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The Roper resonance, the first excited state of the nucleon, is one of the best established baryon
resonances. Yet, its properties have not been consistently explained by effective models of QCD, such as
the nonrelativistic quark model. In this paper, we propose an alternative approach in the Sakai-Sugimoto
model that is one of the holographic models of QCD. In particular, we analyze the helicity amplitude of the
electromagnetic transitions at the leading of ’t Hooft coupling 1=λ. The model incorporates baryon
structure at short distance by nonlinear mesons surrounded by meson clouds at long distance. We
demonstrate that the recently observed data by CLAS are explained in the present approach.
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In this paper, dynamic properties of nucleons are dis-
cussed in the holographic model of QCD. So far, static
properties have been investigated by this model, and its
success has been shown [1–3] On the other hand, it is also
essential to elucidate the dynamical properties of resonan-
ces and their interactions. In this study, as a milestone of the
new development of the study of dynamical properties in
the holographic model of QCD, the properties of the Roper
resonance, the most difficult and intriguing state to under-
stand, are investigated. This method can be extended to
various nucleon resonances, and further developments are
expected in the future (In fact, we have recently succeeded
in reproducing the decay width of one pion emission of
negative parity excitation N�ð1535Þ using the Sakai-
Sugimoto model [4].).
The Roper resonance N�ð1440Þ is the first excited state

of the nucleon with spin-parity JP ¼ 1=2þ. Despite the
known spin and parity quantum numbers, its properties
have not been explained consistently by the standard model
of hadrons, that is the nonrelativistic quark model. Since it
was first suggested by L. D. Roper in the 1960s [5], its
mass, smaller than the negative parity state N�ð1535Þ, has
long been a puzzle because the quark model predicts the
mass of the Roper resonance larger than that of N�ð1535Þ.

Turning to the electromagnetic interaction, the photo-
and electroproduction experiments revealed a further diffi-
culty of the nonrelativistic quark model [6,7]. In particular,
the transverse helicity amplitude A1=2 of the Roper reso-
nance at the real photon point cannot be reproduced; A1=2

value of the quark model is significantly smaller than the
experimental ones even with the wrong sign. A problem is
also in the strong interaction process [8]; the experimen-
tally observed large decay width of the one pion emission
cannot be explained. Generally, transition amplitudes of
various resonances are not easily explained by the non-
relativistic quark model.
It was pointed out that relativistic effects of the confined

quarks at short distance and pion cloud effects at long
distance are important to improve the above mentioned
problems; the mass ordering, the electromagnetic and
strong interaction transitions [9–12]. For instance, the
reason for the failure of the electromagnetic and strong
transitions in the nonrelativistic quark model is that the
leading terms are suppressed due to the orthogonality of the
wave functions of the nucleon and the Roper resonance in
the long wave length limit q → 0, where q is the momen-
tum carried either by the photon or the pion.
In this paper, we propose an alternative but viable

approach based on the holographic model for baryons that
is the Sakai-Sugimoto model. The model supports instan-
tons for baryons in the four-dimensional space with an extra
dimension [13,14], which is known to be reduced to the
Skyrme model [15]. In this picture, the pion cloud effect is
naturally accommodated at long distance, while the quark
dynamics at short distance by the nonlinear structure of an
instanton. In this paper it is shown that the electromagnetic
transitions of the Roper resonance are well reproduced.
Combining the present results with the previous successes
in the mass and pion decay, we discuss that the holographic
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approach provides an effective method for hadrons that
incorporates important features of low energy QCD.
The Sakai-Sugimoto model (SS model) realizes sponta-

neous breaking of chiral symmetry in terms of brane
dynamics and has been very successful in explaining light
flavor hadron physics [16,17]. The action in the SS model
is composed of the Yang-Mills term SYM and the Chern-
Simons term SCS,

S ¼ SYM þ SCS ð1Þ

where

SYM ¼ −κ
Z

d4xdztr

�
1

2
hðzÞF 2

μν þ kðzÞF 2
μz

�
;

SCS ¼
Nc

24π2

Z
M4×R

ω5ðAÞ; κ ¼ λNc

216π3
¼ aλNc: ð2Þ

Here,Nc is the number of colors, λ the ’t Hooft coupling and
the indices μ, ν ¼ 0, 1, 2, 3 are for the 4-dimensional space-
time. The curvatures along the extra dimension z are derived
from the D4-D8 brane construction to hðzÞ ¼ ð1þ z2Þ−1=3
and kðzÞ ¼ 1þ z2. The 1-form A ¼ Aαdxα þ Âαdxα con-
sists of the flavor SU(2) part Aα and the U(1) part Âα with
α ¼ 0; 1; 2; 3; z, and the field strength is F αβ ¼ ∂αAβ −
∂βAα þ i½Aα;Aβ� with ð−;þ;þ;þ;þÞ convention. The
Chern-Simons 5-form is given byω5ðAÞ¼ trðAF 2−iA3F=
2−A5=10Þ. This term plays an important role in reproducing
the chiral anomaly. The hadron effective model in 4þ 1
dimension corresponds to the holographic dual of massless
QCD, and the gauge field Aα derived from the open string
with both ends on the D8 brane is identified by mode
expansion with an infinite number of vector/axial vector
mesons, including pions.
The dynamics of the baryons are dominated by the

collective motion of the instanton [1], which looks quite

different from the quark model where the baryons are
described by the single particle motions of the quarks.
Notably, in the SSmodel, themasses of theRoper resonances
and the negative parity state are degenerate. This feature is
originated from the collectivemotion of the baryons, and it is
suggested that the SS model captures the features of the
baryon spectrum better than the quark model.
Motivated by this fact, we have studied the decay width

of one pion emission in the SS model and obtained
encouraging results [18]. This success is due to the fact
that, in contrast to the quark model, the decay width is
proportional to nonvanishing matrix element as follows,

hψN� ðx⃗; ρ;…Þjρ2eiq⃗·x⃗jψNðx⃗; ρ;…Þi; ð3Þ

where ρ is the collective coordinate corresponding to the
size of the instanton. The presence of ρ2 evades the
forbidden nature of the leading contribution in the non-
relativistic quark model. This is analogous to the effect of
relativistic corrections in the quark model.
Electromagnetic excitations of nucleon resonances have

long been studied experimentally and theoretically as an
important source of information for understanding QCD.
Helicity amplitudes extracted from experiments distinguish
competing models and provide important features for
understanding QCD. In earlier years, experimental data
were not sufficiently precise and the number of data points
were not enough [19]. However in recent years, mainly
with the advent of the Continuous Electron Beam
Accelerator Facility (CEBAF) at the Thomas Jefferson
National Accelerator Facility (JLab), a large amount of
precise data has been obtained [20–24]. Motivated by this,
several theoretical studies have also been carried out.
The helicity amplitudes are defined by the electromag-

netic current, jμem [25],

A1=2ðQ2Þ ¼
ffiffiffiffiffiffiffiffi
2πα

K

r Z
d3x

�
ψN; s3 ¼

1

2

����ϵðþÞ
μ jμem

����ψN� ; s3 ¼ −
1

2

�
ei

⃗jkjx3 ; ð4Þ

S1=2ðQ2Þ ¼
ffiffiffiffiffiffiffiffi
2πα

K

r Z
d3x

�
ψN; s3 ¼

1

2

����
⃗jkj
Q

ϵð0Þμ jμem

����ψN� ; s3 ¼
1

2

�
ei

⃗jkjx3 : ð5Þ

Here, α is the fine structure constant, Q the four-
momentum transfer of the photon, and the 3-momentum
k⃗ of the photon is assumed to be directed along the x3 axis
in the N� rest frame. Due to the energy conservation law,
we have the following equation, k2 ¼ Q2 þ ðQ2 þm2

i−
m2

fÞ2=4m2
f. In the case of real photons, i.e.,Q

2 ¼ 0, we find

that ⃗jkj becomes K ¼ ðm2
f −m2

i Þ=ð2mfÞ. The photon
polarization vectors are defined by

ϵð0Þμ ¼ 1

Q
ð− ⃗jkj; 0; 0; k0Þ ðlongitudinal modeÞ ð6Þ
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ϵð�Þ
μ ¼ 1ffiffiffi

2
p ð0; 1;�i; 0Þ ðtransverse modeÞ: ð7Þ

Therefore, to calculate this helicity amplitude, we prepare
the wave function and electromagnetic current in the
SS model.
The classical solution for a four-dimensional gauge field

theory is known as the instanton solution, which is usually
scale-invariant. In the present case, the extra dimension,
labeled by z, is curved, which makes the instanton solution
shrink. However, by the repulsive nature of the U(1) term
coupled with the Chern-Simons term, the classical solution
of this action, the instanton solution, is stabilized. An
analytic solution for such a system in a curved space is not
known. However, since the size of the instanton is found to
be proportional to λ−1=2 in this model, the effect of this
curvature is small in the large λ limit. Therefore, the
Belavin, Polyakov, Schwartz, and Tyupkin (BPST) instan-
ton solution [26] is used as an approximate solution of the
SS action [1]. Therefore, for M ¼ 1; 2; 3; z and Pauli
matrices τ.

Acl
Mðx; zÞ ¼ −ifðξÞg∂Mg−1; Acl

0 ¼ 0; ð8Þ

Âcl
M ¼ 0; Âcl

0 ¼ 1

8π2a
1

ξ2

�
1 −

ρ4

ðξ2 þ ρ2Þ2
�
; ð9Þ

where gðx; zÞ ¼ ½ðz − ZÞ − iðx −XÞ · τ�=ξ, with ðX; ZÞ
and ρ the location and size of the instanton, respectively.
The profile function fðξÞ is given by fðξÞ ¼ ξ2=ðξ2 þ ρ2Þ
with ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx −XÞ2 þ ðz − ZÞ2

p
.

In order to obtain the baryon wave function, we need to
quantize the classical instanton solution [1]. For this purpose,
we first consider the motion of the instanton in the moduli
space and make the collective coordinates time-dependent.
Next, we consider a dynamical system inwhich the collective
coordinates of the instanton are the dynamical variables, and
perform the quantization. The relevant time dependent
dynamical variables in the moduli space are, XðtÞ; ZðtÞ,
ρðtÞ and the SUð2Þ orientation Vðt; xM; aðtÞÞ with Vðz →
�∞Þ → aðtÞ related to the rotational variable aðtÞ ¼
a4ðtÞ þ iaaðtÞτa in the isospin and spin space.We implement
the time dependent collective coordinates in the gauge field
as AMðt; xNÞ ¼ VAcl

MðxN ;XN; ρÞV−1 − iV∂MV−1. By sub-
stituting this gauge field for the action (2), integrating over
the space of ðxμ; zÞ, and quantizing these collective coor-
dinates, we obtain the baryon wave functions

ψN ∝ eip⃗·X⃗ψN
radialðρÞe−

M0ffiffi
6

p Z2ða1 þ ia2Þ;
ψN�ð1440Þ ∝ eip⃗·X⃗ψN�

radialðρÞe−
M0ffiffi
6

p Z2ða1 þ ia2Þ; ð10Þ

where

ψN
radialðρÞ ¼ ρ−1þ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þN2

c=5
p

e−
M0ffiffi
6

p ρ2 ; ð11Þ

ψN�
radialðρÞ ¼

�
2M0ffiffiffi

6
p ρ2 − 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N2

c

5

r 	
ψN
radial; ð12Þ

for the spin up proton (I3 ¼ 1=2; s3 ¼ 1=2) withM0 ¼ 8π2κ
and a finite momentum p⃗. Here, baryon states are labeled by
their momentum p⃗ and quantum numbers ðl; I3; s3; nρ; nzÞ,
where l=2 is the equal isospin and spin values; I3, s3 are the
third components of the isospin and spin; and nρ, nz are
the quantum numbers for oscillations along the radial and
z-directions. The Roper resonance is the first radial excited
state, ðl; I3; s3; nρ; nzÞ ¼ ð1; 1=2; 1=2; 1; 0Þ.
The electromagnetic current is defined as the Noether

current of chiral symmetry as follows. Chiral transforma-
tion ðgL; gRÞ ∈ UðNfÞL ×UðNfÞR is realized by the flavor
SUðNfÞ gauge transformation, AM → gAMg−1 − ig∂Mg−1

with gðxμ; zÞ → gL=R ðz → �∞Þ and gðxμ; zÞ ∈ SUðNfÞ
and constants ðgL; gRÞ.
The infinitesimal local gauge transformation of this

gauge symmetry δξAMðxμ; zÞ ¼ ϵðxμ; zÞDMζðxμ; zÞ, leads
to the following five-dimensional Noether current,

JMζ ¼ JMYMζ þ JMCSζ;

JμYMζðx; zÞ ¼ −2κtrðhðzÞF μνDνζ þ kðzÞF μzDzζÞ;
JzYMζðx; zÞ ¼ −2κkðzÞtrðF zνDzζÞ;

JMCSζðx:zÞ ¼ −
Nc

64π2
ϵMNPQRtrðfFNP;FQRgζÞ; ð13Þ

where ζðxμ; zÞ is a uðNfÞ Lie algebra. Since the chiral
symmetry of the SS model is related to the SUðNfÞ gauge
transformation, we define the chiral current as follows [3]:

jμζðxÞ ¼
Z þ∞

−∞
dzJμζðx; zÞ: ð14Þ

Here, to satisfy the 4-dimensional current conservation
law, we impose the following boundary condition,
Jzζðx; z → �∞Þ ¼ 0. With C ¼ 0, 1, 2, 3 and

ψ�ðzÞ ¼
1

2
� 1

π
arctan z →



1 ðz → �∞Þ
0 ðz →∓ ∞Þ ; ð15Þ

we employ ζðx; zÞ ¼ ψ�ðzÞtC with tC ¼ ðI2=2; τ=2Þ, then
the expression of the current (14) leads to left/right current
jμL=RðxÞ. Therefore, by substituting (8) and (9) for (14), the

electromagnetic current jμem ¼ jμ;C¼3
V þ jμ;C¼0

V =Nc with the
vector current jμ;CV ¼ jμ;CL þ jμ;CR are given by

j0emðxμÞ ¼
3

4π

ρ2

ðr2 þ ρ2Þ5=2 I3 þ
15

16π

ρ4

ðr2 þ ρ2Þ7=2 ð16Þ

ELECTROMAGNETIC TRANSITION AMPLITUDE FOR ROPER … PHYS. REV. D 106, 014010 (2022)

014010-3



jiemðxμÞ¼
4πκ

ρ2

�
8

r
−
8r4þ20ρ2r2þ15ρ4

ðr2þρ2Þ5=2
	
ϵijkxjtrðtka−1t3aÞ

þ 15

32π

ρ2

ðr2þρ2Þ7=2
�
−ϵijaxjχaþ2xi

d
dt
lnρ

	
ð17Þ

where χa ¼ −2itrðtaa−1 _aÞ and Ia is isospin operator
Ia ¼ 8π2κρ2trði_aa−1taÞ ði; a ¼ 1; 2; 3Þ.
Although this current is not gauge invariant, the validity

of the results of our calculations are supported by the facts
that the currents reduce to the chiral current of the Skyrme
model in low energy limit and reproduce various static
properties of nucleon [3].
This completes the preparation for calculating the

helicity amplitude of the electromagnetic transition.
There are two parameters in this model, Kaluza-Klein

MassMKK and κ, which we determine according to Ref. [3]
as follows. ForMKK, we determine it to reproduce the N-Δ
mass difference, ð1232 − 939Þ MeV. The currents used in
this paper are derived by taking into account the leading
order of 1=λ.
Therefore, in the Ref. [3], they identify the nucleon mass

with the leading term 8π2κ of the mass formula. The
parameter κ is then determined to reproduce the mass of the
nucleon 939 MeV at the classical level. As a consequence,
the two parameters are MKK ¼ 488 MeV and κ ¼ 0.0243.
However, in this paper, we choose a slightly smaller kappa
value of 0.0225 to take into account the rotation energy for
the mass of the nucleon.
With electromagnetic currents (16) and (17), the helicity

amplitudes from the nucleon to the Roper resonance (4) and
(5) are obtained by using the wave functions (11), (12). The
results are shown in Figs. 1 and 2 as functions of Q2. It can
be seen that the helicity amplitudes obtained from our

model with least parameters achieves global agreement
with experimental data. The results have some remarkable
properties, as follows.
First, we note that our A1=2 at the photon point Q2 ¼ 0

takes a finite negative value. The nonrelativistic quark
model fails to explain this property because of the ortho-
gonality of the radial wave functions of the Roper reso-
nance and the ground state nucleon. Several theoretical
studies have been done to solve this problem, and it has
been argued that relativistic corrections and the effect of the
meson cloud are important [10,11]. In the present approach,
when the current is expanded in powers of ρ, the leading
term starts at the order ρ2. The matrix element survives
because of the ρ2 term. This is the unique feature of the
solitonic description of baryons where the collective
dynamics of the meson field plays an important role.
Second, the experimental data for A1=2 flips its sign at

around Q2 ¼ 0.5 GeV2.
Our result captures this behavior qualitatively well at

around Q2 ∼ 0.7 GeV2.
However, our model calculation underestimates the

experimental data of A1=2 at Q2 ≳ 1 GeV2. This is because
our results are calculated up to order 1=λ. The first term in
(17) is the order of λ, and the second term is the order of
1=λ. Moreover, the model by meson fields should be
applied to the low energy region Q2 ≤ 1 GeV2.
Third, our prediction reproduces qualitatively well the

experimental data for S1=2 but with some overestimate.
In the calculation of S1=2, we can use only the time

component of the current (16) because of the current
conservation law. We consider that the reason that our
prediction of S1=2 with sufficient strength is that it is
dictated by the conserved charge

R
d3xj0em ¼ I3 þ 1

2
.

Finally, we emphasize that there are only two parameters
in this model, κ and MKK . We have determined these
parameters from the masses of the nucleon and the delta.
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With a similar set of parameters, static properties of nucleons
have been studied with good agreement with experimental
data [3]. It is emphasized that by tuning only two parameters
the present approach explains well not only static properties
but also the dynamical properties of baryons.
Furthermore, we expect that the present results can be

further improved by adding corrections to the black brane
of the SS model, The curvature of the SS model is known to
determine the coupling of mesons and nucleons when
projected to 4-dimensions, In order to explain the excited
states of nucleons and their transition processes, including
the Roper resonance, it is known that it is important to
describe them in terms of resonate states considering the
continuum states of hadrons [11]. They confirmed that the
mass and decay width of the Roper resonance can be
reproduced by strengthening the coupling between the
meson and the nucleon. As noted above, in the SS model,

this corresponds to tuning the curvature. In fact, the masses
of the Roper and negative parity resonance are degenerate.
Although this property captures the experimental facts
better than the quark model, it does not completely explain
the mass spectrum of these resonances. Therefore, further
improvement of the curvature of the SS model should be
attempted. It is hoped that this will result in an improve-
ment the present calculations.
In the present analysis, the Roper resonance has been

described as radial density modulation. Hence the results
provide information on the stiffness or compressibility of
hadronic matter, which is an essential input for the study of
high density matter.
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