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We discuss up-to-date constraints on the Majorana neutrino mass mββ from neutrinoless double beta
decay (0νββ) searches in experiments using different isotopes: KamLAND-Zen and EXO (136Xe), GERDA
and MAJORANA (76Ge) and CUORE (130Te). Best fits and upper bounds on mββ are explored in the
general landscape of nuclear matrix elements (NME), as well as for specific NME values obtained in
representative nuclear models. By approximating the likelihood of 0νββ signals through quadratic forms,
the analysis of separate and combined isotope data becomes exceedingly simple, and allows us to
clarify various aspects of multi-isotope data combinations. In particular, we analyze the relative impact of
different data in setting upper bounds onmββ, as well as the conditions leading to nonzeromββ at best fit, for
variable values of the NMEs. Detailed results on mββ from various combinations of data are reported in
graphical and numerical form. Implications for future 0νββ data analyses and NME calculations are briefly
discussed.
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I. INTRODUCTION

The process of neutrinoless double beta decay (0νββ),

ðZ; AÞ → ðZ þ 2; AÞ þ 2e−; ð1Þ

expected to occur for some candidate isotopes ðZ; AÞ if
neutrinos are Majorana fermions, may be interpreted
as a miniature event of leptonic matter creation or
“little bang,” whose discovery would have profound
implications for particle and nuclear physics and for
cosmology [1].
In the standard three-neutrino paradigm [2], the process

would be mediated by three Majorana neutrino mass states
νi (i ¼ 1, 2, 3) mixed with the three known flavor states να
(α ¼ e, μ, τ) via a unitary mixing matrix Uαi, parametrized
in terms of three mixing angles ðθ12θ13; θ23Þ, one (Dirac)
phase δ, and two (Majorana) phases φ1;2. The relevant
particle physics parameter is the effective Majorana neu-
trino mass mββ, defined as

mββ ¼ jU2
e1m1 þ U2

e2m2 þ U2
e3m3j; ð2Þ

and related to the observable 0νββ decay half-life Ti in each
isotope i ¼ ðZ; AÞ via

1

Ti
¼ GiM2

i m
2
ββ; ð3Þ

where Gi is the phase space, and Mi is the nuclear matrix
element (NME) for the decay.
It is useful to contrast the Majorana ν mass mββ with the

sum of neutrino masses

Σ ¼ m1 þm2 þm3; ð4Þ

that, being a source of gravity, can produce observable
cosmological effects [2]. Figure 1 shows the regions
allowed in the ðΣ; mββÞ plane at the 2σ level (Δχ2 ¼ 4)
by a global analysis of neutrino oscillation data [3], for
masses mi either in normal ordering (NO, m1;2 < m3) or in
inverted ordering (IO, m3 < m1;2). For a given value of Σ,
the vertical spread of mββ is mostly due to the unknown
relative phases of the Uei matrix elements in Eq. (2).
Current cosmological data provide typical upper bounds

on Σ at the level of Oð100Þ meV, that are more easily
accommodated in NO than in IO [3]; see also the overview
of recent constraints on Σ and their impact on ν mass
ordering in [4]. Several 0νββ decay searches are also
exploring the O(100) meV range for mββ [1,2]; in particu-
lar, the latest constraints from KamLAND-Zen [5] (136Xe)
can plunge into the region mββ ∼ few × 10 meV for
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favorable values of the NME.1 Other very sensitive 0νββ
searches, all probing half-lives Ti > 1025 y at 90% C.L.,
have been performed by the experiments EXO [6] (136Xe),
GERDA [7] and MAJORANA [8] (76Ge), and CUORE
[9] (130Te).
Building upon previous work [3], we discuss in detail

how to combine current (Xe, Ge, Te) data for given NME
values.2 The approach allows a do-it-yourself 0νββ global
analysis in terms of χ2 functions with (up to) quadratic
dependence on the signal strength 1=Ti, which is a good
approximation to recent results [3,10,11]. In particular, we
describe how to derive mββ constraints at a given con-
fidence level, using both separate and combined (Xe, Ge,
Te) data, for generic values of the nuclear matrix elements
(the “NME landscape”), as well as for representative NME
values from different nuclear models. Our approach clari-
fies interesting aspects of the 0νββ data analysis, such as
the relative importance of each isotope in determining (non)
zero best fits and upper bounds for mββ.
The paper is structured as follows: In Sec. II we describe

the ingredients of our analysis in terms of notation, para-
metrization of experimental results for (Xe, Ge, Te), and

associated NME’s. In Sec. III we discuss the main results of
the analysis in terms ofmββ constraints, by considering two
qualitatively different situations: (1) cases where, a priori,
mββ ¼ 0 is preferred, and (2) more general cases where the
best fit may be at mββ > 0. Upper bounds on mββ are
explored both graphically and numerically in the NME
landscape, by using separate and combined (Xe, Ge, Te)
data. In Sec. IV we summarize our results and comment on
further applications and perspectives.

II. INGREDIENTS OF THE ANALYSIS

In this section we introduce the notation, the experi-
mental results and their parametrization, the landscape of
NME and the phase space related to the three isotopes Xe,
Ge and Te.

A. Notation and units

Following [3], we introduce the inverse half-life

Si ¼ 1=Ti; ð5Þ

that represents, up to a constant factor, the observable decay
rate or signal strength in each i ¼ ðZ; AÞ isotope.
Equation (3) reads then

Si ¼ GiM2
i m

2
ββ: ð6Þ

To keep the notation compact, we absorb in Gi terms as
1=m2

e and g4A (where gA ¼ 1.276 [12] is the bare value of
the axial-vector coupling), that are factorized out in other
conventions. In particular, we can make contact with the
notation of [1], where 1=T ¼ G01g4AM

2
0νm

2
ββ=m

2
e, by iden-

tifying G ¼ G01g4A=m
2
e and M ¼ M0ν for each isotope i.

We also follow [1] by taking the Mi as positive real
numbers, referred to the bare value of gA (unless otherwise
noticed). Qualitative effects of the so-called quenching of
gA in nuclear matter [13] are separately commented below.
Finally, the following units are adopted:

½mββ� ¼ meV; ð7Þ

½Ti� ¼ 1026y; ð8Þ

½Si� ¼ 10−26y−1; ð9Þ

½Gi� ¼ 10−26y−1 ðmeVÞ−2: ð10Þ

B. Experimental inputs and parametrizations

In principle, the 0νββ data analysis would be straightfor-
ward, if likelihood profiles were provided for the signal
strength Si (or for Ti) in each experiment, e.g., in terms of a
function χ2i ðSiÞ. Barring error correlations among indepen-
dent experiments, one should sum up the χ2i functions,

FIG. 1. Majorana ν mass mββ versus the sum of ν masses Σ
(both in units of 10−3 eV). The points inside the blue (NO) and
red (IO) wedge-shaped regions are allowed at 2σ by the global
analysis of ν oscillation data. Adapted from [3].

1The range mββ ≃ 16–49 meV, spanning the leftmost edge of
the IO region in Fig. 1, is often (but improperly) dubbed in 0νββ
jargon as “IO region,” despite being compatible with both IO and
NO (as well as the quasidegenerate region at higher mββ). The
misnomer may originate from plots of mββ versus the lightest ν
massml, where two elongated stripes for IO and NO appear in log
scale as ml → 0, see e.g., [1,5]. However, the asymptotic
separation of such stripes has no physical relevance, since ml
is not directly measurable and cannot be resolved with an
accuracy better than an observable such as Σ. Projecting away
ml (as in Fig. 1) makes the point clear.

2For simplicity, we shall generally drop superscripts for the Xe,
Ge, and Te isotopes.
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express the Si in terms of mββ via Eq. (6) for a given set of
Mi, and map the resulting best fits and allowed regions for
mββ. In practice, experimental papers often focus on a
single point of the likelihood profile (e.g., the Ti bound at
90% C.L.), whereas its shape has to be derived from
supplementary information.
A useful empirical fact, first noted in [10] and further

elaborated in [3], is that the functions χ2i ðSiÞ are often well
approximated by (up to) quadratic forms in Si; see also the
recent results in [11]. Such forms cover 0νββ decay searches
ranging from zero background (with Poissonian, linear
dependence on Si) to large backgrounds (with Gaussian,
quadratic dependence on Si) [3]. In particular, we have
checked that the quadratic approximation works very well
also for the latest KamLAND-Zen data [5,14], up to 3σ level
at least.
Each experimental result is thus parametrized through a

function Δχ2i ðSiÞ of the form:

Δχ2i ðSiÞ ¼ aiS2i þ biSi þ ci; ð11Þ

where the offset ci is set by the condition that the minimum
valueΔχ2i ¼ 0 is reached within the physical region Si ≥ 0,
namely,

ci ¼
�
0 for bi ≥ 0;

b2i =4ai for bi < 0:
ð12Þ

For ai > 0 the Δχ2i functions are parabolic, with a vertex
placed at either Si ¼ 0 (null result, bi ¼ 0), or Si < 0
(negative fluctuation in the unphysical region, bi > 0), or
Si > 0 (physical signal or positive fluctuation,bi < 0). In the
latter case, the offset ci guaranteesΔχ2i ¼ 0 atSi ¼ −bi=2ai.
Forai ¼ 0, theΔχ2i functions are linear. For the same isotope,
the results of independent experiments are combined by

summing their Δχ2i ’s, and readjusting the total offset as per
Eq. (12). In all cases, 90% C.L. bounds on the half-life
(T90 ¼ 1=S90) are obtained by imposingΔχ2i ðS90Þ ¼ 2.706.
Table I, updated from [3] with the inclusion of the latest

KamLAND-Zen results [5], reports the coefficients of the
parametrization in Eq. (11) and the T90 bounds for the most
sensitive current experiments (T90 > 0.1), as well as for
combinations of experiments using the same isotope. For
later purposes, we also consider hypothetical CUORE
results for an exactly null signal, denoted as CUORE�
(or Te�).
Figure 2 shows the numerical information of Table I in

graphical form; the left and right panels refer, respectively,
to separate experiments and to same-isotope combinations
(Xe, Ge, Te). A few remarks about these graphs and the
numerics are in order. The case of linear Δχ2 functions
applies to current GERDA and MAJORANA results,
whose combination (denoted as Ge) sets a bound T90 ¼
2.07 stronger than for GERDA alone ðT90 ¼ 1.8Þ. All the
other experiments are characterized by parabolic functions.
KamLAND-Zen and EXO report, respectively, a negative
and a positive fluctuation, that partly cancel in their
combination (denoted as Xe). As a result, the Xe bound
T90 ¼ 2.26 is slightly weaker (T90 ¼ 2.26) than for
KamLAND-Zen alone (T90 ¼ 2.3). Note that, for both
the Ge and Xe combinations, it is Δχ2i ¼ 0 at Si ¼ 0.
Results for the Te isotope depend on the single CUORE

experiment, which shows a positive fluctuation at the level
of 0.64σ ¼ ½Δχ2i ð0Þ�1=2. As anticipated we consider,
besides the real Te results, also hypothetical Te� results,
where this fluctuation is canceled by setting bi ¼ 0 (and
thus also ci ¼ 0). The half-time limit for Te� (T90 ¼ 0.301)
is in reasonable agreement with the median sensitivity
quoted by the CUORE experiment for null result
(T90 ¼ 0.28). In Sec. III, the combination of Xe, Ge,
and Te� results (all with Δχ2i ¼ 0 at Si ¼ 0) will provide

TABLE I. Coefficients of the quadratic parametrization of Δχ2i in terms of the signal strength Si ¼ 1=Ti. The first two columns report
the isotope and the names of the experiments or their combination. The next three columns report our evaluation of the coefficients
ðai; bi; ciÞ for the various experiments (upper five rows) and for their combinations in the same isotope (lower rows). The bottom row
refers to the case of CUORE sensitivity for null result (tagged by �). The sixth column reports our 90% C.L. (Δχ2 ¼ 2.706) half-life
limits T90, to be compared with the experimentally quoted one in the seventh column (as taken from the reference in the eighth column,
when applicable).

Isotope Experiment or combination ai bi ci T90=1026 y T90 (expt.) Reference

136Xe KamLAND-Zen 5.157 3.978 0.000 2.300 2.3 [5]
136Xe EXO 0.440 −0.338 0.065 0.350 0.35 [6]
76Ge GERDA 0.000 4.867 0.000 1.800 1.8 [7]
76Ge MAJORANA 0.000 0.731 0.000 0.270 0.27 [8]
130Te CUORE 0.245 −0.637 0.414 0.216 0.22 [9]
136Xe Xe (KamLAND-Zenþ EXO) 5.597 3.640 0.000 2.260 � � � � � �
76Ge Ge (GERDAþMAJORANA) 0.000 5.598 0.000 2.070 � � � � � �
130Te Te (CUORE data as above) 0.245 −0.637 0.414 0.216 0.22 [9]
130Te Te� (CUORE�, sensitivity) 0.245 0.000 0.000 0.301 0.28 [9]
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a simple starting point, before discussing the full combi-
nation of Xe, Ge and Te constraints on mββ.

C. Landscape of nuclear matrix elements

In order to study the combination of 0νββ results in full
generality, we consider unconstrained values of the nuclear
matrix elements MXe, MGe, MTe in the numerical range
Mi ∈ ½0.2; 20�. Within this landscape, we also consider
representative Mi values from four different approaches to
nuclear modeling, including the nuclear shell model (SM),
the quasiparticle random phase approximation (QRPA), the
energy-density functional theory (EDF), and the interacting
boson model (IBM). The NME values are taken from a
recent compilation of results [15–26] as reported in [1] for
the bare value of gA (see Table I therein), and are listed in
Table II for the sake of completeness.

Figure 3 shows the NME landscape in each of the three
planes charted by pairs ðMi;MjÞ, together with the repre-
sentative Mi values reported in Table II, which refer to the
bare gA. The issue of the effective gA value to be used in
nuclear matter, either bare or quenched by a factor q
(gA → qgA with q < 1), is largely debated and model-
dependent [1,13]. For NMEs dominated by the axial-vector
(Gamow-Teller) component (as it is often the case), the

FIG. 2. Δχ2 functions in terms of the half-life T (top abscissa) and of the signal strength S ¼ 1=T (bottom abscissa). Left and right
panels: separate experiments and their combinations for the same isotope, respectively. Dotted horizontal lines intersect the curves at
90% C.L. See the text for details.

TABLE II. Representative nuclear matrix elements ðMXe;
MGe;MTeÞ computed within four different models (SM, QRPA,
EDF, and IMB) for bare value of gA. Adapted from [1].

MXe MGe MTe Reference Model

1 2.28 2.89 2.76 [15]
2 2.45 3.07 2.96 [15]
3 1.63 3.37 1.79 [16] SM
4 1.76 3.57 1.93 [16]
5 2.39 2.66 3.16 [17]

6 1.55 5.09 1.37 [18]
7 2.91 5.26 4.00 [19]
8 2.72 4.85 4.67 [20] QRPA
9 1.11 3.12 2.90 [21]
10 1.18 3.40 3.22 [21]

11 4.20 4.60 5.13 [22]
12 4.77 5.55 6.41 [23] EDF
13 4.24 6.04 4.89 [24]

14 3.25 5.14 3.96 [25]
15 3.40 6.34 4.15 [26] IBM

FIG. 3. Landscape of nuclear matrix elements Mi ¼
ðMXe;MGe;MTeÞ, in each of the three planes charted by pairs
ðMi;MjÞ. Also shown are the representative Mi values reported
in Table II from different models (SM, QRPA, EDF, IBM). The
arrows show the effect of rescaling each Mi asMi=g2A (represent-
ing typical quenching effects). See the text for details.
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leading quenching effect would amount to rescaling the
product GiM2

i by a factor q4 ∼ g4A, that can be assumed to
operate on Mi only (Mi → q2Mi) if Gi is kept constant.
As a representative quenching effect one may consider,

e.g., the typical case qgA ≃ 1, namely, q ∼ 1=gA, leading to
an approximate rescaling Mi → Mi=g2A, as shown in each
panel of Fig. 3 by an arrow (applicable to any marked
point). Stronger quenching would be associated to longer
arrows (not shown). On the other hand, quenching effects
would be weaker for sizeable NME vector (Fermi) com-
ponents, not scaling with q2. Moreover, some Mi calcu-
lations may exhibit a milder dependence on qgA for
different reasons. In some QRPA calculations, e.g., 2νββ
data are used to adjust the particle-particle parameter gpp,
partly trading the effect of quenching gA from its bare value
to unity [27]. In the same approach, large statistical
covariances are observed among theMi values for different
isotopes, inducing noticeable effects on mββ constraints
[27], as recently discussed in [3]. The marked points in
Fig. 3 also seem to suggest an overall positive correlation
(possibly enhanced by quenching effects) but, since they do
not represent a statistical distribution, their covariances (if
any) will be ignored.
Summarizing, the NME landscape in Fig. 3 is meant to

cover a wide and continuous range of Mi values, either
unquenched or arbitrarily quenched. Graphical results will
be shown for unconstrained Mi values in this landscape.
Marked points in Fig. 3 are meant to represent typical
unquenchedMi (central values) as taken from the literature
(see Table II), while the arrows provide visual guidance for
typical quenching effects (qgA ∼ 1).

D. Phase space

The last ingredient is represented by the phase space Gi
for 0νββ decay in i ¼ Xe, Ge and Te, that we take from the
calculation in [26]. In our notation and units:

GXe ¼ 14.78 × 10−6; ð13Þ

GGe ¼ 2.40 × 10−6; ð14Þ

GTe ¼ 14.42 × 10−6: ð15Þ

The phase space uncertainties [28] are much smaller than
those related to 0νββ data and are not considered herein.

III. CONSTRAINTS ON THE MAJORANA
NEUTRINO MASS

The previously discussed functions Δχ2i ðSiÞ can be
recast in terms of quadratic functions of m2

ββ through
Eq. (6):

Δχ2i ¼ αim4
ββ þ βim2

ββ þ γi; ð16Þ

where the offset γi is set by

γi ¼
�
0 for βi ≥ 0;

β2i =4αi for βi < 0:
ð17Þ

The best-fit value of mββ is set by:

Δχ2i ¼ 0 → mββ ¼
�
0 for βi ≥ 0;

ð−βi=2αiÞ1=2 for βi < 0:
ð18Þ

Table III reports the parametric coefficients ðαi; βi; γiÞ
for the Xe, Ge, Te and Te* cases, with their explicit
dependence on the matrix elements MXe, MGe, MTe.
Constraints on mββ from two or more isotopes are

obtained by summing the corresponding Δχ2i , and by
adjusting the offset so that it obeys Eq. (17), namely:
Δχ2 ¼ αm4

ββ þ βm2
ββ þ γ, where α ¼ P

i αi, β ¼ P
i βi,

and γ ¼ 0 for β ≥ 0 (γ ¼ β2=4α otherwise). Bounds on
mββ at a given confidence level are obtained by solving

Δχ2ðmββÞ ¼ ΔCL; ð19Þ

where, e.g., ΔCL ¼ 2.706, 4 and 9 for limits at 90% C.L.,
2σ and 3σ, respectively.
Two qualitatively different cases arise from current

results: (a) for Xe, Ge and Te�, either separately or in
combination, there is no offset γ and the Δχ2 function is
zeroed atmββ ¼ 0; (b) for Te results, characterized by γi > 0

(positive fluctuation), the combination with Xe or Ge (or
both) may lead to γ > 0, implying a nonzero Majorana
neutrino mass at best fit: mββ ¼ ½−β=2α�1=2. We discuss
separately these two cases below.

A. Combination of Xe, Ge, Te� constraints

In this section we consider current constraints from Xe,
Ge, and from the pseudoexperiment Te� (corresponding to
null signal in CUORE). In this case the analysis is
straightforward, since the best fit ismββ ¼ 0 for all isotopes
and their combinations (independently of the NME).
The analysis including real Te data will bring forward
cases with mββ > 0 at best fit, as discussed in the next
section.
We consider both separate and combined Xe, Ge and Te�

constraints, as obtained by summing up the corresponding

TABLE III. Coefficients of the quadratic parametrization
Δχ2i ¼ αim4

ββ þ βim2
ββ þ γi for the cases Xe, Ge, Te and Te�.

Case αi βi γi

Xe 1.223 × 10−9M4
Xe 5.380 × 10−5M2

Xe 0
Ge 0 1.344 × 10−5M2

Ge 0
Te 5.094 × 10−11M4

Te −9.186 × 10−6M2
Te 0.414

Te� 5.094 × 10−11M4
Te 0 0
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functions defined in Table III, Δχ2 ¼ P
i Δχ2i ¼

αm4
ββ þ βm2

ββ. For a given choice of Mi, upper limits on
mββ are obtained by solving ΔCL ¼ αm4

ββ þ βm2
ββ. For

definiteness we set ΔCL ¼ 4 (2σ bounds), unless otherwise
specified.
Table IV reports the upper bounds on mββ, for each of

the representative (MXe, MGe, MTe) calculations listed in
Table II. Concerning constraints from single isotopes, in
most cases Xe sets the strongest bound, followed by weaker
ones from Ge and Te�. However, for the cases numbered as
9 and 10 (QRPA), the bounds from Xe, Ge and Te� are
comparable to each other, and for case 6 (QRPA) the Ge
bound actually prevails over the Xe (and Te�) bound.
Notice that such a hierarchy of mββ constraints may change
at different confidence levels, since the Si bounds scale up
at different rates (see Fig. 2). In Table IV the combination
of pairs of constraints improves appreciably upon each
separate constraint; the relative balance in each pair is
highlighted below. Finally, the total combination Xeþ
Geþ Te� provides even stronger bounds onmββ, that range
from a minimum of 38.5 meV (case 12, EDF) to a
maximum of 120.4 meV (case 9, QRPA) at 2σ.
Figure 4 shows isolines of the 2σ bounds on mββ, as

derived by combining any two pairs among Xe, Ge and
Te�, for unconstrained values of the NME. In each panel,
single-isotope bounds are asymptotically recovered along
each axis, for vanishing matrix element on the other axis.
When both matrix elements are sizeable, the joint bound
improves upon separate ones. In particular, at each marked
point, the bounds in Table IV are recovered for the
corresponding NME and pair of isotopes.
For each ðMx;MyÞ panel and ðx; yÞ isotope pair, the

condition for the dominance of one isotope constraint over
the other is easily derived. The two isotopes contribute
equally toΔCL whenΔχ2x ¼ ΔCL=2 ¼ Δχ2y. The solutions to
these equations read Mxmββ ¼ ξx and Mymββ ¼ ξy, where
ξx;y are positive numbers. For ΔCL¼4 it is MTe=MGe ¼
1.154, MGe=MXe ¼ 2.488, and MTe=MXe ¼ 2.871, shown
as a dashed line in each panel of Fig. 4. Along the dashed
line, the two isotopes contributewith equal strength to the 2σ
upper bound; above the dashed line, the y-axis isotope
dominates over the x-axis one, and vice versa. In this way

one gets a graphical interpretation of the hierarchy of bounds
for different NME, that was inferred from numerical
inspection of Table IV.

B. Combination of Xe, Ge, Te constraints

In this section we consider real Te data, as opposed to the
previous cases including Te* pseudodata. The slight
preference of Te data from CUORE for a nonzero signal
(as compared with Xe, Ge and Te�, see Fig. 2) brings
forward new features of multi-isotope data constraints,
although still at embryonic stages.
In general one may expect that, for relatively small

values ofMTe (with respect toMXe andMGe), the Xeþ Ge
results will dominate over Te, keeping the best fit at

TABLE IV. Bounds on mββ=meV at 2σ level from Xe, Ge and Te� results, both separately and in combination, for each of the 15
representative NME calculations listed in Table II. The best-fit value is mββ ¼ 0 in all cases.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Xe 86.9 80.9 121.6 112.6 82.9 127.9 68.1 72.9 178.6 168.0 47.2 41.6 46.7 61.0 58.3
Ge 188.8 177.7 161.9 152.8 205.1 107.2 103.7 112.5 174.9 160.5 118.6 98.3 90.3 106.2 86.1
Te� 191.8 178.8 295.7 274.3 167.5 386.4 132.3 113.4 182.5 164.4 103.2 82.6 108.3 133.7 127.6
Xeþ Ge 81.0 75.5 101.9 95.0 78.5 86.8 59.3 63.7 132.0 122.7 44.8 39.2 42.8 54.8 50.4
Xeþ Te� 85.7 79.8 120.4 111.6 81.3 127.4 66.6 69.2 147.2 135.3 46.5 40.7 46.2 60.1 57.5
Geþ Te� 149.7 140.2 155.6 146.5 142.2 106.9 91.3 88.8 140.7 127.8 85.8 69.5 77.5 92.9 79.4
Xeþ Geþ Te� 80.1 74.7 101.3 94.4 77.2 86.7 58.4 61.5 120.4 110.7 44.2 38.5 42.4 54.2 49.9

FIG. 4. Isolines of mββ bounds (at 2σ level) in the landscape of
nuclear matrix elements, obtained from the combination of any
two results among Xe, Ge and Te�. In each panel, the bounds are
dominated by the isotope on the y (x) axis, in the region above
(below) the dashed line. See the text for details.
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mββ ¼ 0. However, for increasing MTe, the Te results will
eventually prevail and set mββ > 0 at Δχ2 ¼ 0, affecting
also upper bounds at some value ΔCL.
This situation anticipates what could happen with future

and more accurate 0νββ data: their combination may (or
may not) be consistent with some indications for nonzero
mββ, depending on both the data and the NME values. A
future preference for mββ > 0 might even lead to lower
bounds on mββ, either separately or in combination,
depending in part on (un)favorable values of the NME.
Eventually, precise multi-isotope data might even test
specific NME’s by selecting allowed ratios Mx=My

[29,30] namely, slanted allowed stripes in the NME land-
scape of Fig. 3.3

In our approach, the occurrence of mββ > 0 at best fit is
simply signaled, for a single isotope, by a coefficient βi < 0

in the Δχ2 function (currently occurring only for Te) and,
for any combination of multi-isotope data, by a negative
coefficient β ¼ P

i βi < 0. The best-fit value ofmββ is then
mββ ¼ ð−β=2αÞ1=2 with α ¼ P

i αi, and its specific value
depends on the NME’s. For β < 0, the offset must be taken
as γ ¼ β2=4α. In all cases, upper bounds at a chosen
confidence levels are set by Δχ2 ¼ ΔCL. Table V shows the
numerical results from current Xe, Ge and Te data,
regarding the 2σ limits (lower part) and the best-fit values
(lower half) of mββ. In the upper half, the rows correspond-
ing the Xe, Ge and Geþ Xe are unchanged with respect to
Table IV, but are repeated for completeness.
Let us first comment on themββ best fits in the lower half

of Table V. Of course, the Te row displays nonzero results,
withmββ scaling as 1=MTe. In almost all cases including Te

(combined with Xe or Ge or both), the positive contribu-
tions to β ¼ P

i βi from i ¼ Xe and Ge are never erased by
the negative contribution from Te, and mββ ¼ 0 is pre-
ferred. Only for cases 9 and 10 (QRPA), it turns out that the
large ratio MTe ≃ 2.6MXe makes Te prevail over Xe in the
corresponding Xeþ Te combinations, which show non-
zero best fits.
Concerning the upper half of Table V, the combination of

Te with Xe (or Ge) does not necessarily improve upon the
separate 2σ bounds. Roughly speaking, when the best-fit
value of mββ in Te is comparable or larger than the upper
bound from Xe (Ge) alone, the joint bound from Xeþ Te
(Geþ Te) is weakened, as a result of the slight tension
between the two isotopic data. A slight weakening also
occurs whenever when Te is added to Xeþ Ge in the global
combination Xeþ Geþ Te.4 The 2σ bounds on mββ

compiled in Table V are contained in the following range:

mββ ∈ ½40.5; 135.0� meV ðXeþ Geþ TeÞ: ð20Þ

The lowest (most optimistic) edge of this range would
significantly cut from above the IO and NO allowed regions
in Fig. 1, setting also an upper limit on Σ at the level
of ∼400 meV.
Figure 5 shows isolines of the best-fit value ofmββ in the

left and right panels charted by (Xe, Te) and (Ge, Te),
respectively. In the left panel, the condition

P
i βi > 0 for

mββ > 0 implies MTe=MXe > 2.42, satisfied only by two
marked points (corresponding to the QRPA cases 9 and 10
in Table II) close to the isoline at mββ ¼ 30 meV. In the
right panel, none of the marked points falls in the analogous

TABLE V. Upper half: Bounds onmββ=meV at 2σ level from Xe, Ge and Te results, both separately and in combination, for each of the
15 representative NME calculations listed in Table II. Lower half: Corresponding best-fit values of mββ.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Xe 86.9 80.9 121.6 112.6 82.9 127.9 68.1 72.9 178.6 168.0 47.2 41.6 46.7 61.0 58.3
Ge 188.8 177.7 161.9 152.8 205.1 107.2 103.7 112.5 174.9 160.5 118.6 98.3 90.3 106.2 86.1
Te 220.5 205.6 340.0 315.3 192.6 444.2 152.1 130.3 209.9 189.0 118.6 94.9 124.5 153.7 146.6
Xeþ Ge 81.0 75.5 101.9 95.0 78.5 86.8 59.3 63.7 132.0 122.7 44.8 39.2 42.8 54.8 50.4
Xeþ Te 89.6 83.4 124.9 115.7 85.6 130.4 70.4 75.0 167.5 154.5 48.6 42.9 48.1 62.9 60.1
Geþ Te 174.1 163.2 170.1 160.5 166.5 109.6 104.4 103.3 163.4 148.6 100.3 81.3 89.2 106.5 89.2
Xeþ Geþ Te 83.5 77.9 104.5 97.4 81.2 88.0 61.4 66.2 135.0 124.7 46.2 40.5 44.1 56.5 51.9

Xe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Te 108.8 101.4 167.7 155.6 95.0 219.2 75.1 64.3 103.5 93.2 58.5 46.8 61.4 75.8 72.4
Xeþ Ge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xeþ Te 0 0 0 0 0 0 0 0 31.7 36.0 0 0 0 0 0
Geþ Te 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xeþ Geþ Te 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3An overall NME rescaling factor λ (Mx;y → λMx;y) is
degenerate with an inverse rescaling of the Majorana mass
(mββ → mββ=λ).

4These effects are analogous to those noted in Sec. II B for the
combination of KamLAND-Zen and EXO data, leading to a T90

bound slightly weaker than from KamLAND-Zen alone, as a
result of two opposite fluctuations.

MAJORANA NEUTRINO MASS CONSTRAINTS IN THE … PHYS. REV. D 106, 013009 (2022)

013009-7



region MTe=MGe > 1.21, although three of them are very
close to its border. If future 0νββ experiments will show
some indications for a signal, plots like these will help to
locate the best-fit values of mββ as a function of the NME,
for each isotope pair. The (in)consistency of the best fits in
different pairs will provide interesting clues about the
interpretation of data in terms of light Majorana neutrinos.
Figure 6 shows isolines of themββ upper bounds at 2σ, in

the same planes of Fig. 5. In comparison with the lower
panels of Fig. 4, a slight weakening of the bounds can be
appreciated. Note that, in the presence of subregions where
mββ > 0 at best fit, the offset γ depends on information
coming from both isotopes, whose χ2 contributions cannot
be separated in the combination. The condition of equal
contributions to ΔCL cannot be defined in general terms,
and the dashed lines of Fig. 4 are thus absent in Fig. 6.
We conclude this section by discussing the constraints on

mββ at various confidence levels, as derived from the global
combination of current (Xeþ Geþ Te) data, using the
representative NME values in Table II. Since the best fit is
mββ ¼ 0 in all Xeþ Geþ Te cases (see Table V), only
upper bounds need to be quoted.

Table VI reports the 90% C.L., 2σ, and 3σ upper limits
on mββ (in meV). Figure 7 shows the Nσ ¼ ðΔχ2Þ1=2
bounds as continuous functions of mββ. Qualitatively, the
strongest limits in are obtained using NMEs from the EDF
and IBM models, followed by QRPA and SM cases in
mixed order. These results can be generalized to any other
choice of NME calculations, using the information pro-
vided in this paper.
In Fig. 7, one of the Nσ curves labeled as QRPA shows a

a markedly different (almost linear) slope, intersecting three
SM curves. This peculiar curve corresponds to the lowest
QRPA point in both panels of Fig. 6 (case 6 in Table II), that
is characterized by a rather large value ofMGe as compared
with MXe;Te. As a result, Ge data prevail over Xe and Te in
the combination, and the leading dependence is Δχ2 ∝ S ∝
m2

ββ (rather than Δχ2 ∝ S2 ∝ m4
ββ), implying a roughly

FIG. 5. Isolines of best-fit values of mββ=meV in the planes
charted by (Xe, Te) and (Ge, Te) nuclear matrix elements. The
best fit is zero in the lower-right parts of each panel, as well as in
the whole (Xe, Ge) panel (not shown).

FIG. 6. Isolines of mββ bounds (at 2σ level) in the planes
charted by (Xe, Te) and (Ge, Te) nuclear matrix elements. The
(Xe, Ge) panel (not shown) is unchanged with respect to Fig. 4.

FIG. 7. Significance of upper limits on mββ in terms of
Nσ¼ðΔχ2Þ1=2, from the combination of current Xeþ Geþ Te
data, for the representative NME calculations considered in
this work.

TABLE VI. Upper bounds on mββ=meV at 90% C.L., 2σ, and
3σ, from the combination of current Xeþ Geþ Te data, for the
representative NME calculations considered in this work.

90% 2σ 3σ Model

1 72.7 83.5 109.4
2 67.8 77.9 101.9
3 89.3 104.5 141.5 SM
4 83.3 97.4 131.7
5 71.0 81.2 105.4

6 73.6 88.0 125.3
7 53.0 61.4 81.6
8 57.6 66.2 86.7 QRPA
9 117.7 135.0 176.3
10 108.9 124.7 162.3

11 40.3 46.2 60.1
12 35.4 40.5 52.6 EDF
13 38.2 44.1 58.1

14 48.8 56.5 74.7
15 44.6 51.9 69.5 IBM
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linear NσðmββÞ function. Once more, this observation
shows the importance of considering the full likelihood
profile of the experimental results (e.g., in terms of
S ¼ 1=T), rather than pointlike information (such as the
90% C.L. limit on T).
As a final step, one could include a joint probability

distribution or a Δχ2 penalty defined over the NME
landscape ðMXe;MGe;MTeÞ, and numerically minimize
the total Δχ2 function. This exercise was performed in
[3] by assuming a conservative characterization of the
NME and their correlated uncertainties, derived within
QRPA calculations [27]. A limit mββ < 110 meV was
obtained at 2σ [3]. By repeating the same exercise with
the updated (Xeþ Geþ Te) combination considered
herein, we get the following marginalized bounds (in
meV): mββ < 79.5 at 90% C.L., mββ < 99.8 at 2σ, and
mββ < 169 at 3σ. Roughly speaking, from these results and
from the summary in Eq. (20) one can state that the
combination of current 0νββ experiments sets 2σ upper
bounds on mββ at the level of ∼90–100 meV for “average”
NME values, possibly lowered to ∼40–50 meV for favor-
able NME values.
A final remark is in order. In principle, one should

replace the QRPA input from [27] with more general and
up-to-date estimates of the NME’s and their uncertainties,
characterizing also the spread among different models and
calculations. However, no consensus estimates exist yet for
NME fiducial values and covariances, although relevant
work is in progress toward this goal [1,31]. Part of the
planned strategy involves benchmarking nuclear models for
0νββ decay against a variety of data, coming from related
electroweak and strong interaction processes or from
nuclear structure [32–35].

IV. CONCLUSIONS AND PERSPECTIVES

We have discussed an approach to the analysis of
neutrinoless double beta decay experiments, in terms of
Δχ2 profiles for the signal strength Si (inverse of the half-
life Ti) in the isotopes i ¼ Xe, Ge and Te, building upon
previous work [3]. The approach becomes exceedingly
simple for quadratic approximations to such profiles,
implying quadratic (in)equalities in the landscape of
nuclear matrix elements Mi that connect the Si to the
Majorana mass mββ. For convenience, some results have
been discussed in terms of pseudo data for null signal in Te
(dubbed Te�). Simple relations among the Mi have been
derived to gauge the relative contributions of different
isotopic data in setting upper limits tomββ (for null best fits
in Xe, Ge and Te�), and to identify the conditions leading to
a preference for nonzero mββ (for generic Xe, Ge and Te

data). Using the latest available 0νββ data, as well as
representative values of the NME from different models,
we have discussed current constraints on mββ at several
confidence levels and in various combinations, both
numerically and graphically. Global 2σ upper limits on
mββ are found in the range from 40.5 to 135 meV,
depending on the NME.
The approach can be easily extended to nonstandard

processes for 0νββ decay [1,36,37] by replacing the
relation Si ¼ GiM2

i m
2
ββ with the appropriate phase space,

NME and particle physics parameter characterizing the
process. Also, the approach can be extended to generic
Δχ2ðSiÞ functions, with a modest price to pay in terms of
numerical (rather than analytical) solutions. We invite the
experimental collaborations involved in 0νββ decay
searches to publicly provide such Δχ2ðSiÞ functions or
equivalent ones, as they contain much more information
than the usually quoted 90% C.L. limits on Ti. Indeed, the
relative impact of such limits and of the resulting bounds on
mββ in a multi-isotope combination depend sensitively on
the likelihood profiles of Si (or Ti), and not only on the
relative size of the Mi.
Our approach to the multi-isotope data analysis would be

complete if one could also assign joint probability densities
to theMi, whose variations could then be treated as nuisance
parameters and marginalized. So far, detailed results for the
NME central values and covariances, including gA quench-
ing uncertainties, have been obtained in a specific (QRPA)
model [27]. In perspective, it would be important to extend
such investigations to other nuclear models, eventually
reaching consensus values for theMi and for their correlated
(and possibly reduced) uncertainties.
In this sense, the combined analysis of 0νββ results is

proceeding through to the same steps that have charac-
terized similar fields (e.g., solar neutrinos) in the past: from
low-statistics data and theoretical models with large uncer-
tainties, to a wealth of accurate experimental results
interpreted in increasingly refined and constrained models.
Our work aims at providing one methodological step along
this path.
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