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Multicomponent second-order dissipative relativistic hydrodynamics with
binary reactive collisions

Jin Hu

! and Shuzhe Shi®>"

1Department of Physics, Tsinghua University, Beijing 100084, China
*Center Jfor Nuclear Theory, Depart of Physics and Astronomy, Stony Brook University,
Stony Brook, New York 11784-3800, USA

® (Received 29 April 2022; accepted 1 July 2022; published 13 July 2022)

We derive the multicomponent second-order dissipative relativistic hydrodynamic equations using the
moment-expansion method. By computing the transport coefficients using hard-sphere interactions, we
investigate the role of multiple components and the reactive collisions. We find that both of these factors
increase the effective cross section and hence decrease the transport coefficients and relaxation times. We
further compute such transport properties using leading-order perturbative QCD cross sections. For both
types of cross sections, we find that the ratio between vector current relaxation time and conductivity for a
multicomponent fluid is notably different from that for a single-component fluid. Therefore, the current
study provides a more applicable guideline for such a ratio in phenomenological hydrodynamics

simulations.
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I. INTRODUCTION

Relativistic hydrodynamics has been successfully
applied to describe the evolution of the fireball created
in relativistic heavy-ion collisions and determine the
properties of quantum chromodynamics (QCD) matter
by analyzing experimental data produced at BNL-RHIC
and CERN-LHC [1-9]. As part of the continuous effort of
searching for the QCD critical point, the physics of high
density baryonic matter has long attracted extensive atten-
tion and is one of the main tasks at the future FAIR and
NICA facilities. Noting that in the collision of heavy nuclei,
especially peripheral collisions where the effect of neutron
skin starts to engage, the system created could be high in
isospin chemical potential, owing to the imbalance between
the number of neutrons and protons. The cross effects could
be enhanced by large baryon and isospin chemical potential
and give rise to observable experimental phenomena.
Therefore, a multicomponent dissipative hydrodynamic
theory respecting the microscopic property, especially
reactions that change the identity of in-coming particles,
is called for.

As a low-energy effective theory of large distance and
timescale, relativistic hydrodynamics can be derived from
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the microscopic transport theory—the Boltzmann equation.
The pioneering work constructing causal stable second-
order relativistic hydrodynamics was initiated by Israel and
Stewart [10], who developed the moment method originally
formulated for nonrelativistic fluids [11,12]. The theory of
Israel and Stewart (IS) successfully fixes the acausal
problem [13] long existing in the first-order theory of
hydrodynamics and allows a numerically stable implemen-
tation, which leads to important applications in modeling
relativistic heavy-ion collisions and astrophysics.
Nevertheless, the IS theory was originally constructed for
a simple system, which equivalently means that the appli-
cation range is limited to a single component or minor extra
effects introduced by multicomponents, for instance, the
cross effects originating from interactions between particles
of various species. Considering that fluid systems are
complex as far as their components are concerned, it is
natural to derive the hydrodynamic equations for the case of
multicomponent mixture respecting theoretic completeness
and consistency. There are pioneer works deriving multi-
component viscous hydrodynamics by extending the IS
theory to multicomponent mixtures [14—16], applying the
renormalization group method [17], or taking the relaxation
time approximation which assumes the same relaxation time
for all microscopic processes [18]." On the other hand, it has

'In the preparation of the current manuscript, we note that in a
recent, parallel work [19], the multicomponent dissipative hydro-
dynamic theory is derived using the same method. See the note
after the Summary and Outlook for a detailed description of
similarity and distinction.
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been found that the detailed coupling between the diffusion
currents is important in determining the features of multi-
component systems [20-23]. It is crucial to construct the
hydrodynamic theory with correct structure of conserved
currents evolution and evaluate the transport coefficients
respecting the microscopic details. The momentum expan-
sion method [24] is such a method that starts from the
microscopic transport theory, naturally connects the viscous
corrections in microscopic and macroscopic states, and
henceforth derives the equation of motion for the macro-
scopic dissipative currents.

In this work, we derive the dissipative multicomponent
hydrodynamic equations with binary reactive collisions by
employing the momentum expansion method. The results
of the hydrodynamic equations are presented in Sec. IIL.
Then we further take the hard-sphere potential to system-
atically study the effect of elastic and inelastic binary
collisions between different components (Sec. III A) and
take the leading-order perturbative QCD cross sections to
study the transport properties in a realistic system (Sec. II1
B). After the summarizing in Sec. IV, we further supple-
ment Appendixes discussing details about moment expan-
sion method (Appendix A), null-modes caused by the
matching conditions (Appendix B), calculation of the
evolution matrix (Appendix C), details of the hard-sphere
(Appendix D) and LO pQCD (Appendix E) interaction
integrals.

The conventions and notations in this paper are listed as
follows.

(i) Superscript/subscripts: We use Greek letters to label
index of the Lorentz tensors, while Latin letters
starting in the alphabet tables a, b, - - - to represent
conserved charges, intermediate letters i, j, k, [ to
represent gluon and different flavors of quarks, r
and m for the energy weighting in the momentum
integrals.

(ii) Numbers: N is number of particle species, N’ is
number of conserved charges, and N, is the order of
s-rank tensors kept in the moment expansion.

(iii) Projected tensors: We used mostly negative signa-
ture for the metric. We denote the spatial projection
operator in the fluid rest frame as A = ¢ — u'u".
We then define the following notations the projected
tensors XU i) = ALITH XV the symmetrized
tensors X#) = (X* 4 X**)/2 and the antisymme-
trized tensors X = (X — X /2.

(iv) Derivatives: We introduce the comoving time deriva-
tive D = u¥d, and spatial derivative V¥ = A*9,.
Then, one can define the expansion rate 6 =V ,u¥,
the shear stress tensor o** = V¥4, and the vorticity
tensor @ = ViuY,

(v) Momentum integrals: We use the following 3short—
hand for the momentum integrals [ [-] = [ (ziﬁ [,

and [, [1= [T pefin) -

(vi) We also introduced the inverse temperature
p= % scaled chemical potentials a, =%, and the
comoving energy for a particle with momentum

p,E,=u-p.

II. MULTICOMPONENT HYDRODYNAMIC
EQUATIONS WITH INELASTIC REACTIONS

A. The bridge between microscopic
and macroscopic theories

The hydrodynamic theory is a macroscopic theory to
describe the dynamical evolution of a system based on the
conservation of energy, momentum, and all conserved
charges,

9,T" =0,

ON;e =0, a=12..N, ()

as well as the second law of thermodynamics,
9,8" > 0. (2)

N' is the number of conserved charges, which is less than or
equal to the number of components, N’ < N. Here, T** and
N are respectively the energy-momentum tensor and
charge currents. They are functions of space-time coor-
dinate (x) and can be decomposed into

Ni = nau* + Vi, (3)

™ = eutu’ — (P + IT)A* + o
+ WHW + Wouk, (4)

Here, u* is the four-velocity of the fluid, A* = ¢* — u'u”
is the spatial projection operator in the fluid rest frame, n, is
the ath charge density, € the energy density, P the pressure
which determined via the equation of state, P = P(e, n,).
Meanwhile, V% is the diffusion current, z** the shear-
viscous stress tensor, I1 the bulk pressure and W* the heat
flow. The latter four quantities are viscous corrections,
characterizing how the system is away from local equilib-
rium. They vanish when and only when Eq. (2) takes the
equality, i.e., there is no entropy production. Additionally,
the vector and tensor viscous components are defined to be
orthogonal to velocity, i.e., Viau, = Wru, =0, n#*u, = 0,
and 7*u, = 0.

The time evolution of viscous terms is determined by the
underlying microscopic process. In kinetic theory, the
macroscopic hydrodynamic quantities can be expressed
as the momentum integrals of the microscopic distribution
function

N
Vi) = > dus [ Pt (5)
k=1 P
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T (x de/P” “filx. p), (6)

where k = 1,2,3,..., N labels the type of particle, f; =
Sfi(x, p) is the distribution function of the kth component,
d, the degeneracy factor, g, the ath charge carried by the
kth component.

To describe the evolution of the viscous terms, one
would need to take into account the nonequilibrium
corrections not only at the macroscopic level but also at
the microscopic level. Thus, we employ the method of
moments developed in [24] and [25] and express the
distribution function as an equilibrium one plus corrections,

filxp) = 10+ 8f, (7)

No
5fe = fOFO [Z HO(E, ) pun ()

+y H(E,) kZ(X)mﬂp@} : (8)

where E, = u - p is the comoving energy for a particle with

momentum p, f,(co) = is the thermal distribution

and f (©) —af ko is the statistical factor with a =1
(a = —1) for fermions(bosons). Here, f = = and a =7 are
respectively the inverse temperature and scaled chemical
potential. pf!"*’s are the space-time dependent moments

characterizing, locally, how the microscopic state is devi-

1
P g

ated from the thermal equilibrium. HS{?’S are polynomials
of energy in the fluid comoving frame. With their explicit
forms and properties given in Appendix A, one can find
that

o = d / Eppi" - piof ©)
P

It is worth noting that f ,(CO) is the equilibrium correspon-
dence of f;, which cannot be uniquely determined. A

natural definition of f§€0> is to ensure that it gives the same
energy density and charge densities as fy, i.e.,

de/ - p)*filx, p)
= de/(u-p)zf;(?)(x,p),

1

(10)

and

x) Ezdk%k/(”‘P)fk(X,p)
k=1 p
:de%k/(u-p)fio)(x,p).
k=1 )4

With these matching conditions (10) and (11), it is not hard
to find that the viscous terms in the hydrodynamic
equations can be expressed by the viscous moments that
appeared in the microscopic distribution functions,

(11)

= —Zm—% (12)

VZ = ZQak/)/Zo’ (13)
k

(14)

= ZP%,
k

Now, the only remaining equilibrium quantity is the fluid
velocity. The determination of #* is more subtle. Here, we
adopt the common choice in high-energy physics that
requires the velocity vector to be the eigenvector of the
stress tensor,

THu, = eut. (15)
This choice is refereed to as Landau frame, and it
automatically leads to the vanishing of the heat flow,
W#H = 0. It is not hard to find that the matching conditions,

(10), (11), and (15), and place the following constraints on
the moments,

N
Zpkz =0, (16)
k=1
N

Z GarPr1 = 0, (17)

k=1
N
> =0 (18)
k=1

B. Evolution equations

With the above preparations, now we move on to derive
the evolution equations for the hydrodynamic quantities.
First, we obtain the equations of motion for n,, € and u* by
simplifying the conservation equations (1),

For completeness, we note that when taking the Eckart frame,
the constraint (18) would become > ¥ | g fho = 0.
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Dn, = -n,0 —0,V4, (19)
De=—(e+p+1)0+ e, (20)
. Vﬂp —IDu, + V},H — Aﬂﬁaana/’ 1)
s e+ P ’
and hence those of a, and p,
DC{I Dnl
=T , (22)
D(ZN/ D}’lN/
Dp De
where
on on -1
o005
1o . 0o
T = 0 an/ 0nN/ ’ (23)
T day op
% .. e
da; dayy ap

and the derivative is carried out with respect to one variable
with others fixed. In above equations, we have introduced
the comoving time derivative D = u"d, and spatial deriva-
tive V¥ = A"9,, as well as the expansion rate § =V u*

and the shear stress tensor o** = V#y*).

To derive the evolution equation of the dissipative
currents, one would need the evolution of the microscopic
states, which is governed by the relativistic Boltzmann
equation:

Z Rilfel: (24)

Pk yfk X, Pk

N’

with the collision operator containing both the gain term
and the loss term:

di & o 2 2
Ry=23 /,, AR )

ij=1

S Wkl—>ij(Pth|Pk7P1)v (25)

where d, represents the degeneracy of [ particle, and the
1/2 factor is introduced to avoid double-counting when
i #j, and to compromise the symmetric factor when
i=j=k=1 (single-component elastic scattering).
Wiiij(Pi» Pl Pr- 1) is the transition rate describing the
scattering process of k/ — ij and will be abbreviated as
Wiiij hereafter. In this work, we focus on two-to-two
scatterings only and ignore the particle number changing
reactions. When there is no reaction threshold, the last step
can be safely implemented, which is exactly the case we
will discuss. However, we do include inelastic scattering
that changes particle’s identity. To be explicit, reactive
collisions—such as ¢ + § — g + g—and elastic scattering
between different components—Ilike g + g — ¢ + g—are
included.

Then, we implement the moment expansion (7) and
rewrite the Boltzmann equation as follow,

0 1 0
Déf, = -DfY — E;' pyV, £

N
SV By ST Rylfil. (26)
1

After a tedious but straightforward calculation, we obtain
the motion equations for the moments of different types.
The motion equations for scalar, vector, and tensor
moments respectively read

0
Dpiy — Ryt — a/Er)a = (JI;O Z Gak T an41 — Jl;+1,oTN’+1,N’+1> x (110 - #0,,)

a

N/
+ Z(JI;OQakTab - ]If+1,oTN'+1,h5ab)aMVZ - vy/’ﬁ,r—l + rp/lz,r—lD”u + (r— 1)/0/]:/1‘—20;41/
a,b
0 2
~3 ((r +2)ppr = (r = 1)mipr r—2), (27)
(u) ﬁJ,’EJFZI u" u H VA 1 2 H"
Dpkr er 1+Zaakr €—|—P (HDM _v H+Al’a/17z )+§(rmkpk.r—l_(r+3)pk,r+l)Du
1 1
—gv (m%pk,r—l = Prri1) = A}lfvﬂp%r—l +§((V - 1)m%P//:,r—2 = (r+3)p,)0
1 v 1%
g ((2}’ - Z)m%/’?r—z - (27‘ + 3)/)Zr)6/lj +pll;rwﬂlf - rpllz,r—lDul/ + (r - 1)[)’;'3_20',/}” (28)
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and

Dyl R, —aflom =

2
E((’”— Dmypy o —
2
+ 2 o) _g((” + 5)ﬂ1<f.lr+1

3((21’-1— 5)

where w* = VI¥u*! is the vorticity tensor. The prefactors of

the thermodynamic force are given by

N/
0
6’5(2 = (1=l =Ty + <J]fo ZQakTu,NUrl
a

- Jlr(+1,oTN’+1,N’+1> (8 =+ P)
N/
+ Z(J];OQakTah = I 0T v 1p8an), (30)
a,b
k
n _ nadyin)
au.kr = qak‘]l;+1,l e+ P ’ (31)
al(cr) =205, +2(r= DI, (32)

whereas the thermodynamic functions are defined as

n— a 0
ey () (Ap Pfy) )
"4 = (2 + ! ’
n— a 0) 2(0
o Gy (B (A P E “
"4 (2q + 1)!! - (34

In Egs. (27)—(29), we have defined the s-order collision

kernel as
=d; / Pk .
Pk

Substituting the moment expansion of the distribution
function (8) into Eq. (25), and only keeping terms linear
in the Jf, (one can refer to, e.g., [24,26] for detailed
derivation), we obtain:

RE e Z Rulfel- (35)

=

s

N
R — ST AR pl ) £ O((5f)%) (36)

=0

Il
=)

n

where the collision integral matrix elements are defined as:

(2}" + 3)m%pkr
e

-2(r— l)mkpk

(- 4)prri2)0" 42 29l —m )
1 v v
~3 () = (r=mipft )0

) o
)‘7/1 +rP;1:r 1D“/1_A”DVAP;<[); 1+ (r_l)ﬂlljyr(/zaaﬂ- (29)

Ag‘f)zkl = Qﬁ‘)fd + B%kb‘kz, (37)
N
d,d
Bk = L / E-HY(E,)
,-,j,zl; As+2 Jpopsmin "
< D i P
x Wemiif O LT, (38)
G = / EHY(E
’ 4s—|—21] 1S pipjpip " En)

X pl<c l "’pk“>pl<ﬂ1 © Py

X [dWiiif Sco)f 50)]7 7 ﬁ’o)
- diWkiﬁljfl((O)fEO)}‘EO)}ﬁ‘O)
—dWenaf O FOFOFO), (39)

The exact form of the Aﬁf‘,l“ elements dependents on the
specific scattering cross sections. With the derivations
shown in Appendix C, one can express them as the
summation of repeated, low dimensional integrals. There-
fore, a numerical calculation becomes plausible. Relevant
results are given in Egs. (C17)—(C20), (C28), (C48), (C49).

C. Calculation of transport coefficients

Equations (27)-(29) is a equation set coupling different
ptits’s with each other. To learn the key features of the
system evolution, such as what the Navier—Stokes limit is
and how the moments approach such a limit, one needs to
find the dynamical eigenmodes of the evolution equation
set. This is plausible by focusing on leading terms in the
Knudsen-number expansion and keeping up to O(5f)
terms in the collisions kernel. In this subsection, we adopt
the compact matrix form of the evolution equations and
diagonalize the time evolution equations. Then, expres-
sions for the transport coefficients and the relaxation times
can be obtained.

We note that the particle index k = 1, ..., N, whereas the
energy weighting » = 0, ..., N,. For later convenience, we
denote that M, = (N, + 1)N. We can rewrite the dissipa-

tion equations in a compact matrix form, with p* " is the
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(rN + k)th element of an M -dimensional vector p{#1#s),

whereas Al the (rN + k)th column and (nN + [)th row
of an (M, x M,)-dimensional square matrix A). The
evolution equations (27)—(29) can be reexpressed in a
compact form

Dpl-ms) 4 AG) . glur-ms)
_Za 'ul 'u‘ —|—H<”I Mx> (40)

when s = 0, 1, and 2, respectively. F is the thermodynamic
force,

F=o0, (41)

/) = yuta 42
T (42)

Fw) = ghv (43)

The a-subscript is needed only for dissipative currents,
whereas the charge summation ), is trivial when s = 0 or
2. Finally, the M -dimensional vector H*1#:) represents
the higher-order terms in gradient expansion. Their explicit
form can be obtained by comparing Eqs. (27)—(29) with
their compact form (40). It shall be worth noting that the p’s
in Eq. (40) are not independent of each other, they are
constrained by the matching conditions (16)—(18). To
implement the matching conditions, we introduce an
(M x M)-dimensional orthogonal matrix Py, so that

( 5)
prgellt 1”

P cplus) = <m' o
matN()

mat

p
p /gy -t )

(1--ohs) >

mat,i

Egs. (16)—(18), and N,(]ﬁzn is the number of matching

conditions. There are Nfr?gt = N'+1 conditions when
s =0,

where p s are the constraining conditions given in

a=12..N, (45

= Z Pi2s (46)

and one (Nfég[ — 1) condition when s = 1,

ﬂ mat,a

N
= Z qakPk1
k=1

Pmat,N'+1

3Equa‘[ion (48) becomes

=D dalos (47)

N
k=1

when using the Eckart frame.

Plnat1 Zpkl (48)

Meanwhile, there is no matching condition constraining the

tensor components, i.e., N E,iit = 0. We denote that
M, =M, - N (49)
K N mat>

and the relevant components p/1#) forms a M-
dimensional vector.
With details put in Appendix B, we show that compo-

nents coupled with pfx’f;tl” “ in the evolution matrix, the

thermodynamic force, and higher-order terms vanish,
which ensures the consistency between the evolution
equation (40) and the matching conditions (16)—(18),

(). pr Oinoen O[Nn:;lxM’J
P(S)A 'P(s): J(s , (50)
b[M;fo;g‘] A [M;ng]
(L)
(N x1]
P -al) = ( /(S) ) (51)
& v 1)
O[N“) x1]
P CH ) = /(}‘4““‘ . (52)
H M ><]]

where the subscripts [A x B] indicate the dimensions of the
submatrices. We also note that the b-components in matrix
(50) couple the dissipative terms to the matching con-
ditions and thus do not contribute to their evolution.
Hence, the relevant equation of motion is reduced as an
M',-dimensional one,

Dp’<ﬂ|"'ﬂx> + A6 . /<ﬂ|"'ﬂs>
72“ ﬂl M) ) (53)

Obviously, the evolution of different elements p’(1-#s)

couples with each other, and we obtain the dynamical
eigenmodes by diagonalizing the evolution matrix A’(¢),

Q) - A Q) =4
= diag()((()‘f),)(?), )(5‘2_1) (54)

where we have sorted the eigenvalues in ascending order:
0< ;(E)‘Y) < ){gs) << )(,(&2__1. We further employ the fol-
lowing notations for the dynamical eigenmodes,

Xns) = Q(_s% - p ) (55)
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the prefactors of the thermodynamic force terms,
g =g o) (56)

as well as the altered higher-order terms,

H ) = g(—l) . H ens)
- (—Sl) . (Dg(s)) X wrens) (57)
Then, Eq. (53) is diagonalized as
DX W) 4 opls) . X lroms)
- E 6 /‘1 Hs) s (0 (58)

So far, we have diagonalized the time evolution equations
up to the first order in gradient expansion. Particularly, ;(l@
is the inverse of the relaxation time, characterizing how fast
an eigenmode approaches its corresponding Navier—Stokes
limit. We note that there are M{, = (Ng+ )N —N' -1,
M| = (N;y+1)N -1, and M/, = (N, + 1)N independent
eigenmodes for zeroth, first, and second-order moments,
respectively, whereas the corresponding number of dissi-
pative quantities appeared in hydrodynamic equations (3)
and (4) are respectively 1, N’, and 1. When and only when
N =N =1and N, =2 — s, i.e., 14-moment formalism in
single-component hydrodynamics, one would find equal
numbers of dynamical eigenmodes and dissipative quan-
tities. Otherwise, in multicomponent systems or single-
component systems with keeping higher moments, there are
more dynamical eigenmodes than the dissipative quantities
of interest in hydrodynamics. In Ref. [24,26] it is claimed
that the redundant degrees of freedom correspond to rapidly
decayed nonhydro modes, hence one can focus on the
slowest modes that carry the charges of interest—Iabel by
index v—and take the Navier—Stokes limit for the other
modes, denoted by index w

(s) Frinps)
B H,,
Xva” Hs) E : iw F(m Hs) ) (59)

(s) 1 (s)

i Xw Xw

Taking such a hypothesis, the inversion of Eq. (55) yields
that

)

- ZQM WZ F)

i )(w

ﬂl Hs)

=D

Py - py)
i
+5 Qﬁfw v

w

Denoting that

/(s) — pT
Q s P(S)[MSXMS]

<°[N;LXM'1 ) 1)
| o® ’

Qs

we can project back to the moments appearing in the
distribution function,

()

ZQ/“XM Hs) +ZQ/”WZ iw ( Hy)
)(

£ --hs)

+ZQ’MH 5

Xw

(62)

Here, we introduce the following shorthand for the pre-
factors of the thermodynamic forces,

0 N m% 0) ﬂ(o)
— ! w
(= ;;?Qk()w 59)’ (63)
IERN
Kap = Z qqu,ko w (lv; s (64)
w=0 k=1 Aw
1 Mlz_l N @) (2)
=_ / W
’1_2w:0 ;Qkow \(4/2)’ (65)

For scalar and tensor terms, only the slowest mode is
relevant, whereas, for vector terms, the diffusion currents
related to the conserved charges—Ilabeled by index a—in
consideration are relevant. Substituting Eqs. (12)—(14) into
Eq. (62), we find the relation between the dissipative
quantities and their corresponding slowest eigenmode,

N (0) &
m Jii H
T+ 0 = _<§ 3kg/,§0)0> <X0 ‘)(?(»9‘«)0))

k=1 0 Xo
N 2M -1 ~
m y H,
23 Q'kow—’ (66)
Hb
I S L
N (1) 77 u)
_ W [ w Bty  Hy
DN ACES LTI
=1 b Xv X
M’—l ~
+ Z 9ak Z QlkO w W (67)

] 9
)(w

and
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(2) Fy{Hy)
v v ﬂ v H
—2not" = (E Q,k00>< Xy ?2) o — (()2>
Xo Xo

N M;-1 i (uv)
+ Z Z Q/kO w e ’ (68)
=1 w=0 w

Before the very last step, we note that there are the
moments in Egs. (27)-(29) with negative power index
(=7 < 0). They can be linked to Eq. (62) via

/41 ,us

me P, (69)

where newly defined thermodynamic integral are intro-
duced

k(s) _ sldy /d Pk
T = sy 0ear ) o T

X ) (AP PL)"- (70)

Before moving on to explicitly write down the second-
order hydrodynamic equations, it is necessary to clarify the
power counting and typical scales involved in the dis-
cussion. After that, the translation from the equations for
moments to the hydrodynamic equations is unambiguous.
The expansion scheme is closely connected with two
expansion parameters: the Knudsen number K, and the
inverse Reynolds number Rz! where F represents the
dissipative quantities. The Knudsen number is defined as

4

K,==1" (71)
measuring the relative strength of nonuniformity. Here £,
is the mean free path and L denotes the typical length
associated with system nonuniformity. The Knudsen num-
ber expansion is equivalent to gradients expansion. The
other parameter Reynolds number is used to quantify the
deviation §f from equilibrium f,,, which are often esti-
mated by the ratio of dissipative quantities to pressure or
density, i.e.,

"

fl VaVal 7,
R_lz—’ R_lzi’ R_lz—'u‘ 72
T P Va n, n P ( )

Then, by substituting Egs. (66)—(68) into Eq. (58), and
keeping terms up-to second-order in Knudsen and inverse
Reynolds numbers expansion, we can rewrite the motion
equations of dissipative quantities as a relaxation equation

DI+ = -0+ T + K+ N, (73)

N’ N’
S DV + V=Y "k Via, + T+ KN, (74)
h—1 b=1

T,,Dﬂ<’““> + 7 = 2net + T+ KW N, (75)

where the bulk and shear relaxation times are defined by
their corresponding slowest mode,

1

1 (76)

(
X0

where the relaxation for vector components involves N’
relevant eigenvalues and the relaxation time becomes a
matrix,

N & ~—1
_ Qav(g )vb
Tap = ;4)(5)1) ) (77)

where Q,, = YV, 9., i an N’ x N’ matrix and Q!
is its inverse. It is not hard to see the off-diagonal relaxation
time, 7,,, is an odd function of y, and y;. Therefore, in a
neutral system, the relaxation time matrix would be
diagonal and one can uniquely determine a relaxation time
for each type of conserved charge.

The tensors 7, J*, and J"* contain all terms of first-
order in Knudsen and inverse Reynolds numbers,

J=-> (fnvv Vy+ Vi V,P (78)
+ymvVa - V.p+ Zﬂnva,, V’:N,,%)
b
- 5HHH6 + ﬂnﬂﬂ"w(fﬂy, (79)
jﬂ == _Tva Va’,/a)ﬂy - 5VVVI:!9 - fvanvﬂn
+ 7y LAV 1) + 1y qflIVAP — 1y 2"V, P
— Ayy Vo + Zﬂvnbnnv”ab +yy, nllVFp
)

- Z/IVabnﬂmjvﬂab - }/Vnﬂﬂm/vyﬂ’ (80)
b

T = 21',,7r/<1”c<)”>’1 + Z <f,,vbv<"Vg>
b
— T”Vb VI<7MVD>P + }/”Vb V;}” Vl’>ﬁ
+ > Ay, VIV aL.) — 8,10

+ Ay Il — T,,,,ﬂﬁ”a’“ﬂ. (81)
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The tensors /C, K#, and # contain all terms of second-
order in Knudsen number,

K= gla);wa)/w + §20ﬂuaﬂy + C392
+Y ¢V, Via, + 5V, PYFP

b,c

+ ZCs,hvﬂPv"ab + VPP + Zg&bvzaha (82)
b b

’CM = K‘IGMDVHP + ZKZ,bGvayab
b

+ K3V”Pe + ZK{bV”(ZbQ + Zkibw’*’“vyab
b b

+ kA 0,6 + Kk, VHO, (83)
Kr = nlwfl” W' 4,00t + 7]30'5{4 oV
+ nao ) + Zr]sﬁbcvg‘abvwac
b,c
+ngVUPVIP 4+ "y, Vi, VI P
b
(84)

+ Zn&bv<"V‘/>ab + 7]9V<"V”>P
b

Finally, the tensors A/, N'#, and N'* contain all terms of
second-order in inverse Reynolds number,

N = ¢1H2 + Zd)Z.chZVy,c + ¢3”’wﬂuw (85)
b.c

Nﬂ = ¢4va.uﬂﬂy =+ ¢5vav (86)

N = gTlo™ + ot ah + 3 s VEVE.  (87)

b.c

The explicit expression of second-order coefficients can be
obtained by comparing the expression of Eq. (73)—(75) to
the matrix expansion form. Hereafter, we mainly focus on
the first-order coefficients.

ITII. TRANSPORT PROPERTIES IN SPECIFIC
SYSTEMS

With the framework developed in the precedent section,
now we move on to compute the transport coefficients
and relaxation times in specific systems. Noting that the
collision integrals, namely Egs. (C17)-(C20), (C28),
(C48), (C49), can be simplified only for massless particles
with Boltzmann distribution, we focus such a ideal
scenario. In such a case, the bulk viscosity vanishes,
IT=0. In Sec. IT A, we will start from taking the hard-
sphere cross section. We vary the number of components,
turn-on or off the elastic and/or inelastic scattering
between them, to study the effect of different processes.

Particularly, we will compare the multicomponent fluid
with the degenerated single component fluid. Finally, we
will present the result, which implements the pQCD cross
sections, in Sec. III B.

A. Hard-sphere cross sections

For the sake of simplicity, we start from the hard-sphere
cross section that 6,_,;;(P) = const is independent of the
momentum of the participating particles. For such a
simplified case, the collision integrals can be computed
exactly, see Appendix D. We sequentially increase the
complexity of the microscopic processes and study the
effect of different components. In this subsection, we focus
on the case that all chemical potentials vanish so that the
conductivity and relaxation time matrices are diagonal.

We start from an N-component system that only allows
elastic scattering, and we assume identical cross section
between the same component, i.e.,

Oijmkl = 0;j0x0k0. (88)
In such a system, one can separate it as N decoupled
subsystems. Therefore, vector relaxation time (zy), shear
relaxation time (z,), conductivity (x), and shear-viscosity-
to-entropy ratio (17/s.,) remain independent of N. These
value are listed in Table. I. They are consistent with the
corresponding single-component results in [27] (note that
in this article, o stands for the differential cross section
whereas the same symbol is used to represent the total one.
They are different by a factor of 2x).

Then we move on to an N-component system that only
allows elastic scattering, and we assume identical cross
section between them, i.e.,

Gijkr = (0idj1 + 8udji)o. (89)
In such a system, every species of particle conserves on its
own. Therefore, there are N’ = N conserve charges. We
define the total charge as Q = N~'/2%", n;. There is a
systematic way to generate the rest of the conserve charges.

It is not hard to find that Q, foom 2 scos%%, and

Snom D_g Sin 2’1’\?", with a being an integer and f,,, being
the normalization factor, span a complete and orthogonal
basis in the N-dimensional vector space. We find that the

rest of them share the same values for relaxation time and

TABLE 1. Transport coefficients and relaxation times with
hard-sphere interaction within the same particles (88).
Ns +s5-2 TV[6_1ﬂ3] Tﬂ[a_1ﬂ3] K[a_l] W/Sen[o-_lﬂz]
9 Sz 3 4
0 s 3 2z 6
21 iz
1 1.295% /2 36n o
0.08027 163
2 1.2887 T S50 1008
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SR A P DA
_ 0.08 0k = (0ik0j1+0i10jk) T ]
5006 Koo' -
“ I ]
—= 0.04- —
a 0.02 Koo -
L | P | L,

b [ [ [ [ [ [
QoA e e e e
b 3__....... R 3
~f — —

[ L — e T

=20 0 — N =37
| C ]
= 1 - NMi=2 2
= 3

A N I D I =l

1 2 3 4 5 6 7

N
FIG. 1. Conductivity (upper panel) and relaxation times (lower

panel) as a function of number of particle species. Dotted(dashed)
lines are for Ny = 1 (N; = 2). Red lines are for total charge Q,
whereas blue lines correspond to the net charges Q’.

conductivity, and their off-diagonal elements in the con-
ductivity matrix always vanish. Therefore, we label them,
uniformly, as Q' when representing their transport proper-
ties. Noting that Q’’s measure the difference between
different particles, they correspond to the conserved net
charges such as baryon number, electric charge, or isospin.
We find that (2N — 1)z, (2N = 1)5/se,, (2N = 1)74, and
(2N — 1)k remain constant and takes the same values as
listed in Table I, whereas the change of 7 and k does not
follow a simple formula. The latter are shown in Fig. 1.

Third, we mimic the quantum statistics for indistinguish-
able particles, which let the cross sections for elastic
scattering between different particles reduce to half of that
of the same particles, i.e.,

Oijmkt = (81040 + 8ibj1 + 810 j1.) (90)

N Q

We find that N7,, Nn/se,, N1y, Nxg, N1y, and Nky
remain independent of N. The value of the first four
quantities are the same as those listed in Table I, whereas
the last two are listed in Table II. It shall be worth
emphasizing that one can treat a particle with N-degrees

TABLEII. Relaxation time and conductivity for net charges Q’
using hard-sphere potential cross section (90).

Ns +S—2 NTQ![6_1ﬂ3] NK'Q/Q’[G_I}
0 0.841x %

1 0.837x %

2 0.836x 0233

s

of freedom, such as spin and color, as a single-component
system with degeneracy of N, correspondingly the effective
cross section shall be N times of that of each channel.
Change in the effective cross section is also consistent with
the fact that cross section shall be summed over all final
states. This also explains the 2N — 1 factor for the cross
section (89), which is the number of final state, i.e., one for
the same particle scattering and two for different particles.

Finally, we turn on reactions. In the exaggerated scenario
that

Ojjski = O, (91)

for arbitrary i, j, k, and I, N°37,, N*3/sen, N3, Nkgg,
N3ty, N3kyo are independent of N. Combining the
analysis using cross sections (88)—(91), one can see that
the effect of increasing the number of interaction channels
—either elastic or inelastic—influences the transport prop-
erties by increasing the possible number of final states in
each binary scattering. This again supports that one can
treat different intrinsic degrees of freedom of a particle can
be treated as the degenerated single-component system, as
long as the transition between different states is properly
reflected by the interaction cross sections.

Among these cases, one could find the ordering of the
relaxation times that 7, < 7, < 7y = 7y"2°. Keeping in
mind that Q’’s correspond to the conserved net charges like
baryon number or isospin, such a multicomponent analysis
is essential for a better estimation of the relaxation times of
the moments of interest.

B. Leading order pQCD cross sections

We move on to compute the transport properties for a
realistic system created in heavy-ion collisions. We
consider a system consisting of gluon and u and d quarks
and their antiquarks and implement the leading-order
perturbative-QCD(LO pQCD) cross section listed in
Egs. (E1)-(EI1).

With the LO pQCD cross sections, the matrix elements
A(fr)lkl defined with Eqgs. (C17)—(C20), (C28), (C48), (C49)
can be evaluated following the procedures outlined in
Appendix E. In order to verify our calculation framework,
let us take the g, = +/4na; < 1 limit and compare our
transport coefficients with the analytical leading-log per-

terbative QCD result [28] that n/sen:% / 402—2”3.

Comparison is shown in Fig. 2, in which one can observe
good agreement at the small g, limit. Our numerical
calculation is more complete by keeping more than the
leading-log terms, and therefore our result start to differ
from [28] when g, increases.

Then we move on to the realistic temperature regime, in
which the running coupling constant in the LO pQCD cross
sections is chosen to be
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L0l e this work |
E —leading—log

N/ Sen

103

0.1 0.2 0.3
&s

FIG. 2. Entropy scaled shear viscosity as a function of strong
coupling for a neutral system up = u; = 0. Red dots correspond
to results in this work with Ny +2 — s =2 and black curve
represents the leading-log perturbative result [28].

ay = a,(up = 47°T?), (92)

and evaluate the relaxation times and first-order transport
coefficients. The running of the coupling follows the beta

2
%da[_;/j(llzlk) = —(bya? + bya? + bya?), with fixed
R

a,(ux =25 GeV?) = 0.2034 and coefficients

o — BN 153-19N, 2857-3GN +30N7
0 - 1 - 24”2 - 19s

2z and b, = 1287 :

We first take the neutral limit (up = y; = 0) and com-
pute the transport properties. With results exhibited in
Fig. 3, several comments are in order:

(i) First, we observe that the convergence of all these
relaxation times and coefficients over the moment
expansion with Ny, +2 -5 =0, 1, and 2, which
respectively correspond to 14, 23, and 32 moment
expansion for single-component fluid.

(i) Second, all these temperature-scaled, dimensionless
quantities increase with temperature since that the
screening masses, mp, and m,,, increase with temper-
ature hence the effective couplings decrease.

(iii) Third, in the vanishing of chemical potentials, the
transport properties of baryon and isospin degen-
erate, hence one finds 73 = 7; and kg = (4/9)k;,
with 4/9 being the normalization factor. Mean-
while, we find that the off-diagonal elements of
the conductivity matrix vanish in the neutral
hmlt, Kp; = Kjp = 0.

(iv) Fourth, similar to the hard-sphere potential case, it is
observed that 7y, < 7. Particularly, we find the ratio
between relaxation time and conductivity to be
75/Kkpg ~ 136>, which is notably different from
the single-component estimation 7z/kgp ~ 158/°.
This is meaningful in the phenomenological study
and will be elaborated on in the Summary.

function u

point

12
1.0
‘L 0.8?
~ 0.6
¥ .

0.2 *

0.2 0.4 0.6 0.8
T [GeV]

FIG. 3. The relaxation times, conductivities and shear viscosity
as a function of temperature for a neutral system pug = u; = 0.
Dotted, dashed, and solid lines respectively correspond to
Ny+2—s5=0, 1, and 2. In the upper panel, the relaxation
times of net baryon diffusion and isospin diffusion degenerate,
1.€., Tp = 77.

(v) Last but not least, the shear viscosity-to-entropy
ratio is significantly higher than the holography
limit [29], ﬁ, and the phenomenological results
extracted from experimental observables invoking
Bayesian inference [7,8,30,31]. This is not surpris-
ing as LO pQCD cross sections are based on a
weakly coupling picture whereas the holography
result takes the strongly coupling limit. Noting that
the transport coefficients and the relaxation times
are proportional to a2, a naive extrapolation of the
LO pQCD result to match the strongly coupling
shear viscosity would result in the effective cou-
pling to be & ~ 0.8.

Then we move on to discuss the transport properties at
nonvanishing chemical potentials. We fix the temperature
as T = 0.334 GeV, so that a,(u% = 47°T?) = 0.3. In the
left(right) panel of Fig. 4, we let y; =0 (up =0) and
compute the relaxation times, conductivity, and shear
viscosity as functions of up (y;). In addition to the
convergence over moment expansion, we find that these
transport properties are insensitive to the change of
chemical potential.

We note that the off-diagonal elements of the conduc-
tivity and relaxation time matrices—«p;, K73, Tp;, and
t;3—are odd functions of both pp and y;. They vanish
when one of these chemical potentials vanishes. Therefore,
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FIG. 4. The relaxation times, conductivities, and scaled shear viscosity versus baryon(left) or isospin(right) chemical potential.
Temperature is set to be T = 0.334 GeV so that o, (u% = 42>T?) = 0.3, whereas isospin(baryon) chemical potential vanishes in the left
(right) panel. Dotted, dashed, and solid lines respectively correspond to Ny +2 —s =0, 1, and 2.

we compute these off-diagonal elements at a nonvanishing
chemical potential. For simplicity, we evaluate them at the
line that yp = u;. As shown in Fig. 5, we find xp; = k3
and both of them are proportional to pupu;, and the

w w
9
aaniis
‘:<
lll_1
=]
TA
=
~
1

b
=N
P
I
|

e
n
T
I
|

10° kab / ()

W
I
I
I =
-
=
o]
|

u/T

FIG. 5. The scaled off-diagonal diffusion coefficients as a
function of the baryon or isospin chemical potential. Dotted,
dashed, and solid lines respectively correspond to N, + 2—
s =0, 1, and 2.

proportionality constant is insensitive to chemical poten-
tial. The coincidence of kp; and k;z is known as the
Onsager reciprocal relation, see, e.g., [25]. Meanwhile,
713 ~ (9/4)7p;. Regardless of their small value compared
to the diagonal terms, the factors 7,,/(ugp;) show higher
sensitivity to the change in chemical potential.

IV. SUMMARY AND OUTLOOK

In this work, we derived the multicomponent second-
order hydrodynamics equations with binary reactive proc-
esses, by exploiting the moment expansion formalism and
truncating the Boltzmann collision kernel by keeping up to
linear terms in nonequilibrium correction. We then derived
the procedures to simplify the collision integrals of the
evolution matrix with leading-order perturbative QCD
cross sections, which is essential for computing the
relaxation times and first-order transport coefficients. For
the pedagogical reason, we also reviewed the steps corre-
sponding to hard-sphere potential.

Taking the hard-sphere interaction cross section, we
explored the effect of elastic scattering between different
particles and inelastic binary reactions. The inclusion of
both these channels increases the frequency of interactions
between two arbitrary particles, and therefore increases the
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effective cross section and decreases the relaxation times,
conductivity, and shear viscosity.

In a more realistic system taking LO pQCD cross
sections to describe the interactions between the compo-
nents within QGP, we computed the dependence of
relaxation times and transport coefficients on temperature
and chemical potentials. As temperature increases, the
Debye screening masses increase and, therefore, the effec-
tive cross sections decrease. Thus, we observed that the
relaxation times and transport coefficients increase with
temperature. These coefficients exhibit weak dependence
on the chemical potential, on the other hand.

Particularly, we found 7z/kgz ~ 13> using the LO
pQCD cross section, which is notably different from the
single-component estimation 75 /kpg ~ 1584°. This shows
how a multicomponent analysis is important for the realistic
estimation of the relaxation times of moments of interest. In
phenomenological hydrodynamics simulations, the relaxa-
tion time can hardly be constrained by experimental
observables. One typically employs the relation between
relaxation time and conductivity derived from relaxation
time approximation (RTA) of Boltzmann equation [32],
which takes the value that 73 /kpp &~ % ~ 4. The analysis

in the current paper should provide a more sound and
applicable guideline for phenomenological studies.

It shall be interesting to apply moment formalism to
study how the collective hydrodynamic behavior develops
in a far-from-equilibrium system. For such a purpose, two
major improvements need to be made in the future. First,
the current work focus on two-to-two scatterings, no matter
elastic or inelastic. It shall be very interesting to consider
number-changing processes, such as gg <> ggg, and eluci-
date their importance in momentum equilibration [33].
Second, the current work truncates the collision kernel by
keeping up to linear terms in the nonequilibrium expansion.
It is important to keep the nonlinear terms to study the far-
from-equilibrium physics.
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Note added.—During the final preparation of the current
manuscript, we noticed a recent, independent, but highly
relevant study by J. A. Fotakis et al [19], which also
exploited the moment expansion method and derived the
second-order multicomponent relativistic dissipative
hydrodynamics. We arrived at the same results for the
evolution equation for the general nonequilibrium
moments [c.f. (27)-(29) in the current manuscript and

Egs. (83)—(88) therein]. Then, Ref. [19] explicitly derived
the hydrodynamic equations for systems with baryon,
electric charge, and strangeness being the conserved
charges [Eqgs. (112)—(120) therein], whereas the current
manuscript formally expresses the hydrodynamic equa-
tions for systems with an arbitrary number of components
and conserved charges [Eqgs. (73)—(75)]. Results would be
consistent if one specifies the underlying fluid constituent
in the current work. In addition, the current work outlines
the framework for computing the collision integrals with
taking leading-order perturbative QCD cross sections and
further computes the relaxation times and transport coef-
ficients. Related physics is also discussed.

APPENDIX A: MOMENT EXPANSION

For pedagogical reason, we summarize the useful math-
ematical relations for the moment expansion method,
which is introduced in Ref. [24-26]. In such method,
the distribution function f is expanded around the local
equilibrium distribution function f),

f=rfo+f = fo(l+ fod). (A1)
where ¢ represents a general nonequilibrium correction. ¢
is expanded in momentum space with recourse to the
irreducible tensors composed of 1, p#), pp¥), ppvph,

-, forming a complete and orthogonal tensor set with the
minimum number of members, which are defined by using
the symmetrized traceless projections as
- pY, (A2)

p(ﬂl ...pﬂ[> Alljl yfp

where the projection tensor is given by
[Z/2]
AL = Z<—4>

21/” 2n)!
n=0 - I’l)' Z

n ¢
X <H A#zi—l,ﬂ2iAy2i_].D2i> ( H Afjj), (A3)
i=1 i

i=2n+1

where [£/2] denotes the largest integer not bigger than £/2
and ),y means summing all distinct permutations of
pu-type and v-type indices.

The tensors p'1 - - p#) satisfy the following orthogon-
ality condition,

/pdgenF(Ep)p<Ml .o .p”/>p<yl .. .pyn>

16,
—7"&“ b | F(E,) (A% ‘ A4
Here ¢ and n are non-negative integers, dy., is the

degeneracy of particles, F(E,) is an arbitrary scalar
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function of the co-moving energy E,=u-p, and
(2¢ 4 1)!! denotes the double factorial.

Then the nonequilibrium correction can be formally
parametrized as [24],

[]s

¢ = ﬂ(/‘l“'ﬂﬁ (Ep)p<l41 “ee pﬂf>’ (AS)

Y
Il

0

where the index £ represents the tensor rank. Furthermore,

(u1-pe)

the coefficients A can be expanded by employing

another orthogonal basis of functions Pﬁ,f)(E )
N; .
ﬂ<”‘"'””>(Ep) — Z cf{”"'"")Pﬁ, )(Ep)7 (A6)
n=0

(W1He)

with ¢, to be determined later. Here N, denotes the

number of basis functions PW(E )

¢ G
POE,) =Yl E), (A7)
r=0
to meet the orthonormality condition,
¢ ¢
/dgenw<f)P£n)(Ep)P'<1 )(Ep) = Omn> (A8)
p
where the weight w'?) is defined as
w@) .
@ = ———— (A% “fofo- A9

Here the coefficients aﬁfi) and the normalization constants

W) can be found via Gram—Schmidt orthogonalization.
First, by setting P§(E,) = af, = 1 without loss of general-
ity, W’ can be easily obtained from Eq. (A8)

(A10)

Then we assume that n < m and substitution of Eq. (A7)
into Eq. (A8) leads to

m 14
Z,D(fm) % _ e 5,
= A @)

(Al1)

where D,((im) = Jiini2er and k < m. Solve this equation

and we will get

ale) = Jor o (D7 )%nm). (A12)

Eventually, the single-particle distribution function can
be expressed as

o Ny
f="ro (1 +F0 YD T HE) P ply Pm)

=0 n=0
(A13)
with the function of energy-dependent
H(E, :@fafﬁpﬁﬁw,,) (A14)
and the generalized irreducible moment of §f,
Pl = / dgenE;pw] o prI S (A15)
P

With all preparation works done, the expansion coef-
ficients in Eq. (A6) can be immediately worked out by
using Egs. (A4) and (A8) and given by

w) ¢
c,<1”' He) — 2 /dgenpgl )(Ep)p<”‘ ...pﬂz>5f
©Jp
W@ &
VS ) (16
7! =
for n < N©).

APPENDIX B: PROOF OF NULL-MODES
CAUSED BY MATCHING CONDITIONS

In this Appendix, we show that matching conditions
correspond to trivial evolution equations, i.e., Egs.
(50)—(52). In general, these relations can be straightfor-
wardly obtained by applying moment expansion to the both
side of Eq. (26) and then take the transformation. Here we
shown that they are satisfied when taking the explicit form,
which is a cross-check of the results obtained.

The matching conditions (44) determine the following
elements of the transformation matrix P,,

1)
Pl = ol (B1)
©
Py = N0, (B2)
and
P") = N5, (B3)

014007-14



MULTICOMPONENT SECOND-ORDER DISSIPATIVE ...

PHYS. REV. D 106, 014007 (2022)

whereas the rest of elements are not fully determined—the
only constraints are they shall be orthogonal with each
other and normalized to unity. Namely, they can be
obtained by applying Gram—Schmidt orthogonalization.

We use tilde (%) to label vectors and tensors after the basis
transformation,

AB) = P - A .p(TS>, (B4)
a*) =Py -al, (BS)
Himn) = P, H ) (B6)
Their elements can be written explicitly as
Ap = D3 PP A (87)
and
(B8)

W = Y Pl
k r

Implementing Egs. (30), (31), (33), and (34), we find
o)) = (1= )tk =15 + (e + P)

N/
k k
X <J,o E GakT an'+1 —Jr+1,oTN’+1,N’+1>
a

(B9)

N/
+ Z(Jlfo%k'fab - JI;+1,0TN’+1.b5ab)nh’

N LN
(Z Qa] ) Z[_qukllf0+(€+P)
N/
X <%kﬂf0 Z kT a1 = qukflﬁoTN’+l.N’+1)
b
N/
+ Guk Z(qkaIfOTbc - JéOTN’+l.05bc)nc:| ’ (BIO)
b,c
and
~ k k
A ey {_121_120+(3+P)
+ VN -
N/
X <J§0 Z qakT any1 — JéoTN’H,N’H)
a

N/
+ Z(QakflﬁoTuh - J§0TN’+l.b5ab)nh] . (B11)
ab

Proof of &((10) = &5\(,),)+1 = 0 would be cumbersome if one

does not specify the number of components and conserved
charges involved, which can be understood seeing the form
of 7. For the sake of simplicity, we take two-flavor QGP as
an example, which takes N = 5, N’ = 2 and assumes that
quarks and antiquarks are massive. Based on this setting,
the Jaccobi transform matrix is

1
T Oy dmyge _ Ony Ony de _ Ony Omy Je
day 0, O day Off day df oy oy
Iy de __ 9y de 9 de. _ 9, 9my
oa, off aff day op oay op oay
9ny de. ony ge _ Ony de  _ Ony Oy
x o 9a; oa, 0f 0P o oa, 0 |° (B12)
_ 9 e _9ny de Iy dny
da, day day dar day dan

where indices 1 and 2 represent the net baryon number and
isospin, respectively.

Recalling that thermodynamic functions ,,q, g ko is
tightly linked with thermodynamic variables, e.g.,

]k
Ilf‘oz%:nk, 112{’0281(, J]:;] :T<€k+Pk)? (B13)
and some relations are useful:
or%.
S, = a(;: (B14)
01’; 1.
Jﬁ’q = o 4 (B15)
Ty = (n+ T, . (B16)

Combining Egs. (B10)—-(B16) and performing the transfer
from particle k to charge a, a tedious but straightforward

: ~(0) _ ~(0) _
calculation leads to &, = Ay = 0.

On the other hand,

all) = N- %EN:Q; 5 n“J§~1> (B17)
al — ak .
= e+ P
We note that

e+P= T“ZJ31, (B18)

N
ng = T_l Z Qak‘ﬂé,l' (B19)

k=1

Therefore, (li

@, = 0 is automatically fulfilled.
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Meanwhile, the ;‘SZ terms vanish because of matching
conditions,

N
(Z qaj > ZPa kr“Ar" (Bzo)
j=1
X 0)kl kl
Z ('IakA]n - QalB]n + Z akgln 7 (BZI)
k=1 k=1
1 (0) (0)kl
N2 PN/Jrl’krArn
k.r
u 0)kl 0)1 il 0)kl
=>4 =5 +3 )" =o. (B22)
k=1 k=1
A
k,r
N
= Z Aln ln + Z gln - (B23)

>~

=1

With explicit form put in Eqgs. (C17)—(C20), we check
that the above three conclusions hold.

APPENDIX C: CALCULATION OF THE
COLLISION MATRIX ELEMENTS A%

In this appendix, we simply the high-dimensional
collision integrals, A%, into low-dimensional integrals
that is realistic to be performed numerically. Noting its
definition in Eq. (37), we separately discuss Bﬂk and gg.s;lkl
terms, which are defined in Eqs. (38) and (39).

For carrying out the integration, we define the total and
relative four-momentum:

Pt = pi+p| = pi +pf=P*, (C1)
0" = Ap (Pr = Pu)- (C2)
0" = Ay (i — Pj): (C3)
A = o P ;’; - (C4)

With these definitions, the four momentum of participants
can be expressed as:

pﬂ:P”+Q” p’u:Pﬂ_Qﬂ
k 2 ’ 1 2 ’

Pﬂ+Q’ﬂ Pﬂ_Q’ﬂ
N /)

and these following relations will be useful:

P-Q=P-Q=0"+P =0 +P=0.
1. Splitting of the BY) and G\ integrals
We note that 135‘,1" and g&,",lk’ are integrals of polynomials,
and B(,f,),k and g&f),"’ with different indices might share the
same piece of monomial. Therefore, we take the same
notation as in Ref. [25] and use the following short-hands
for the mononial integrals,

jkt; bodef) _ (2ﬂ) 12 / <P2)a—1e—ﬂP-u
lj Pi p] PisP1

(Co)

x (u-P)*(u- Q) (u-0)(Q- Q)
X Wkl—»ij(P’ _Q ' Q,>’ (C7)
Kty = @a [ (pryeer
PisPj-Pr-P1
P (- Q) (u- 0)(Q - 0')
u-P+u-Q
X Winij(P.—0- Q). (C8)
jkclt_lzljf (2ﬂ)12/ (PZ)a—le—ﬁPu
PisPjPksPi
(P 0) (0 0
u-P+u-Q
X Wkl—»ij(P7 —Q' Q/) (C9)

We also note that the G integral (39) is the sum of three
terms that is of different characteristic, we split it into three
terms

G = 1O + W+ g3, (C10)

Er lHn ( )

i»PjsPksPi1

X pl<< l ---p’,:’*>p[<,,l Pl

X dzszﬁi,,-f,(co)fﬁo)ff-o)f(<°),
Ly |
E, Hn (E,)
s +2 /p, Pj-P-Pi

i,j=1

x pit- ~pk">m<u. > -sz

0)
Xdikaljfl(c f fz f, )

s dk N
G = [ e,
4s 42 ,Zjl PP} PP

Xpl<{] ’ pk>pl( “ DPiyy)

0
xdWiaf 1V TOTY.

(C11)

(C12)

(C13)
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Computing the integrals according to Dirac—Fermi dis-
tribution would be complicated, here we follow the same
procedure of [25] and the Boltzmann limit, so that f = 1.
Then we can simplify the integrals by taking the following
procedures:

(i) Perform the momentum variable substitution ac-
cording to Eq. (C5) for B and Gl, whereas
pe=1(P+ 0", pi =3P =0, pi=1(P"+
Q’”) for G2, and p; = (P” +0"), p;=

3 (P =0"), pr=3(P" = Q") for 63,

(i1) Expand the thermal polynomials Hn)
to (Al4).

(iii) Exploit the summation relation for massless particles,

according

p</41 . _pmpk e P

= (—1)'F,E%, (C14)
plt-ph >P1< Pl

= ZF‘v,a(pk - p1)TUE} ES, (Cl15)

1(25+1)

prSwI and the relevant coefficients are

where F; = E

Foo=Fiog=Fo=1,
F2’1 — —2, F2’2 — 2/3

Fl,l == —1,
(C16)

(iv) Implement the shorthand defined in (C8).
With these steps, we find the integrals to be

ok _ (Z1)°F; ng) EN: dydje o I & (a:(ﬁ')ﬂf&

Bt =
U2 sl e () g e\
y r42s+m’ (V + 2 + m/),
£~ b\(r+2s+m' —b)!
(L,b,r+2s+m'=b,0,0)
x Kyl ) (C17)
o dd,W et N s Ny m F, ta%a(s)/
Olin = <7m,m
r.n (2” 12(25‘ +1 ,l; — ;mzzzo Qrtstttm
. iii (r+0!  (=1)(m +1)!
— =g bl(r+t=b)lcl(m +1—c)!
IC,((;::‘;;1,m/+t+b—c,r+t—b+c,0~0)> . (Clg)

dd, W'
C2n)2(25 4 1)s!
amna( )
WD z:o (P

m'+t s—t

b'r—l—t b)le!(m' +1t—c)!

1
b=0 ¢=0 d=0

(s —1)!
X
dl(s—1t-—

r+

IC(Y t—d+1,b+c,r+t—b,m'+t—c,d)
d)' ki—1j ’

(C19)

(s) N
(s)kI dydW,; ta
3rn - —_— AT A
G3: (2n)12(2s+1)sz;e

30 3 Pttt

5 ’am"amm
2r+2s+m
=0 m=n m'=0

"+t s—t

SR W N(EIEEE

!
b=0 =0 d—0
(m' +1)! (s —1)!
X
clim +t—c)ld!(s—t—d)!

K(s—t—d-‘r 1 ,b+c,r+t—b,m'+t—c,d))

(r!
b\(r+1—b)!

Kl (C20)

Here, a,(;;',l and ng) are respectively the coefficients and
thermal weights defined in Appendix A, For massless
particles, they read

al) =1, (C21)
p P
CI(” :\/ﬁ, am) = - 2S+2, (C22)

e s+ 1
ay) = c Al = —opy 2
2/ (s+1)(2s+1) 2541

al) = /(s +1)(2s + 1). (C23)

o) = B
P 6vV4+ 65 + 1052

24315 — 1552
__p (s)
a32 -+ 2 +70s —32s% %1
aly) = —\/4+6s + 1052,

for s =0, 1, 2 and the thermal weights are

/36 + 85 + 52
:[} f’

(C24)
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(s) (_l)s ( 1) 27’ 25+2 o=,

W,/ = = 7 k, C25

¢ Jl2(s.s (25‘)” dk / ( )
2. Computing the J and K integrals

So far, we have expressed B(rf,zk and Qﬁ‘f,)lkl into the

a,b,d+1.e.f)
kl—ij

move on to lower the integration order of such terms. From
the definition (C7)—(C9), one can see

summation of IC , and in this subsection, we

Fltten) = Kgpiaen s lgrasien, (g
Tl =iy (c27)
and it is not hard to derive the relation that
K - it
+Z S ggrireten - (cas)
Therefore, we only need to calculation J k’;_[:je /) and

J k‘;fljf and then IC,:;_IZ de.f)

indices J-integrals are computed following the procedures
outlined in Ref. [25]. With the procedures outlined in the
rest of this subsection, we will simplify them from sixteen-
dimensional integrals to one-dimensional ones, and results
will be given in Eq. (C48) and (C49). It might be worth
noting the unit of the integrals are

follows. The four- and five-

[j(u_b,d,e,f)] — [E]2a+b+d+e+2f+2,

(C29)

[j(a,b,c,d)] _

[E]2a+h+c+2d+1 ) (C30)

a. Variable substitution

With the variable transformation (C5), we note the
Jacobian of the integral

&Epdp, &p; &Ep;

o0 o du(P)du(P')du(Q)du(Q"). (C31)
with

du(P) = d*PO(P*)H(P?), (C32)

du(Q) = d*Q5(Q* + P*)5(P- Q). (C33)

and we express the transition rate by the differential cross
section

A

Wkl—»l] =P O-kl—ﬂj( Q Q) (P P/) (C34)

where V =V//V-V denotes the direction of a four-
vector. Then, the integrals are reexpressed as

gt = [aprEyerrupy [
x du(Q)(u- Q) (u-0)(Q- Q")

A

X 5kl—>ij(P7 -0 Ql) (C35)

glabe) / du(P)(P?)*e P (u- P)’ / du(Q)

. ON(O -0
o) 210

X le—vij(Pv _Q . Ql)

(C36)

As pointed out in [25], it will be more straightforward to
perform relative-momenta integrals in the center-of-mass
frame of the collisions, where we label the transformed
velocity as U* = {U°, U}, and

Pr=(P,0), Q' =(0,0), 0Q"=(00)

Q- Q =-P>cosO, u-P=0UP,

u-Q=-UPcos0, u-Q =-UPcos@'. (C37)

with © being the angle between Q and ', while 0(¢') the
angle between é (é/) and U , the delta function ensures

that |Q| = |é’ | = P. Particularly, the velocity is measured
in the center-of-mass frame of the collisions, they
can be expressed by the lab-frame quantities as U =

(u-P)/NVP2, U= \/U: -

b. Relative momentum integral

To compute the integrals, we perform the relative
momentum integration ([ du(Q)du(Q’)). We sequentially
apply the following mathematical relations:

(i) Partial-wave expansion—expand the collision kernel

over the Legendre polynomials, P;(x),

§ :le—nj

(C38)

d
X O'kl_,,j (P, x)

2g+1

d,
05{1—%2] (P) = 2

1
/ldeg(x)okl_,,-j(P,x)dx, (C39)
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(i) Additional theorem of the Legendre polynomials,
/ d¢pdg'P,(cos ©)
= (27)*P,(cos O)P(cos &), (C40)

(iii) Integral of the Legendre polynomials (cf. Eq. (7.126)
of [34])

(14+(=1)¢9)e!
/1 xePg(x)dx — ) (e=g)!/(etg+1)11> g=se, (C41)
-1 0, g>e.
when z € R and z > 1,
g(x . /
n‘lP dx
/1 <= X Z ( )
i ng (g+2n)!
g 2n)N(2g+2n+ 1)1
(C42)

For later convenience, we use the shorthand that

14 (=1)es !
2 (e—g)!l(e+g+ D"

Cey (C43)

With these, we can integrate out the relative momenta, Q
and Q’, and reach the following relations respective for
five- and four-indices J integral

/ du(Q)du(Q")(u- Q) (u- Q")*(Q- Q")
XUkl—»ij(P —Q'Ql)

min(d.e)

1)/4r2 Z CyyCe

Pd+e+2f Ud-&-eal({ll‘_éz)u (P) , (C44)

and

W 000V .
/du(Q)dﬂ(Q')( Q)12 92) o-ij(P.—Q - Q')

u-P+u-Q
/2 . L1 je (fe=2h)
= Z 2”2(_1)e+f Ce.e—ZIzP€+2f_l Ueakl.—ﬂ'j (P)
h=0

e—2h (COS 0)
—Ucos®’

/ dcos 9
-1

c. Total momentum integral

(C45)

Finally, the integrals over the total-momentum would be
highly simplified in the fluid comoving frame, u = (1, O)
and with the variable substitution that P? = f~2v

= p~lwcosh¢, so that du(P) = p~*v>dw sinh? £dEAQp
Following steps will be taken in order:
(i) Variable substitution: P=f"1v, u- P = v cosh¢,
U°=(u-P)/VP2=cosh¢, U=+/U}—1=sinh¢,
(ii) The trick that cosh® ge=?¢osh¢ — (— 1)b & pmveoshé
(iii) Integral expression of modified Bessel functlon of
the second kind (see Eq. (10.32.8) of [35]):

/ " dgem=eohE sinh2n & = (25 — 1)!!K",(f) . (C46)

0 Z

(iv) The following integral (see Appendix C2d for
proof)
/ P dx/ Slnhz,’+2h+2§ _voosh#
elx cosh & — xsinh & & —xsinhé&
2(£1)(32 — 1)" f(fl) : (C47)

Eventually, we have simplify the integrals into one-
dimensional ones, which will be performed numerically in
practical calculations,

min(d,e)
a,b.d.e —fu- a e+2f e
TJlded = (<1 4n? 0 CiyCey / du(P)e P (u - P)P Pratdres2l ydteg ) (p)
g:
1673 (d +e+ mm(de o
= =l 2a+b+(d+e+2f+4 CayCe, / dpPath e/ H3g) —w(”/ﬁ)
ﬂ =0 0
b ab d+r 1
x (—1) W[ Kmﬂ(v)} (C48)
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and
(a.b.e.f) [6/2]2 2(_1)e+f d ~pu-P b platet2f—1pe (f-e=2h) d 0 P,_sy(cos0)
Tiasij _; m* (1) Cppmap | du(P)e " (u- P)°P UopZi; (P) oSO e 6
le/2]
(_1)b+e+f16ﬂ.3 } . oo
= e Z(e—2h)!Ce’e_2h 0 ® Quptatbt +2f+20](</;_”] ) ﬁ

avb+2g e~ 2h+1

d. Proof of Eq. (C47)

In this subsubsection, we provide a proof of the relation
outlined in Eq. (C47). We denote that

1 o  p—vcoshé Sinhf+2h+2€
F = [ P,(x)dx d , (C50
()= [ oo [Tag S (cso)

and one can find the iteration relations

Ff+l h( ) / Perl d)C/

Slnhf+1+2h+2 Z_,:

coshé — xsinh & &—xsinh¢&

—vcoshé

20+ 1 4
:_f—_’_lava,h(U)_?(a%Ff—l,h(v)
K. (v
—Fy14(0)) =26,0(2h +1)!! ’v;‘fl ) (C51)
Fpp1(0) = 03F 4 (v) = Fpp(v), (C52)
20+ 1
Fpiin(v) =~ 71 0,F s 5(v)
4
—ﬁ(af Fo_yp(v) = Feoyp(v))
K v
—28,0(2h+ 1) ’;*hfl) (C53)

Noting that Fyo(v) =207'Ko(v) can be computed
directly, therefore,

Foolv) = 2(&)%&’;), (C54)

(C55)

APPENDIX D: HARD-SPHERE POTENTIAL
In this Appendix, we take the hard-sphere potential,

O11—ij(P) = Opimsijs (D1)

(C49)

(d9)< P) =

le—ﬂj - (29 + I)Cd,gdkl_’ij’ (D2)

and evaluate the 7 and /C integrals, which will be used to
compute the collision matrix and the transport coefficients.
To compute the five-index 7 integrals, following steps will
be performed in order:
(i) Integration by parts—for function f(v) satisfying
certain boundary conditions,

/O°° n(= 1)b0bf( )dv— n!})ﬂA"o v £ (v)do,

o’ (n—
(D3)

(i1) Eq. (10.43.19) of Ref. [35], i.e.,

/oo XK, (x)dx
0

=270((u+14+0v)/2)T((p+1-2v)/2). (D4)

We find

167°(d + e + 1)!!
ﬂ2a+h+d+e+2f+4

b.d,
jk[ll—n] /) = (_1)f

(2a+b+d+e+2f+3)!
(2a+d+e+2f +3)!!
min(d,e.f)

X Zo (29+1)Cd,gce,ycfay’
g=

a+
2 0k1—>ij

(a+ )"

(Ds)
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and
e le/2] h
a,b.e.f) ( 1) +f167[
Ji ki—ij ﬂ2a+b+e+2f+3 Oki~ij Z Z
=0 ¢g=0
X (e - 2h> '(26 —4h + )Ce.e—Zth,e—Zh
(Qa+b+e+2f+2)! 2a+2f—2g+2h

X
(2a +e+2f +2-29)!

x ((a —l—f—g—i—h)!)z} (D6)

APPENDIX E: COLLISION INTEGRALS FOR
LEADING-ORDER PQCD-CROSS SECTIONS

In this appendix, we compute collisions integrals taking
leading order pQCD cross sections in consideration. For
completeness, we list the differential cross sections for
different processes as follows.

9a? [ tu su st
o =2 |3- - - ’
N T M CE A L e A A

(E1)

9799 4y (s+m2)? 9(u—m;)?
2su su
(t=mp)*  (t=mp)(s +m7)
su
s E2
o—mmw—m$} (52
a2 s>+u
%94 ~aq' = gg (t—m3)?" (E3)
a [ s+ s+ 1
Cogm
1ot = o [ T lu—m)?
2 52
- E4
i) (54)
a s2 4+ u? ?+u
Corns = —
9949 = g (t—m3)? (s +m3)?
2 u?
_2 , ES
] =)
a2 tP4+u
_ S E
@47 = 95 (5 + m3)2’ (E6)

202 {4 tu 4 tu
Corny = — —
1799 35 19 (1 —m3)? 9( m2)?
4o tu N tu
Gamd) ! Gt nd) (= md)
tu
n , E7
@+m®w—ma] il
with following relations due to symmetry,
9

O99~91 = g4 Caa—ao (E8)
047'-33 = %q3'~q7 = Oqq'~qq'> (E9)
049—~a9 = Oqg—~q9° (E10)
%33-33 = Oqq—qq- (E11)

Here screen masses mp and m,, are introduced for gluons
and quarks to avoid infrared divergence. In detailed
calculation, they are nontrivial dependent on temperature
and chemical potentials, and the dependence relies on the
details of interaction included [33],

mD:,/S“S L NT, (E12)
T
2(N? -1
m. = MT, (E13)
4 7N,

with number of color N, = 3 and number of flavor N, = 2,
and the coupling constant is evaluated at the thermal energy
scale a; = a,(u% = 47°T?). The running of the coupling is
driven by

> day(pux)

R g —(boa? + bya; + byas),

(E14)

with fixed point a,(u% = 25 GeV?) = 0.2034 and coeffi-
153-19N, 2857-0N, +1BN?

cients by = 3 2N’ by = tand b, = T
We express the Mandelstam variables as
2 2
s =107, t:—%(l—x), u:—%(l—i—x), (E15)

and evaluate the J and K integrals, and compute the
collision matrix as well as the transport coefficients.
Performing integral by part and expanding the Legendre
polynomial, we express the five-index and four-index J
integrals as
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167r3(d+ e+1 ”a min(dc)

j a,b.d.e.f)
ﬂ2a+b+d+e+2f+4

kl—ij = (_1)

[Cd g-ey
g=0

2g+1Z 1)h 2g 2h)!
2041 hi(g—h)l(g—2h)!

B
4 (<1 @2m = 1)1
XZO< 2m)!(b — 2m)!

% I(d—;”+1+b—m.a+f+1, f+g-2h)
kl—ij ’

and

I b+2g [b+217—m]

F16.3 2 1e/2]
a.b.e f ( e+ 1671' ay
jkl—n} ﬁ2a+b+e+2f+3 Z Z Z

h=0 g=0 m=0 n=0

n+h+g

2e —4h +1
De=2h+1

(b +29)!(2n — D)!(e = 2h + m)!
m!(2n)!(b + 29— m — 2n)!

[(‘—Zh

: [ (—1)f(26—4h—2j)!
j=0 (

Ce.e—2h

(e = 2h = j)!(e — 2h — 2j)!

I[({l;i?jg—m—n.aJrerh—gnLl,f+e—2h—2j):|:| ’ (E17)

where

(04
S UD+2"_1KV( ) ab—wd(v X) (Elg)

General result of such integration terms will be given in the
succeeding subsection.

1. Calculation of Z®")

We note that the express of differential cross sections
contain many repeated pieces. Hence, to simplify the
calculation, we define the following integrals which will
be used later,

o0 1/+2n+1K
A,(,")(z) = / dx xiz /(%)
0 +z

n—1
_ ( n A + Z 2v+2n—2—2k
k=

xT'(v+n—-k)I'(n—

k) (=2)"]. (E19)

d
Bl(/n) =_° I(Jn)
(z) © (z)
= o v Al @) AT )
2
n—1
+ [k2v+2n 2—2kl—*( +n-— k)
k=1
x T(n —k)(=z)*1], (E20)
n,m l © dt n
" )(Z)E/ AL (12), (E21)
ZJ1 t
(n.m) _ [ermdr (n)
T, (v.2) = 1 tz—y(A” (1z) = A (), (E22)

for z > 0, 1/>O n>0.

where y =72, x=(1-2/y), (1+x)=2(1-1/y),
dx = 2dy/y?. Then, we can calculate the Z®"!) integrals,
defined in Eq. (E18), for all channels:

(vnd) 2(1 + (_1)1)(2 + l) B(")

2
@47 " 91+ N(B+1) (mp).— (E23)
I(u,n,l)
99'>qq'
4(—1)[ (n) 8 (—2)1_]‘[!
— AP 2y SN2
onz, Av (D) 9Xk:k!(1—k)!

x{(l—k)C,(,"'l_k)( 2) = (1= k+ DC D (m2)
I—k+2 (-
HEEE el ), (E24)

801

n,l
> T£ )(Zm%,m%))

v,n,l v,n,l
Iéq—»q)q - (1 + (_1)1) |:I((1q/_’21(1/ +

8(1 = 810) = (=2) (= 1)! ity
T Zk!(l—l—k)! 7 (m )}’

(—1)l+2l+3 (), o
6(1+D(2+ z))A” ()

(E26)
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() 2 1 k
(u,n,l) 9(1 + ( 1) ) 2n+v—6 B mD l+ 1 l'
Logsoy = —————22 |2 I'(n-1 -1)—
w9 = T =Dl 4w = 1) ===+ Zk'l— k=1
l_k+1 }’l,l—k n.l—k
X <7,_k ;"™ mp) - € )(m,%))], (E27)
. 40+ (=" o (=2) kz' A=k D) ke
) = T g2 14 (=1) (ml=ket 1) (0
41—k +2) (i . e
+ ( 5 )C£ A k+2)( )+T( I- k+2)(m%’m§) —T£ A k+3)(m2D’mé):|, (E28)

and

(van.l) (—1)1 +2[+3 (n), o (—2)l_kl! 4(—1)1 ), o 4(—1)1(1 —k+ 1) (nl—k+1), o
gnd 17 T2 § Al - C!
W= 91+ 1)(2+1) (mg) k\(I—k)! | 9m?2 (mg) 9 (mg)
—2(1 = K)C ™ () + 21 = k+ 1)C T (md) + TV (m2, m2)

— T (2, m) = T (md) + m2, md) + T (md) 4+ m2, m3)

— (=)' (2 4 m2, mg)} . (E29)

One may wonder that computing those newly defined
functions with different n indices might al (n.m) n.m) (n+1,m)
unctions diffe . v, n, and m 4ces .gtasobe Cu+1()—2yc (Z)+C (). (E34)
computational expansive. Here, we derive their recurrence
relations so that one can compute a small number of
functions and then generate others accordingly. We note

that ' (tz —y)™' = (z/y)((tz = y)~" = (tz)7"), exploiting (nm) 20220 (y + n)[(n)
) . . C"(z) =
the recurrence relations of modified Bessel functions mz
K,(x), the following useful recurrence relations are (n=1,m—1)
obtained. -G (2)- (E35)

(n.m+1) _ E (n,m) _ E (n.m)
T (v.2) = y T.770-2) y ) It shall be useful to note the asymptotic behavior of A" (z)

1w at large z limit,
—A(y), E30
oAl ) (E30)
Ne (_1Vk roo
T (v,2) = 0T (n.2) + TV (n2). (B31) AY(2) _LSnd }() / doxt T2k K (x)
Zk—o @ Jo

A (2) = 20A (2) + A (), (E32)
_—Z 2”+Z”+2kl“(v+n+k+ )

AU (2) = A (2)

PN (44 DI+ 1), (E33) xTln+k+1). (E36)
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