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We consider the class of inclusive hadron collider processes in which several energetic jets are produced,
possibly accompanied by colorless particles [such as Higgs boson(s), vector boson(s) with their leptonic
decays, and so forth]. We propose a new variable that smoothly captures the N þ 1 to N-jet transition. This
variable, that we dub knessT , represents an effective transverse momentum controlling the singularities of the
N þ 1-jet cross section when the additional jet is unresolved. The knessT variable offers novel opportunities to
perform higher-order calculations in quantum chromodynamics by using nonlocal subtraction schemes.
We study the singular behavior of the N þ 1-jet cross section as knessT → 0 and, as a phenomenological
application, we use the ensuing results to evaluate next-to-leading-order corrections to H þ jet and
Z þ 2-jet production at the LHC. We show that knessT performs extremely well as a resolution variable and
appears to be very stable with respect to hadronization and multiple-parton interactions.
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I. INTRODUCTION

Most of the new-physics searches and precision studies of
the StandardModel at the Large Hadron Collider (LHC) are
carried out by identifying events with a definite number of
energetic leptons, photons, and jets. Jets are collimated
bunches of hadrons that represent the fingerprints of the
high-energy partons (quarks and gluons) produced in the
hard-scattering interaction. A precise description of jet
processes requires observables capable of efficiently captur-
ing the dynamics of the energy flow in hadronic final states.
A classic example is provided by dimensionless “shape
variables” in eþe− collisions [1] and their generalization to
proton-proton collisions [2,3]. These variables are sensitive
to different aspects of the theoretical description of the
underlying hard-scattering process and are designed to
measure the deviation from the leading-order (LO) energy
flow, which characterizes the bulk of the events.
For processes with N jets at the Born level, observables

describing the N þ 1 → N-jet transition are particularly
useful to veto additional jets, for instance, to discriminate
signal over backgrounds. When no jets are produced in
the final state and only a colorless system is tagged, a
prominent example of a dimensionful variable which
inclusively describes the initial-state radiation is given
by the transverse momentum of the colorless system

(qT). Another commonly used variable is ðN-Þjettiness
[4] τN , which is defined on events containing at leastN hard
jets. Requiring τN ≪ 1 constrains the radiation outside the
signal (and beam) jets, effectively providing an inclusive
way to veto additional jets. These resolution variables have
been used to formulate nonlocal subtraction methods for
QCD calculations at next-to-next-to-leading order (NNLO)
and beyond [5,6]. Both qT and τN are also used as
resolution variables in the matching of NNLO computa-
tions to parton shower simulations [7–11].
In the context of nonlocal subtraction schemes, the

efficiency of the calculation is subject to the size of the
(missing) power corrections, which in general depends on
the choice of the resolution variable. For multijet processes,
jettiness is the only viable variable proposed to date, and it
has been successfully used to compute NNLO corrections
to several color-singlet processes [6,12–15] and to the
production of a vector or Higgs boson in association with a
jet [16–18]. Nonetheless, it is well known that τN is affected
by large power corrections. Indeed, even in the case
of the production of a colorless final state, the power
suppressed contributions are linear and logarithmically
enhanced already at next-to-leading order (NLO), see
e.g., Refs. [19–23]. On the other hand, nonlocal subtraction
methods based on qT are subject to milder power correc-
tions, which can even be quadratic [24–26] in the absence
of cuts [27–30].
An important probe of QCD dynamics in the infrared

region is obtained when fixed-order perturbative predic-
tions are supplemented with the all-order resummation of
soft and collinear emissions and eventually compared to
experimental data. This comparison largely depends on
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low-energy physics phenomena, such as hadronization or
multiple-parton interactions (MPIs), which must be pro-
perly included to realistically simulate collider events. In
particular, the constraining power of the observable is
substantially diluted when these effects, which go beyond
a purely perturbative description, become dominant. While
hadronization corrections and MPI effects are mild in the
case of qT , they are particularly significant in the case of
observables like N-jettiness [31].
In this work we introduce a new global dimensionful

observable, which we call knessT , to describe the N þ 1 →
N-jet transition. This variable, which takes its name
from the kT-jet clustering algorithm [32,33], represents
an effective transverse momentum describing the limit
in which the additional jet is unresolved. When the
unresolved radiation is close to the colliding beams,
the variable coincides with the transverse momentum of
the final-state system. When the unresolved radiation is
emitted close to one of the final-state jets, the variable
describes the relative transverse momentum with respect to
the jet direction. As we will show, knessT offers a number of
attractive features. It is affected by relatively mild power
corrections, thereby allowing us to efficiently compute
NLO corrections to processes with a vector or Higgs boson
plus one or more jets. We also show that the new variable is
very stable with respect to hadronization and MPIs. Due to
these appealing properties, knessT might prove useful as a
resolution variable in higher-order computations and in
their matching to parton shower simulations, as well as in
studies of nonperturbative physics associated with the
underlying event in proton-proton collisions.
The paper is organized as follows. In Sec. II we define

knessT and we discuss the formulation of a subtraction scheme
based on this observable. We present numerical results for
Higgsþ jet production and forZ þ 2-jet production at NLO
in Sec. III. We also study the impact of MPI effects and
hadronization on the knessT observable in Z þ 1-jet produc-
tion. Finally, we summarize our findings and discuss future
prospects in Sec. IV. Further details on the perturbative
ingredients needed at NLO are given in the Appendix.

II. DEFINITION AND NLO IMPLEMENTATION

We consider the inclusive hard-scattering process

h1ðP1Þ þ h2ðP2Þ → jðp1Þ þ jðp2Þ þ � � � þ jðpNÞ
þ FðpFÞ þ X; ð1Þ

where the collision of the two hadrons h1 and h2 with
momenta P1 and P2 produces N final-state hard jets with
momenta p1; p2…pN , possibly accompanied by a generic
colorless system F with total momentum pF. The QCD
radiative corrections to the process in Eq. (1) receive
contributions from final states including up to N þ k
partons, where k is the order of the computation.

The dimensionful quantity ðN-ÞknessT for an event featuring
N þm partons (with 1 ≤ m ≤ k) is defined by using the
exclusive kT clustering algorithm [32,33]. We first intro-
duce the distances

dij ¼ minðpTi; pTjÞΔRij=D; diB ¼ pTi; ð2Þ

where D is a parameter of order unity, i; j ¼ 1; 2…; N þm
and ΔR2

ij ¼ ðyi − yjÞ2 þ ðϕi − ϕjÞ2 is the standard separa-
tion in rapidity (y) and azimuth (ϕ) between the (pseudo)
particles i and j. The quantity diB is the “particle-beam”
distance, given by the transverse momentum pTi.

1 The knessT
variable is defined via a recursive procedure through which
close-by particles are combined with each other or with the
beam untilN þ 1 jets remain. The procedure goes as follows:
(1) Compute the minimum of the dij and the diB. If there

are at least N þ 2 final-state pseudoparticles, per-
form step 2. If there are only N þ 1 pseudoparticles,
perform step 3.

(2) If the minimum is one of the diB, then recombine i
with the beam and remove it from the list of
pseudoparticles. The recombination is done starting
from a recoil momentum initialized to prec ¼ 0 at
the beginning of the procedure and collecting
the recoiled momenta with prec → prec þ pi. If the
minimum is a dij then replace the pseudoparticles i
and j with a new pseudoparticle with momentum
pi þ pj. Go back to step 1 with a configuration
which has one pseudoparticle less.

(3) When N þ 1 pseudoparticles are left, if the mini-
mum is one of the diB add the recoil to pi through
pi → prec þ pi and set knessT ¼ pT;i. If instead the
minimum is a dij then set knessT ¼ minðdijÞ.

To the best of our knowledge, knessT has not been
considered before in the literature. The variable depends
on the parameter D entering the distance in Eq. (2). We note
that other prescriptions to treat the recoil (for instance, by
neglecting it in step 3 are in principle possible, and the
differences start to appear from NNLO (i.e., k ¼ 2).
We have computed the singular behavior of the cross

section for the production of a colorless system accom-
panied by an arbitrary number of jets at NLO as knessT → 0.
The computation starts by organizing the terms relevant in
each singular region and removing the double counting,
similar to what is done in Refs. [35,36]. The terms
containing initial-state collinear singularities produce the
so-called “beam” functions, while those containing final-
state collinear singularities give rise to the “jet” functions.
The remaining contributions, describing soft radiation
at large angles, produce the so-called “soft” function. The

1To be precise, Refs. [32,33] use pseudorapidities in the
definition of dij. Here we use rapidities as in the implementation
of the kT algorithm in the FASTJET code [34].
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soft and collinear singularities, regulated by working in
d ¼ 4 − 2ϵ dimensions, cancel out with those of the virtual
contribution, to obtain a finite cross section. The results of
our computation are used to construct a subtraction formula
for the partonic cross section dσ̂FþN jetsþX

NLO as follows:

dσ̂FþN jetsþX
NLO ¼ HFþN jets

NLO ⊗ dσ̂FþN jets
LO

þ ½dσ̂FþðNþ1Þjets
LO − dσ̂CT;FþN jets

NLO �: ð3Þ

The real contribution dσ̂FþðNþ1Þjets
LO is obtained by integrat-

ing the tree-level matrix elements with one additional
parton and is divergent in the limit knessT → 0. The “counter-
term” dσ̂CT;FþNjets

NLO is constructed by combining the singular
contributions discussed above and matches the real con-
tribution in the knessT → 0 limit. Its explicit expression in the
partonic channel ab reads

dσ̂CT;FþNjets
NLO ab ¼ αS

π

dknessT

knessT

��
ln

Q2

ðknessT Þ2
X
α

Cα −
X
α

γα −
X
i

Ci lnðD2Þ −
X
α≠β

hTα · Tβi ln
�
2pα · pβ

Q2

��

× δacδbdδð1 − z1Þδð1 − z2Þ þ 2δð1 − z2ÞδbdPð1Þ
ca ðz1Þ þ 2δð1 − z1ÞδacPð1Þ

db ðz2Þ
�

⊗ dσ̂FþNjets
LO cd ; ð4Þ

where γq ¼ 3CF=2, γg ¼ ð11CA − 2nFÞ=6, CF ¼ 4=3, and
CA ¼ 3 are the QCD color factors with nF the number of
active flavors andD is the parameter entering the definition
of knessT [see Eq. (2)]. The index i labels the final-
state partons with color charges Ti (T2

i ¼ Ci) and
momenta pi (

P
i pi ¼ q, Q2 ¼ q2), while α and β label

initial- and final-state partons. The symbol hTα · Tβi ¼
hMcd→FþN jetsjTα · TβjMcd→FþN jetsi=jMcd→FþN jetsj2 is the
normalized color-correlated tree-level matrix element for
the partonic process contributing to dσ̂FþN jets

LO cd , and a sum
over all the possible final-state parton flavors is understood.

The functions Pð1Þ
ab ðzÞ are the LO Altarelli-Parisi kernels (in

αS=π normalization) [37–39], and the symbol ⊗ denotes
the convolutions with respect to the longitudinal-momen-
tum fractions z1 and z2 of the colliding partons. The square
bracket in Eq. (3) is evaluated by requiring knessT =M > rcut,
where M ∼Q is a hard scale which can be chosen
depending on the specific process under consideration.
The first term on the right-hand side of Eq. (3) is obtained
by convoluting the LO cross section dσ̂FþN jets

LO with the
perturbative function HFþN jets

NLO . The latter contains the
virtual correction after subtraction of the infrared singu-
larities, additional finite contributions of collinear origin
(beam and jet functions) and of soft origin (soft function).
More details on the evaluation of HFþN jets

NLO can be found in
the Appendix. The physical cross section is formally
obtained by taking the limit rcut → 0 in Eq. (3).
We have implemented Eq. (3) to evaluate H þ jet (in the

limit of an infinite top-quark mass) and Z þ 2-jet produc-
tion at the LHC. The real contribution is evaluated with
MCFM [40], while the subtraction counterterm dσ̂CT;FþNjets

NLO

and the HFþN jets
NLO ⊗ dσ̂FþN jets

LO contribution are computed
with a dedicated implementation. In particular, for Hþ-jet
production the required tree-level and one-loop amplitudes
are still obtained from MCFM, while for Z þ 2 jet all

the (color-correlated) amplitudes are evaluated with
OpenLoops [41–43].

III. RESULTS

We consider proton-proton collisions at the LHC at a
center-of-mass energy of 13 TeV. We use the NNPDF31_
nlo_as_0118 parton distribution functions [44] with
αSðmZÞ ¼ 0.118 through the LHAPDF interface [45]. As
for the electroweak couplings we use the Gμ scheme
with GF ¼ 1.16639 × 10−5 GeV−2, mW ¼ 80.385 GeV,
mZ ¼ 91.1876 GeV, and ΓZ ¼ 2.4952 GeV. We define
jets via the anti-kT algorithm [46] with R ¼ 0.4.
We start the presentation of our results with H þ jet

production. We compute the corresponding cross section
through Eq. (3) by setting the parameter D ¼ 1 and
requiring the leading jet to have pj

T > 30 GeV. The
factorization and renormalization scales μF and μR are
set to the Higgs boson mass mH ¼ 125 GeV. In order to
compare our results to those that can be obtained with
jettiness subtraction, we have implemented the correspond-
ing calculation in a modified version of the MCFM code
[40], which we have benchmarked against the numerical
results of Ref. [23]. The 1-jettiness variable is defined as

T 1 ¼
X
i

min
l

�
2ql · pi

Ql

�
; ð5Þ

where ql (l ¼ 1, 2, 3) are the momenta of the initial-state
partons and of the hardest jet present in the event and the
sum over i runs over the final-state parton momenta pi.
Following Ref. [23] we compute T 1 in the hadronic center-
of-mass frame and we set the normalization factors
Ql ¼ 2El. To compare the results obtained with a
1-jettiness cut to those obtained using 1-knessT we define
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the minimum rcut on the dimensionless variable r ¼
T 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ ðpj
TÞ2

q
[r ¼ knessT =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ ðpj
TÞ2

q
].

In Fig. 1 we study the behavior of the NLO correction
Δσ as a function of rcut for the jettiness and knessT
calculations, normalized to the result obtained with
Catani-Seymour (CS) dipole subtraction [47,48] by using
MCFM (which is independent of rcut). Both jettiness and
knessT results nicely converge to the expected result but the
rcut dependence is very different for the two calculations.
The rcut dependence in the case of jettiness is rather strong:
At rcut ¼ 1% the difference with the exact result is about
25% of the computed correction. The observed rcut
dependence is consistent with a logarithmically enhanced
linear behavior. We note that performing the computation
in other frames may improve the convergence [23], but
the functional behavior remains the same. By contrast, in
the case of knessT the dependence is rather mild. At
rcut ¼ 1% the difference with the exact result is only about
3% of the computed correction. The rcut dependence is
consistent with a purely linear behavior (i.e., without
logarithmic enhancements).
We now move to consider Z þ 2-jet production. We

compute the cross section to obtain a dilepton pair in the
invariant-mass range 66 ≤ mll ≤ 116 GeV together with
(at least) two jets with pT > 30 GeV and pseudorapidity
jηj < 4.5. The leptons have pT ≥ 20 GeV and pseudora-
pidity jηlj ≤ 2.5. The minimum separation between the
leptons is ΔRll > 0.2 while leptons and jets have
ΔRlj > 0.5. The factorization and renormalization scales
are set to the Z boson mass mZ. Our calculation is carried
out by using the transverse mass of the dilepton system as a
hard scale M to define rcut and the parameter D is set to

D ¼ 0.1 in this case. We have checked that similar results
can be obtained by choosing different values of D. We
compare our results with those obtained using the imple-
mentation of Z þ 2-jet production of [49], which is based
on CS subtraction. In Fig. 2 (upper panel) we show the pT
distribution of the hardest jet at LO and NLO, computed
with knessT subtraction (using rcut ¼ 0.05%) and with CS.
The central panel shows the relative difference between the
two calculations. We observe an excellent agreement
between the two results at the few permille level. The
three lower panels display the NLO correction Δσ as a
function of rcut in the (anti)quark-gluon, gluon-gluon, and
(anti)quark-(anti)quark partonic channels compared to the
corresponding result obtained with CS. The results nicely
converge to the CS values in all the channels, and also in
this case the rcut dependence is linear.
Finally, in view of potential applications of knessT as a

probe of jet production in hadron collisions, we study the
stability of our new variable under hadronization and MPIs.
We have generated a sample of LO events for Z þ jet with

FIG. 1. The NLO correction Δσ for the H þ jet cross section
computed with 1-jettiness (red points) and 1-knessT (orange). The
rcut dependence is compared to the (rcut independent) result
obtained with dipole subtraction using MCFM (blue).

FIG. 2. Z þ 2-jet production at NLO: knessT -subtraction against
CS. The pT distribution of the leading jet (upper and center) at
LO (yellow) and NLO (orange, knessT ; blue, CS). NLO corrections
Δσ as a function of rcut in the three partonic channels (lower).
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the POWHEG Monte Carlo event generator [50–52] and
showered them with PYTHIA8 [53] using the A14 tune [54].
We use the same setup as for H þ jet, now setting
μR ¼ μF ¼ mZ and adding an additional requirement on
the leading jet rapidity jyj1 j < 2.5. We define the (dimen-
sionless) 1-jettiness event shape τ1 as in Ref. [4]; the jet axis
coincides with the direction of the leading jet reconstructed
using the FASTJET code [34] (which we also use in each step
of the kT clustering algorithm used to compute knessT ). This
simply corresponds to choosing Ql as the partonic center-
of-mass energy Q in Eq. (5) and to defining τ1 ¼ T 1=Q.
Our results are shown in Fig. 3. The left panel shows the
1-jettiness distribution, while the right panel depicts the
1-knessT result. The result obtained at parton level (red) is
compared with the result including hadronization correc-
tions (blue) and further adding MPIs (green). The bands are
obtained by varying μF and μR by a factor of 2 around their
central value with the constraint 1=2 < μF=μR < 2. The
1-jettiness distribution has a Sudakov peak at τ1 ∼ 0.02.
The hadronization corrections are relatively large in the
region of the peak and remain on the order of 10% as τ1
increases. The inclusion of MPIs drastically changes the
shape of the distribution, the peak moving to τ1 ∼ 0.15.
The 1-knessT distribution displays a Sudakov peak at
1-knessT ∼ 15 GeV, similar to what we would expect from
a transverse-momentum distribution of a colorless system
produced by gluon fusion. The position of the peak and the
shape of the distribution remain rather stable when

hadronization is included, while the inclusion of MPIs
makes the distribution somewhat harder. Comparing the
left and right panels of Fig. 3 we clearly see that the knessT
distribution is significantly more stable against the inclu-
sion of hadronization and MPIs, and it is therefore a good
candidate for QCD studies in multijet production at hadron
colliders. This could have maybe been expected,
since variables based on transverse momenta are known
[3] to be mildly sensitive to hadronization and underlying
events.

IV. SUMMARY AND OUTLOOK

In this work we have introduced the new variable knessT to
describe multiple jet production in hadronic collisions. The
variable represents an effective transverse momentum
controlling the singularities of the N þ 1-jet cross section
when the additional jet is unresolved. The knessT variable can
be used to perform higher-order QCD calculations by using
a nonlocal subtraction scheme, analogously to what is done
for qT and jettiness. We have computed the singular limit of
the N þ 1-jet cross section as knessT → 0 and we have used
the results to evaluate NLO corrections to H þ jet and
Z þ 2-jet production at the LHC, finding complete agree-
ment with results obtained with standard NLO tools.
Compared to jettiness, power corrections are under much
better control and are linear, without logarithmic enhance-
ments. This scaling behavior, which is due to the fact that
knessT is an effective transverse momentum, is expected to be
a general property holding for an arbitrary number of jets,
since no additional perturbative ingredients appear beyond
the two jet case.2 The extension of our calculations to
NNLO will require a significant amount of conceptual and
technical work, but our results suggest that, once the
missing perturbative ingredients are available, an NNLO
scheme based on knessT could be constructed and imple-
mented in a relatively simple way, as done for qT in the case
of colorless final states and heavy quarks [27,57,58].
Additionally, the perturbative coefficients entering the
NLO and NNLO calculations are necessary ingredients
to study the all-order structure of knessT at next-to-leading
logarithmic accuracy and beyond. We have also shown that
knessT appears to be very stable with respect to hadronization
and multiple-parton interactions, thereby offering new
opportunities for QCD studies in multijet production at
hadron colliders. Being an effective transverse momentum,
we also expect that knessT could be used as a resolution
variable when matching NNLO computations to kT-ordered
parton showers for processes with one or more jets at the

FIG. 3. Z þ jet at LOþ parton shower: τ1 (left) and 1-knessT
(right) spectra at the parton level (red) and including hadroniza-
tion (blue) or hadronization and MPIs (green).

2We note that such linear scaling behavior has a dynamical
origin and, therefore, cannot be captured through recoil effects as
in Refs. [55,56].
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Born level. We look forward to further studies in these
directions.
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APPENDIX: JET AND SOFT FUNCTIONS

In the following we discuss the evaluation of the
perturbative coefficient HFþN jets

NLO controlling the first term

in the subtraction formula (3). To set up our notation we
consider the N-jet partonic process,

cðpcÞ þ dðpdÞ → jðp1Þ þ jðp2Þ þ � � � þ jðpNÞ þ FðpFÞ;
ðA1Þ

which contributes to Eq. (1) at the Born level. The
perturbative coefficient HFþN jets

cd;ab to be convoluted with

the partonic cross section dσ̂FþN jets
LO cd can be written as

HFþN jets
cd;ab ¼ ðHSÞcdCcaCdb

Y
i¼1;…;N

Ji; ðA2Þ

where Cca and Cdb are the customary collinear functions
appearing in the qT subtraction formalism, Ji are the jet
functions describing collinear radiation to each of the final-
state partons, and an appropriate sum over final-state parton
flavors is understood. The explicit expressions of the jet
functions read

Jfi ¼

8>><
>>:

1þ αSðμRÞ
π

n
CA

h
131
72

− π2

4
− 11

6
lnð2DÞ− lnðDÞ ln

	
Q2

4E2
i



− ln2ðDÞ


i
þ TRnf

h
− 17

36
þ 2

3
lnð2DÞ

io
þOðα2SÞ if f ¼ g

1þ αSðμRÞ
π CF

h
7
4
− π2

4
− 3

2
lnð2DÞ− lnðDÞ ln

	
Q2

4E2
i



− ln2ðDÞ

i
þOðα2SÞ if f ¼ q; q̄

where Ei is the jet energy in the partonic center-of-mass
frame. The contribution ðHSÞcd is given by

ðHSÞcd ¼
hMcdjSjMcdi

jMð0Þ
cd j2

; ðA3Þ

where jMcdi is the UV renormalized virtual amplitude
after the subtraction of infrared singularities,3 which admits
a perturbative expansion in αSðμRÞ. The soft-parton factor S
is an operator in color space and can be expanded as

S ¼ 1þ αSðμRÞ
π

Sð1Þ þOðα2SÞ: ðA4Þ

The computation of the soft factor Sð1Þ can be carried out as
follows. We consider the emission of a soft gluon with
momentum k from the Born level process in Eq. (1). We
work in the partonic center-of-mass frame and we para-
metrize the momentum k as

k ¼ ktðcoshðηÞ; sinðϕÞ; cosðϕÞ; sinhðηÞÞ: ðA5Þ

We start from the squared eikonal current J2 ¼ J2ðkÞ and
we reorganize it to explicitly subtract initial- and final-state
collinear singularities. We obtain

J2sub ¼
�
−Tc · Tdωcd −

X
i

ðTc · Tiωci þ ðc ↔ dÞÞ −
X
i≠j

Ti · Tjωij

�
Θðrcut − knessT;S =QÞ

− ðT2
cω

c
d þ ðc ↔ dÞÞΘðrcut − kt=QÞ −

X
i

T2
iωCiSΘðrcut − knessT;CiS

=QÞ; ðA6Þ

where the sum runs over the labels of the final-state jets (i.e., i; j ¼ 1;…; N). The eikonal kernels ωαβ, ωα
β are defined as

ωαβ ≡ pα · pβ

ðpα · kÞðpβ · kÞ
ωα
β ≡

pα · pβ

ðpα · kÞððpα þ pβÞ · kÞ
ðA7Þ

3Our definition of the finite part of the one-loop amplitude corresponds to the conventions of Binoth Les Houches Accord [59].
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and ωCiS as

ωCiS ≡
pi · ðpc þ pdÞ

ðpi · kÞððpc þ pdÞ · kÞ
; ðA8Þ

where α and β denote initial- and/or final-state partons. In
the expression in Eq. (A6) we have included phase space
constraints that limit the integration to the region
knessT =Q < rcut. In particular, knessT;S is the soft limit of the
resolution variable knessT ,

knessT;S ¼ minð1; fΔRikg=DÞkt; ðA9Þ

while knessT;CiS
is the soft limit of the knessT approximation used

in the final-state collinear limit and it can be expressed, in
the partonic center-of-mass frame, as

ðknessT;CiS
Þ2 ¼ k2t

coshðηÞ2ðcoshðη − yiÞ − cosðϕ − ϕiÞÞ
coshðyiÞD2

:

ðA10Þ

The integration of the initial-state collinear contributions
produce the customary collinear coefficient functions
Cca, while the integration of the final-state collinear
contribution produces the jet functions Ji. The leftover
soft contributions can be obtained by integrating the
subtracted soft current J2sub over the radiation phase
space. More precisely, the soft integrals in Eq. (A6)
produce 1=ϵ poles and logarithmic terms in rcut. In order
to analytically extract them we define a new subtracted
current as follows:

J2sub ¼ J2sing þ ðJ2sub − J2singÞ≡ J2sing þ J2fin; ðA11Þ

where J2sing is still singular in the soft-wide-angle limit,
while

½J2fin�≡ 8π2μ2ϵ
1

ð2πÞD−1

Z
dDkδþðk2ÞJ2fin ðA12Þ

is finite in D ¼ 4 dimensions and can be computed
numerically. The soft-singular term J2sing can be defined as

J2sing ¼
X
i

Tc · Tiððωc
d − ωc

i ÞΘðrcut − kt=QÞ þ ðωCiS − ωi
cÞΘðDrcut − ki⊥=QÞÞ þ ðc ↔ dÞ

þ
X
i≠j

Ti · TjðωCiS − ωi
jÞΘðDrcut − ki⊥=QÞ; ðA13Þ

where the sum runs over the labels of the final-state partons and ki⊥ is the transverse momentum of kwith respect to the i-jet
direction (in the partonic center-of-mass frame),

k2i⊥ ¼ k2t
2ðcoshðη − yiÞ − cosðϕ − ϕiÞÞðcoshðηþ yiÞ þ cosðϕ − ϕiÞÞ

coshð2yiÞ þ 1
: ðA14Þ

The integration of J2sing produces poles in 1=ϵ and logarithmic terms in rcut. The 1=ϵ poles, together with the 1=ϵ and 1=ϵ2

poles coming from the initial- and final-state collinear integrals, cancel the corresponding poles in the virtual contribution.
The logarithmic contributions in rcut produce the counterterm in Eq. (4). The finite remainder from the integration of J2sing is

½J2sing�fin ¼ −
1

2

�X
i

Tc ·Ti

�
Li2

�
−
ðpd ·piÞ
ðpc ·pdÞ

�
þLi2

�
−
ðpd ·piÞðpc ·pdÞ
ððpc þpdÞ ·piÞ2

�
þ 2 lnðDÞ ln

�ðpc ·piÞðpc ·pdÞ
ðpi · ðpc þpdÞÞ2

��
þ ðc↔ dÞ

þ
X
i≠j

Ti ·Tj

�
Li2

�
−

ððpc þpdÞ ·pjÞ2
4ðpc ·pdÞðpi ·pjÞ

ð1− cos2θijÞ
�
þ 2 lnðDÞ ln

� ðpi ·pjÞðpc ·pdÞ
pi · ðpc þpdÞpj · ðpc þpdÞ

���
; ðA15Þ

where

cos θij ¼ 1 −
2ðpc · pdÞðpi · pjÞÞ

pi · ðpc þ pdÞpj · ðpc þ pdÞ
: ðA16Þ

Finally, the soft factor Sð1Þ can be evaluated as

Sð1Þ ¼ ½J2sing�fin þ ½J2fin�: ðA17Þ
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