electrical conductivity of the QGP.
Our calculation can be improved in various ways to

make it more realistic. Such improvements would include
a realistic space-time dependence of the medium (for-
mation and hydrodynamical evolution), nonzero net
baryon density, and viscous corrections to the unper-
turbed phase-space distribution used to calculate the
polarization tensor. These improvements will require
numerical solutions of the linear response equations. It
would also be of interest to study the energy-momentum
deposition into the QGP by the external electromag-
netic field.
Beyond heavy-ion collisions, the homogeneous polari-

zation tensor with collisional damping studied in our
work has applicability in cosmology, where a QGP
existed during the first 10 μs of the early Universe,
and possibly in astrophysics where quark matter can
exist at the core of collapsed stars. In these situations, the
assumption of homogeneity and stationarity of the
medium on the scale of the relevant parameters, mD
and κ, is well justified.

FIG. 7. Space-time plot of the magnetic field on the beam axis (x ¼ y ¼ 0) in eternal (preexistent) QGP with T ¼ 300 MeV for a
Au-Au collision at impact parameter b ¼ 6.4 fm. Left panel: collision energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV; right panel: collision energyffiffiffiffiffiffiffiffi
sNN

p ¼ 17 GeV. The same value of κ is used as in Fig. 3. In a more realistic scenario, where the QGP is formed during the collision, the
field would only create induced currents in the upper light cone.
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APPENDIX A: ELECTRIC CURRENT OF
TWO COLLIDING NUCLEI

Here, we define the free charge and current density used
to describe heavy ion collisions. We wish to model two
nuclei moving at constant velocity �β along the collision
axis (ẑ direction) that are offset by �b=2 within the
collision plane (x̂ direction). For simplicity, we model
the charge distribution as a Gaussian in all directions,

ρext�ðt; xÞ ¼
Zeγ

π3=2R3
e−

1

R2
ðx∓b=2Þ2e−

1

R2
y2e−

γ2

R2
ðz∓βtÞ2 ; ðA1Þ

where the normalization is chosen in such a way that

Z
ρext�ðt; xÞd3x ¼ Ze ðA2Þ

is the total charge of the heavy ion nucleus and γ is the
usual relativistic factor. The Gaussian radius parameter R is
related to the mean squared radius of the nucleus, hr2i at
rest, (γ ¼ 1) by

hr2i ¼ 1

Ze

Z
r2ρext�ðxÞd3x ¼ 3

2
R2; ðA3Þ

which is measured experimentally for a gold nucleus to beffiffiffiffiffiffiffiffi
hr2i

p
≈ 5.30 fm [30].

At time t ¼ 0, both nuclei are localized at the z ¼ 0
plane, and we assume that before and after the collision
they continue moving on a straight line along the z axis.
The Gaussian form of the charge distributions allows us to
evaluate the Fourier transformations easily. The transforms
in the transverse directions are

Z
∞

−∞
dy e−ikyye−y

2=R2 ¼ R
ffiffiffi
π

p
e−k

2
yR2=4; ðA4Þ

Z
∞

−∞
dxe−ikxxe−ðx∓b=2Þ2=R2 ¼ R

ffiffiffi
π

p
e−k

2
xR2=4e�ikxb=2: ðA5Þ

The last two integrals are a bit more complicated because
they are coupled,

Z
∞

−∞
eiωt

�Z
∞

−∞
e−ikzze−

γ2

R2
ðz2�2zβtÞdz

�
e−

γ2

R2
β2t2dct

¼ R
ffiffiffi
π

p
γ

e
−
k2zR

2

4γ2

Z
∞

−∞
eiðω�kzβÞtdt

¼ 2Rπ3=2

γ
e
−
k2zR

2

4γ2 δðω� kzβÞ; ðA6Þ

where delta function appears because both nuclei move at
a constant velocity. Altogether the Fourier transformed
charge distributions are

ρ̃ext�ðω;kÞ ¼ 2πZee−ðk2xþk2yþk2z=γ2ÞR24 e∓ikxb
2 δðω∓ kzβÞ; ðA7Þ

which may be written in cylindrical coordinates

ρ̃ext�ðω;kÞ ¼ 2πZee−ðk2ρþk2z=γ2ÞR24 e∓
ikρb cosθ

2 δðω∓ kzβÞ: ðA8Þ

The current densities are obtained from

j̃ext�ðω; kÞ ¼ �βẑρ̃ext�ðω; kÞ: ðA9Þ

The transverse component of the current is given by

j̃⊥;ext ¼ j̃ext − ðk̂ · j̃extÞk̂
¼ ðẑ − k̂zk̂Þβðρ̃extþ − ρ̃ext−Þ: ðA10Þ

APPENDIX B: MAGNETIC FIELD
AT THE COLLISION CENTER

The magnetic field inside the plasma is given in Fourier
space by

B̃ ¼ ik × Ã ¼ ik × Ã⊥; ðB1Þ

where the potential Ã has been projected into components
transverse and longitudinal to k. In the following, we
represent the wave vector in cylindrical coordinates
k ¼ ðkρ cos θ; kρ sin θ; kzÞ. Using the expression for the
self-consistent vector potential (20), we find for the
magnetic field

B̃ ¼ μ0ik × j̃⊥ext

k2 − ω2 − μ0Π⊥
: ðB2Þ

Given the definition of j̃⊥;ext in Eq. (A10), we can replace
the perpendicular component of the current by its full form,
adding the � components of Eq. (A9):

B̃ ¼ μ0ik × j̃ext
k2 − ω2 − μ0Π⊥

: ðB3Þ
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We now Fourier transform this quantity back to position
space in order to calculate the magnetic field at the collision
center as a function of time. Due to symmetry, the only
nonvanishing component of the magnetic field at this
location will be the y component:

B̃y ¼ μ0
ikxβðρ̃ext− − ρ̃extþÞ
k2 − ω2 − μ0Π⊥

: ðB4Þ

The Fourier transform at any point along the collision axis
(x ¼ y ¼ 0) is given by

Byðz; tÞ ¼
Z

d4k
ð2πÞ4 e

−iωtþikzzB̃yðω; kÞ: ðB5Þ

In cylindrical coordinates, the integral can be written as

Byðz; tÞ ¼
1

ð2πÞ4
Z

kρdkρdωdkzdθe−iωtþikzz

× μ0
iβkρ cos θðρ̃f− − ρ̃fþÞ
k2 − ω2 − μ0Π⊥ðω; jkjÞ

: ðB6Þ

We can use the delta function in the Fourier transformed
current (A8) to trivially perform the kz integral:

Byðz; tÞ ¼ −μ0
Zeβ
ð2πÞ3

Z
dkρdωdθe−iωt

×
2k2ρ cos θ sin ðkρ cos θ b

2
− ωz

β Þe−ðk
2
ρþω2=ðβγÞ2ÞR2

4

ω2=ðγβÞ2 þ k2ρ − μ0Π⊥
�
ω;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ρ þ ω2=β2

q � :

ðB7Þ

We next perform the angular integration

Byðz; tÞ ¼ −μ0
Zeβ
ð2πÞ2

Z
dkρdωe−iωt

×
2k2ρJ1ðkρb2 Þ cosðωzβ Þe−ðk

2
ρþω2=ðβγÞ2ÞR2

4

ω2=ðγβÞ2 þ k2ρ − μ0Π⊥
�
ω;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ρ þ ω2=β2

q � ;

ðB8Þ

where J1 is a Bessel function of the first kind. The remaining
integrals have to be performed numerically. From here
forward, we pull the factor of μ0 into the Debye mass
m2

D, such that the factor of e2 goes to 4πα in Eq. (34).
We can obtain an analytical expression for the Drude

approximation (40) in the limit γβ ≫
ffiffiffiffiffiffiffiffiffiffi
κ=σ0

p
, which is

valid when γ ≫ 12 for the values of σ0 and κ adopted here.
In this limit, we can neglect the first term in the denom-
inator of Eq. (B8), which now takes the simple form

k2ρ − iω
ω2
p

κ − iω
: ðB9Þ

Note that using Eq. (41) we can see ω2
p ¼ m2

D=3 ¼ κσ0.
The integrand of Eq. (B8) then has a single pole at

ω ¼ −i
k2ρκ

k2ρ þ ω2
p
; ðB10Þ

and the frequency integral can be performed by contour
integration in the lower complex plane. Consistently
neglecting the term proportional to ω2=ðβγÞ2 in the
exponent, the integration yields

Byðz; tÞ≈−μ0
Zeβ
2π

Z
dkρ2κk2ρ

ω2
p

ðk2ρþω2
pÞ2

J1

�
kρb

2

�
e−k

2
ρR2=4

×cosh

�
k2ρκ

k2ρþω2
p

z
β

�
exp

�
−

k2ρκt

k2ρþω2
p

�
: ðB11Þ

For late times t, the exponential factor only samples the
small kρ region of the integrand (k2ρ < σ0=t). We can then
neglect kρ with respect to ωp in the integrand provided that
σ0=t ≪ ω2

p, which is satisfied when t ≫ 1=κ ¼ trel ≈
1 fm=c. The expression then takes the simplified form,
yielding

Byðz; tÞ ≈ −μ0
Zeβ
2π

Z
dkρ

2k2ρ
σ0

J1

�
kρb

2

�

× e−k
2
ρR2=4 cosh

�
k2ρ
σ0

z
β

�
e−k

2
ρt=σ0 : ðB12Þ

The integral over kρ can now be performed analytically,
resulting in

Byðz; tÞ ≈ −μ0
Zeβ
2π

b
8σ0

�
e−

b2
16Lþ

L2þ
þ e−

b2
16L−

L2
−

�
ðB13Þ

with

L� ¼ R2

4
þ t� z=β

σ0
: ðB14Þ

At the collision center (z ¼ 0) and for t ≫ σ0R2=4, our
result simplifies to

Byð0; tÞ ≈ −μ0
Zeβ
2π

bσ0
4t2

e−
σ0b

2

16t : ðB15Þ

This result differs from Tuchin’s [3] by a factor 1=4
in the exponent due to their convention for impact
parameter b → 2b.
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