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I find the three-loop corrections at leading order in QCD to the physical masses of the Higgs, W, and Z
bosons in the Standard Model. The results are obtained as functions of the MS Lagrangian parameters only,
using the tadpole-free scheme for the vacuum expectation value. The dependences of the computed masses
on the renormalization scale are found to be smaller than present experimental uncertainties in each case. In
the case of the Higgs boson mass, the new result is the state of the art, while the results for W and Z are in
good numerical agreement with corresponding results in the on-shell and hybrid schemes. These results are
now included in the Standard Model in Dimensional Regularization computer code.
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I. INTRODUCTION

Since the discovery of the Higgs boson in 2012, the
Standard Model is a mathematically complete theory, for
which precision calculations can be performed. In addition
to providing a test of the agreement of the theory with
experiment, this allows us to obtain accurate results for the
short-distance Lagrangian parameters, suitable for match-
ing to candidate ultraviolet completions. The goal of this
paper is to report the three-loop QCD contributions to the
pole masses of theW, Z, and Higgs bosons in the Standard
Model. In the case of the Higgs boson mass, the result
obtained is the new state-of-the-art result, including the
complete set of two-loop effects as well as the three-loop
terms proportional to α2Sy

2
t , including all momentum-

dependent effects, as well as the three-loop terms propor-
tional to αSy4t and y6t in the approximation that M2

h ≪ M2
t .

The results below are given in the pure MS renormal-
ization scheme [1,2] based on dimensional regularization
[3–7], so that all independent inputs are running
Lagrangian parameters. The calculation is also based on
the tadpole-free scheme for the Higgs vacuum expectation
value (VEV), which is defined to be the minimum of the
exact Landau gauge effective potential, currently known in
an approximation at full three-loop order [8–11] with the
leading four-loop order QCD part [12] and resummation of
the Goldstone boson contributions [13,14]. The tadpole-
free VEV scheme has a formally faster convergence in
perturbation theory than schemes based on a tree-level
VEV definition, since in the latter the tadpole diagrams

necessarily introduce inverse powers of the Higgs self-
coupling λ. The price to be paid for this improvement is that
the validity of the calculations is restricted to the Landau
gauge fixing prescription in the electroweak sector.
Previous two-loop calculations of the W and Z masses

have been given in Refs. [15–18], using the tree-level
definition for the VEV. In addition, there is a long history
of calculations of the ρ parameter including up to four-loop
order QCD contributions [19–41], which can be used to
relate theW boson on-shell mass to the Z boson mass. The
present paper relies on a quite different organization of
perturbation theory, by taking all physical masses as outputs
including theW and Z boson pole masses separately, rather
than using the Z boson on-shell mass as an input. The
complete two-loop W and Z boson pole squared masses in
the scheme adopted in this paper were given in refs. [42] and
[43] respectively. The present paper will add the three-loop
QCD contributions to those results in a consistent way.
In the case of the Higgs boson pole squared mass,

Ref. [44] provided the mixed QCD/electroweak parts,
Ref. [45] gave results in the gaugeless limit in which g,
g0 are neglected in the two-loop part, and Ref. [46] gave an
interpolating formula for the full two-loop approximation
in a hybrid MS/on-shell scheme. In Ref. [47], the full two-
loop corrections were extended to include the three-loop
contributions in the gaugeless effective potential limit
(formally, g23; y

2
t ≫ λ; g2; g02, where g3; g; g0 are the gauge

couplings, yt is the top-quark Yukawa coupling, and λ is the
Higgs self-coupling) using the pure MS tadpole-free
scheme. The present paper will extend this further to
include the momentum-dependent parts of the leading
QCD contribution to the Higgs boson self-energy in the
calculation of the pole squared mass.
To specify notation, the complex pole squared masses

for the electroweak bosons are each given in the loop-
expansion form
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sXpole≡ ðMX− iΓX=2Þ2

¼m2
Xþ

1

16π2
Δð1Þ

X þ 1

ð16π2Þ2Δ
ð2Þ
X þ 1

ð16π2Þ3Δ
ð3Þ
X þ…;

ð1:1Þ

with X ¼ W, Z, and h. Note that all of the quantities
appearing on the right-hand side of Eq. (1.1) depend only
on the MS input parameters of the theory. In particular,
the tree-level MS squared masses m2

X are given by
m2

W ¼ g2v2=4, m2
Z ¼ ðg2 þ g02Þv2=4, and m2

h ¼ 2λv2.
The complete one- and two-loop contributions given in
Refs. [42,43,47] were written in terms of master integrals
defined in Refs. [48,49], the latter of which provided a
computer program TSIL for their efficient numerical evalu-
ation. The computer program SMDR [50] incorporates these
calculations of the W, Z, and Higgs physical masses and
many other results within the pure MS tadpole-free scheme,
matching observables to Lagrangian parameters. Another
public code MR [51] provides similar functionality, but
using the tree-level VEV scheme.
For the vector bosons, it is important to note that the

standard practice in experimental papers and by the review
of particle properties (RPPs) [52] from the Particle Data
Group (PDG) is to report the on-shell masses found from a
variable-width Breit-Wigner linewidth fit, which should be
related to the complex pole mass and width MX and ΓX
defined in Eq. (1.1) by

MPDG ¼ M
1þ δffiffiffiffiffiffiffiffiffiffi
1 − δ

p ; ð1:2Þ

ΓPDG ¼ Γ
1þ δ

ð1 − δÞ3=2 ; ð1:3Þ

where

δ ¼ Γ2=4M2: ð1:4Þ

(In this paper, the superscript “PDG” refers to the con-
vention used by the PDG and not to the averaged
experimental results produced by the PDG in the RPPs.)
To add to the potential for confusion, in Refs. [42,43,47] by
the present author, and many publications by other authors,
a different parametrization for complex pole masses has
been used, denoted here by

spole ¼ M02 − iΓ0M0; ð1:5Þ

which is related to the M and Γ in Eq. (1.1) by

M0 ¼ M
ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
; ð1:6Þ

Γ0 ¼ Γ=
ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
: ð1:7Þ

The ðMPDG;ΓPDGÞ and ðM0;Γ0Þ parametrizations can be
considered to contain the same information as ðM;ΓÞ,
through the defining relations in Eqs. (1.2)–(1.4), (1.6), and
(1.7). However, as emphasized in a recent paper [53], the
ðM;ΓÞ parametrization defined by Eq. (1.1) has the clear
advantage that Γ ¼ 1=τ is precisely the inverse mean
lifetime of the particle, unlike ΓPDG and Γ0. In the following
spole will be computed, but the information that it contains
must be converted to MPDG to compare directly with the
results quoted by the PDG and experimental collaborations.
The W and Z PDG-convention masses that are almost
always quoted are, respectively, about 0.020 and
0.026 GeV larger than the pole masses MW and MZ, and
about 0.027 and 0.034 GeV larger than M0

W and M0
Z.

The experimental values from the 2021 update of the
2020 RPPs are1 MPDG

Z ¼ 91.1876� 0.0021 and MPDG
W ¼

80.379� 0.012 andMh ¼ 125.25� 0.17 GeV. The Higgs
bosonwidth (about 4.1MeV, according to theory) is so small
that the numerical distinction between the PDG-convention
and complex pole mass versions of the real part Mh is
negligible.
The three-loop integrals to be used below have been

defined and discussed in Secs. IV, VI, and VII of Ref. [55].
The master integrals are given there as a renormalized
ϵ-finite basis, defined so that expansions of integrals to
positive powers in ϵ will never be needed, even when the
results of the present paper are (eventually) extended to
four-loop order or beyond. Denoting the lists of one-, two-,
and three-loop renormalized ϵ-finite master integrals

by I ð1Þ
j , I ð2Þ

j , and I ð3Þ
j , respectively, then the general form

of a three-loop contribution to the pole mass of X ¼ W, Z,
or h is

Δð3Þ
X ¼

X
j

cð3ÞI ð3Þ
j þ

X
j;k

cð2;1Þj;k I ð2Þ
j I ð1Þ

k

þ
X
j;k;l

cð1;1;1Þj;k;l I ð1Þ
j I ð1Þ

k I ð1Þ
l þ

X
j

cð2Þj I ð2Þ
j

þ
X
j;k

cð1;1Þj;k I ð1Þ
j I ð1Þ

k þ
X
j

cð1Þj I ð1Þ
j þ cð0Þ; ð1:8Þ

where all of the coefficients cð3Þ; cð2;1Þj;k ;…; cð0Þ are dimen-

sionless MS couplings multiplied by rational functions of
the MS top-quark squared mass

t ¼ y2t v2=2 ð1:9Þ

and either s ¼ W, Z, or h as appropriate, where

1After the first version of the present paper, the CDF
Collaboration released [54] a new measurement of the W mass
that is substantially higher, MPDG

W ¼ 80.4335� 0.0064stat�
0.0069syst GeV. See Figs. 5 and 6.
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W ¼ m2
W ¼ g2v2=4; ð1:10Þ

Z ¼ m2
Z ¼ ðg2 þ g02Þv2=4; ð1:11Þ

h ¼ m2
h ¼ 2λv2: ð1:12Þ

The VEV v is defined to be the minimum of the MS
effective potential in Landau gauge at all orders in
perturbation theory, so that the sum of all Higgs tadpole
diagrams vanishes. Note that the name of each particle is
being used as a synonym for the tree-level MS squared
mass in the tadpole-free scheme. (All other fermions are

taken to be massless, except in the one-loop parts Δð1Þ
X .)

Note also that the tree-level MS squared masses t, W, Z,
and h are not gauge invariant, but are specific to Landau
gauge, due to their dependence on the VEV. However, as is
well known, the complex pole masses [and thus the PDG-
convention masses for W and Z, defined by Eqs. (1.2)–
(1.4)] are gauge invariant.
The loop integrals include logarithmic dependences on

the MS renormalization scale Q, written in this paper in
terms of

Lt ≡ lnðt=Q2Þ; ð1:13Þ

L−s ≡ lnðs=Q2Þ − iπ; ð1:14Þ

for the external momentum invariant s, which has a positive

infinitesimal imaginary part. In the three-loop parts Δð3Þ
X ,

the integrals will always be evaluated at external momen-
tum invariant equal to the tree-level squared mass, s ¼ W,
Z, or h. This is just as consistent as choosing to evaluate
them at the (real part of) the corresponding pole squared
mass instead, as the difference is of four-loop order and
numerically small.
In order to provide more opportunities for checks, the

results below will be given in terms of SUð3Þc group theory
quantities,

CG ¼ Nc ¼ 3; CF ¼ ðN2
c − 1Þ=2Nc ¼ 4=3;

TF ¼ 1=2; ng ¼ 3: ð1:15Þ

Here Nc is the number of colors, CG and CF are the
quadratic Casimir invariants of the adjoint and fundamental
representations, respectively, TF is the Dynkin index of the
fundamental representation, and ng is the number of
fermion generations.
For numerical results shown below, I will use a bench-

mark StandardModel designed to give output parameters in
agreement with the current central values of the 2021
update of the 2020 RPPs [52],

Mt ¼ 172.5 GeV; Mh ¼ 125.25 GeV; MPDG
Z ¼ 91.1876 GeV;

GF ¼ 1.1663787 × 10−5 GeV2; α0 ¼ 1=137.035999084; αð5ÞS ðMZÞ ¼ 0.1179;

mbðmbÞ ¼ 4.18 GeV; mcðmcÞ ¼ 1.27 GeV; msð2 GeVÞ ¼ 0.093 GeV;

mdð2 GeVÞ ¼ 0.00467 GeV; muð2 GeVÞ ¼ 0.00216 GeV; Mτ ¼ 1.77686 GeV;

Mμ ¼ 0.1056583745 GeV; Me ¼ 0.000510998946 GeV;

Δαð5ÞhadðMZÞ ¼ 0.02766: ð1:16Þ

Using the latest version 1.2 of the computer program SMDR [50], which incorporates the new results of the present paper,
these are best fit by the MS input parameters (using the tadpole-free scheme for the Landau gauge VEVand writing g3 for
the QCD coupling in the full six-quark Standard Model theory),

Q0 ¼ 172.5 GeV;

vðQ0Þ ¼ 246.603216913 GeV; λðQ0Þ ¼ 0.12639276585;

g3ðQ0Þ ¼ 1.16300624875; gðQ0Þ ¼ 0.647606757306; g0ðQ0Þ ¼ 0.358550211695;

ytðQ0Þ ¼ 0.93157701535; ybðQ0Þ ¼ 0.015503239387; yτðQ0Þ ¼ 0.0099944376213;

ycðQ0Þ ¼ 0.003394710569; ysðQ0Þ ¼ 0.0002916507520; yμðQ0Þ ¼ 0.0005883797990;

ydðQ0Þ ¼ 1.464523924362 × 10−5; yuðQ0Þ ¼ 6.739112138367 × 10−6;

yeðQ0Þ ¼ 2.792980305214 × 10−6: ð1:17Þ
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Specifically, the values in Eq. (1.17) were obtained by
applying the command-line utility calc_fit of SMDR to the
values in Eq. (1.16). The code proceeds iteratively, con-
verging to a stable relative precision of better than 10−12 in
all outputs after a few iterations. Here I have included many
more significant digits than justified by the theoretical
errors, merely for the sake of reproducibility. These MS
quantities can be run to a different renormalization scale
choice Q, where the pole squared masses can be recom-
puted. In the idealized case, the pole squared masses, being
observables, would be independent of the scale Q at which
they are computed.
Below, Iwill show figures illustrating thenumerical results

for the Z boson pole mass and width, the Higgs boson mass
andwidth, theHiggs boson self-interaction, and theW boson
mass and width. In the cases of the Z and Higgs boson
masses, the numerical results shown are of course not
predictions, in the sense that the numerical inputs were
determined by the data in Eq. (1.16). Instead, they serve to
show the dependence of the calculation on the choice of
renormalization scale Q. In the case of the Higgs self-
coupling, the results reflect the present state-of-the-art
calculation, given the Higgs mass and other on-shell inputs.
In the case of the W boson mass, the result is a genuine
prediction, since it is not included in the data of Eq. (1.16).
More generally, the results of this paper, as incorporated in
SMDR, can be used to calculate the on-shell quantities for any
chosen values of the MS input quantities in Eq. (1.17). Or,
conversely, theMS parameters can be obtained iteratively by
the SMDR code for any values of the on-shell quantities
in Eq. (1.16).

The renormalization group running is carried out using
the state-of-the-art beta functions for the Standard Model.
The two- and three-loop beta functions were found in
[56–60] and [61–69], respectively. The four-loop beta
function for the QCD coupling g3 was found in [70–74] in
the approximation that only g3, yt, and λ are included. The
pure QCD five-loop beta functions were obtained in
[75,76], and the four- and five-loop QCD contributions
to the quark Yukawa beta functions were obtained in
Refs. [77,78] and Ref. [79] respectively, and the four-loop
QCD contributions to the beta function of the Higgs self-
coupling λ were obtained from [12,80]. Finally, the
complete four-loop beta functions for the three gauge
couplings have been provided by [81]. All of these results
have been included in the latest version of the code SMDR,
which was used to carry out the numerical computations
described below. The code also implements results for
multiloop threshold matching of electroweak couplings
[17,18,82–85], the QCD coupling [86–91], and quark and
lepton masses [92–103].

II. THE Z BOSON POLE MASS

Consider the Z boson complex pole squared mass sZpole in
the form of Eq. (1.1). The complete one- and two-loop

contributions Δð1Þ
Z and Δð2Þ

Z were given in the tadpole-free
pure MS scheme in Ref. [43]. The three-loop QCD part can
be split into contributions from 13 distinct classes of self-
energy diagrams with different group theory structures,
using the quantities defined in Eq. (1.15),

Δð3Þ;g4
3

Z ¼ g43NcCFfða2uL þa2uRÞ½CGΔ
ð3;aÞ
Z þCFΔ

ð3;bÞ
Z þTFΔ

ð3;cÞ
Z þð2ng−1ÞTFΔ

ð3;dÞ
Z �

þ2auLauR ½CGΔ
ð3;eÞ
Z þCFΔ

ð3;fÞ
Z þTFΔ

ð3;gÞ
Z þð2ng−1ÞTFΔ

ð3;hÞ
Z �þðg2þg02ÞTFΔ

ð3;iÞ
Z

þ½ðng−1Þða2uL þa2uRÞþngða2dL þa2dRÞ�½CGΔ
ð3;jÞ
Z þCFΔ

ð3;kÞ
Z þTFΔ

ð3;lÞ
Z þð2ng−1ÞTFΔ

ð3;mÞ
Z �g; ð2:1Þ

where the tree-level couplings of the Z boson to up- and
down-type quarks are

auR ¼−
2

3

g02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg02

p ; auL ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg02

q
þauR; ð2:2Þ

adR ¼
1

3

g02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg02

p ; adL ¼−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg02

q
þadR: ð2:3Þ

Most of the three-loop diagrams are straightforward to
set up and can be carried out with a naive treatment of γ5,
taken to anticommute with all of the other gamma matrices.
The known exception to this is the double triangle diagrams
shown in Fig. 1, which feature two distinct triangle quark

FIG. 1. Three-loop contribution to the Z boson mass from
diagrams involving two triangle quark loops, which give a
nonvanishing contribution with a consistent treatment of the
axial vector coupling. These contributions are individually
divergent for each of ðq; q0Þ ¼ ðt; tÞ; ðt; bÞ; ðb; tÞ; ðb; bÞ, but are
finite and gauge invariant after the combination. Contributions
involving sums over other ðq; q0Þ quark doublet combinations
vanish in the massless quark limit.
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loops each containing a γ5 from the axial vector coupling to
the Z boson. (The vector couplings to the Z boson give
vanishing contributions for the sum of these diagrams.) The
contributions from ðq; q0Þ ¼ ðt; tÞ; ðt; bÞ; ðb; tÞ; ðb; bÞ are
separately divergent, but their sum is finite and gauge
invariant. Therefore, for these diagrams only, one can use
the prescription [104,105]

γμγ5 →
i
6
ϵμνρσγνγργσ; ð2:4Þ

based on the ‘t Hooft–Veltman treatment [6] of γ5, and then
carry out the Lorentz algebra in four dimensions before
reducing to master integrals in d dimensions. The result is

the contribution Δð3;iÞ
Z in Eq. (2.1). The contributions

from diagrams with one or both of q and q0 summed
over the other quark doublets ðu; dÞ and ðc; sÞ vanish,
because the axial couplings aqL − aqR for down- and up-
type quarks have the same magnitude and opposite sign,
and they are being treated as mass degenerate (specifically,
massless). The result for general nonzero s ¼ Z found here

reduces to Δð3;iÞ
Z → 21ζ3 for s ¼ 0, which agrees with the

original calculation in that limit [106] and with the
corresponding contribution to the ρ parameter obtained
in [27,28,39].
The contributions from the diagrams in which the Z

boson couples directly to a single massless (in the present
approximation, nontop) quark loop are relatively simple,
and can be written as

Δð3;jÞ
Z ¼ Z

�
−
44215

324
þ 908

9
ζ3 þ

40

3
ζ5 þ

�
41 −

88

3
ζ3

�
L−Z −

11

3
L2
−Z

�
; ð2:5Þ

Δð3;kÞ
Z ¼ Z

�
143

9
þ 148

3
ζ3 − 80ζ5 − L−Z

�
; ð2:6Þ

Δð3;lÞ
Z ¼ 16

27
Zð7tþ 3ZÞI7cð0; 0; 0; 0; 0; t; tÞ þ

16

243
ð128tþ 43ZÞI6cð0; 0; 0; 0; t; tÞ −

8

27
ð18tþ 7ZÞI6fð0; 0; 0; 0; t; tÞ

þ 32

243t
ð5Z − 17tÞI5cð0; 0; 0; t; tÞ þ

160

81t
I4ð0; 0; t; tÞ þ

�
896

243
ζ3 −

8276

729

�
tþ 2599

243
Z þ 80

2187

Z2

t

þ
�
11144

243
t −

224

9
ζ3t −

3320

243
Z

�
Lt −

352

81
tL2

t −
112

243
tL3

t þ
4

243
ð884t − 217ZÞL−Z þ

�
160

27
Z −

32

3
t

�
LtL−Z

þ 272

81
tL2

t L−Z þ 20

81
ZL2

−Z −
16

243
ð17tþ 10ZÞLtL2

−Z; ð2:7Þ

Δð3;mÞ
Z ¼ Z

�
3701

81
−
304

9
ζ3 þ

�
32

3
ζ3 −

44

3

�
L−Z þ 4

3
L2
−Z

�
: ð2:8Þ

Here, Δð3;lÞ
Z contains a top-quark loop that corrects a gluon propagator, rather than connecting to the external Z boson. The

remaining contributions in Eq. (2.1) are much more complicated, and are given in the Supplemental Material [107]. Each of
the contributions has the form of Eq. (1.8), with master integrals chosen in Ref. [55],

I ð1Þ ¼ fAðtÞ; Bð0; 0Þ; Bðt; tÞg; ð2:9Þ

I ð2Þ ¼ fζ3; Vðt; t; 0; tÞ;Mðt; t; t; t; 0Þ;Mð0; t; 0; t; tÞg; ð2:10Þ

I ð3Þ ¼ fζ5; Hð0; 0; t; 0; t; tÞ; Hð0; t; t; t; 0; tÞ; I4ðt; t; t; tÞ; I5aðt; 0; t; 0; tÞ; I5bð0; t; t; t; tÞ;
I5cðt; t; t; t; tÞ; I6cðt; t; t; 0; t; tÞ; I6c2ðt; t; t; 0; 0; 0Þ; I6dð0; t; t; t; t; 0Þ; I6dðt; 0; t; 0; t; 0Þ;
I6dðt; 0; t; t; 0; tÞ; I6eð0; 0; 0; 0; t; tÞ; I6eð0; t; t; t; 0; tÞ; I6eðt; t; t; 0; t; tÞ; I6fð0; 0; 0; 0; t; tÞ;
I6f5ð0; 0; 0; 0; t; tÞ; I7að0; 0; t; t; t; t; tÞ; I7aðt; t; t; t; t; t; 0Þ; I7a3ðt; t; t; t; t; t; 0Þ;
I7bð0; t; t; t; t; 0; 0Þ; I7bðt; 0; t; t; t; t; 0Þ; I7b4ðt; 0; t; t; t; t; 0Þ; I7b4ðt; t; 0; t; t; 0; tÞ;
I7cðt; t; t; t; 0; 0; 0Þ; I7dðt; t; 0; t; 0; t; 0Þ; I7dðt; t; 0; t; t; 0; tÞ; I7eð0; 0; 0; 0; 0; t; tÞ;
I7eð0; 0; t; t; t; 0; 0Þ; I8aðt; 0; t; t; t; t; t; 0Þ; I8aðt; t; t; t; t; 0; 0; 0Þ; I8bðt; t; t; t; t; 0; 0; tÞ;
I8cðt; 0; t; t; t; t; t; 0Þ; Ipk8c ðt; t; t; t; t; 0; 0; tÞg; ð2:11Þ
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with AðtÞ ¼ tðLt − 1Þ and Bð0; 0Þ ¼ 2 − L−Z. However, in
Eq. (2.7) above, I have chosen to write the expression for

Δð3;lÞ
Z in terms of candidate master integrals that were

solved for in Ref. [55], rather than the master integrals
listed above [which are a subset of the ones listed in
Eq. (7.4) in Ref. [55], joined by Bð0; 0Þ and ζ3 and ζ5 from
the integrals with all propagators massless]. This simplifies
the expression somewhat, because the integrals used in
Eq. (2.7) have the same propagator structures as descend-

ants of the underlying Feynman diagrams for the Δð3;lÞ
Z

contribution.
As a check of Eq. (2.1), I have verified that the full

expression for the observable sZpole is renormalization group
invariant through three-loop terms proportional to g43, using
the derivatives of the master integrals with respect to Q
found in the ancillary file QddQ of Ref. [55].
For practical numerical evaluation, after using the

Standard Model group theory values in Eq. (1.15) and
applying the expansions for the master integrals in the
ancillary file Ievenseries of Ref. [55], I find

Δð3Þ;g4
3

Z ¼ g43tfðg2 þ g02ÞðδZ1 þ δZ2 Þ þ auLauRδ
Z
3

þ ½2ða2uL þ a2uRÞ þ 3ða2dL þ a2dRÞ�δZ4g; ð2:12Þ

where the series expansions of δZ1 , δ
Z
2 , δ

Z
3 , and δZ4 are given

in the Supplemental Material [107] to order r18Z , where

rZ ≡ Z
4t

¼ g2 þ g02

8y2t
: ð2:13Þ

The contribution δZ1 isolates the results form the double
triangle diagrams in Fig. 1. The series expansion coeffi-
cients are given both numerically and analytically in terms
of Lt, L−Z, and the constants ζ3, ζ5, and

c0H ¼ 32Li4ð1=2Þ − 22ζ4 þ
4

3
ln2ð2Þ½ln2ð2Þ − π2Þ�

≈ −13.2665092775…: ð2:14Þ

The series converge for all rZ < 1, which is clearly satisfied
in actuality. The first few terms in the expansions are

δZ1 ¼ 50.486þ rZ½79.645þ 49.333ðLt − L−ZÞ þ 8ðLt − L−ZÞ2�
þ r2Z½−15.758þ 5.531ðLt − L−ZÞ� þ r3Z½−3.066 − 1.493ðLt − L−ZÞ� þ � � � ; ð2:15Þ

δZ2 ¼ 9.978þ 49.258Lt þ 18L2
t − 30L3

t þ rZð−113.200 − 90.222Lt þ 28L2
t Þ

þ r2Zð−42.485 − 63.002Lt − 4.8L2
t Þ þ r3Zð−45.813 − 74.011Lt − 32.914L2

t Þ þ � � � ; ð2:16Þ

δZ3 ¼ rZð−687.728 − 298.667Lt þ 224L2
t Þ þ r2Zð−733.683 − 685.827Lt − 51.200L2

t Þ
þ r3Zð−707.875 − 962.072Lt − 394.971L2

t Þ þ � � � ; ð2:17Þ
δZ4 ¼ rZð−56.799−14.758Lt−10.667L2

t þ180.381L−Zþ21.333LtL−Z−122.667L2
−ZÞ

þ r2Z½−88.570−33.375ðLt−L−ZÞ−3.793ðLt−L−ZÞ2�þ r3Z½4.074þ2.521ðLt−L−ZÞþ0.406ðLt−L−ZÞ2�þ �� � :
ð2:18Þ
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FIG. 2. The Z boson mass in the PDG-convention MPDG
Z (left) and the width ΓZ (right), obtained from the calculated complex pole

mass sZpole, as a function of the renormalization scale Q. The different lines show various approximations as labeled. The MS input

parameters are as given in Eq. (1.17), which provide for MPDG
Z ¼ 91.1876 GeV when calculated at the renormalization scale Q ¼

160 GeV using the full two-loop plus three-loop QCD approximation.
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It is interesting to note that, in the expansion in small rZ,
the subleading contribution is numerically comparable
to (or even larger than, for smaller Q) the leading
contribution obtained by rZ ¼ 0. This is due mostly to
the term proportional to rZL2

−Z in the contribution
Eq. (2.18) from massless quark loops, because of the large
magnitude of the coefficient −122.667 and because L2

−Z ¼
½−iπ þ lnðZ=Q2Þ�2 provides up to an order of magnitude
enhancement.
The resulting contribution of Eq. (2.12) has now been

included in the latest version 1.2 of the code SMDR [50].
Figure 2 shows the results for the PDG-convention mass
MPDG

Z and the width ΓZ obtained from the pole mass, for the
MS input parameters given in Eq. (1.17). These benchmark
parameters were chosen so that the calculated MPDG

Z , with
all known contributions included and using the renormal-
ization scale Q ¼ 160 GeV, is equal to the experimental
central value 91.1876 GeV. To obtain the results in the
figure, the MS input parameters are run to other MS scales
Q using the most complete available renormalization group
equations (as listed at the end of the Introduction), and
sZpole is then recalculated. In the idealized case, the results
should not depend on Q. I find that, with inclusion of the
three-loop QCD corrections, the scale dependence of MZ
is remarkably small, less than 0.8 MeV as Q is varied
between 50 and 220 GeV. However, given the larger scale
dependence found in Sec. IV for the similar case of the W
boson mass, I surmise that this very mild scale depend-
ence is partly accidental, and the actual theoretical
error due to neglecting higher order contributions is likely
to be larger.
The scale dependence of ΓZ shown in the right panel of

Fig. 2 is less mild and not so much improved over the
complete two-loop result, as it varies by a total of about
4 MeV (between minimum and maximum) as Q is varied
between 80 and 220 GeV. Note that this determination of
ΓZ from the complex pole mass (in which the leading
contribution arises only as a one-loop effect) is essentially
one-loop order less accurate than a direction calculation of
the Z boson decay width (in which the leading contribution
is a tree-level effect).

III. THE HIGGS BOSON POLE MASS

Next, consider the complex pole mass shpole for the
Standard Model Higgs boson, written in the form
of Eq. (1.1). In this section, I extend the results of
Ref. [47] to include the momentum-dependent three-loop

self-energy corrections to Δð3Þ
h that are proportional to

g43y
2
t t. Also included below are the three-loop contribu-

tions proportional to g23y
4
t t and y6t t, in an effective potential

approximation, which amounts to g23; y
2
t ≫ λ; g2; g02. For

the y6t t part, I provide below an improvement over the
result in [47]. Together with the full two-loop results,

these constitute the most complete calculation of the
Standard Model Higgs boson mass that is presently
available.
The functions Δð1Þ

h and the QCD part of Δð2Þ
h were given

in Eqs. (2.46) and (2.47) in Ref. [47] and are evaluated at
s ¼ Re½shpole�, determined by iteration. The remaining, non-

QCD part of Δð2Þ
h was given in an ancillary file of Ref. [47],

where the master integrals were also evaluated at
s ¼ Re½shpole�. However, in the present paper, I adopt a
slightly different organization by evaluating the non-QCD

part of Δð2Þ
h as exactly the same function but evaluated

instead at s ¼ h, which is consistent up to three-loop terms
of order y6t t. This allows an easier extension to three-loop
order, as indicated below.
For the leading QCD part of Δð3Þ

h proportional to g43y
2
t t,

the new result can be written in terms of the contributions of
four distinct classes of self-energy diagrams characterized
by their group theory structures,

Δð3Þ;g4
3
y2t t

h ¼ g43y
2
t NcCFðCGΔ

ð3;aÞ
h þ CFΔ

ð3;bÞ
h þ TFΔ

ð3;cÞ
h

þ ð2ng − 1ÞTFΔ
ð3;dÞ
h Þ: ð3:1Þ

The results forΔð3;aÞ
h ,Δð3;bÞ

h ,Δð3;cÞ
h , andΔð3;dÞ

h are somewhat
lengthy, and so are given in the Supplemental Material (file
DeltaH3) provided with this paper [107]. They are written
in terms of the same list of three-loop self-energy master
integrals as for the Z boson, listed in Eqs. (2.9)–(2.11),
with the exceptions that I8bðt; 0; t; t; t; t; t; 0Þ is also needed
in I ð3Þ, and ζ5, I6eð0; 0; 0; 0; t; tÞ, I6fð0; 0; 0; 0; t; tÞ,
I6f5ð0; 0; 0; 0; t; tÞ, I7eð0; 0; 0; 0; 0; t; tÞ, and I7eð0; 0;
t; t; t; 0; 0Þ are not needed, and of course one should use
s ¼ h rather than s ¼ Z.
Using the expansions of the master integrals given in

Ref. [55], setting s ¼ h in Δð3Þ;g4
3
y2t t

h (which is consistent up
to terms of four-loop order), and plugging in the group
theory constants from Eq. (1.15), the result becomes a
power series in

rh ≡ h
4t

¼ λ

y2t
; ð3:2Þ

with coefficients that depend on Lt ≡ lnðt=Q2Þ and L−h ≡
lnðh=Q2Þ − iπ and the constants ζ3 and c0H from Eq. (2.14).
The expansion converges for rh < 1 and does so rapidly for
the value realized in the Standard Model. It is given to order
r24h in Supplemental Material (file DeltaH3series) [107],
both in analytic and numerical forms. The first few terms of
the numerical form are
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Δð3Þ;g4
3
y2t t

h ¼ g43y
2
t tð248.122þ839.197Ltþ160L2

t −736L3
t

þ rh½−716.898−1546.064Ltþ336L2
t þ240L3

t �
þ r2h½479.663þ72.770Ltþ28.444L−h�
þ r3h½−27.675−83.837Lt−5.486L2

t

þ13.274L−h�þ � � �Þ: ð3:3Þ

As a nontrivial check, the result obtained with rh ¼ 0
agrees with that provided in the first line of Eq. (3.3) of
Ref. [47]. The terms with positive powers of rh are new in
the present paper.
For the part of Δð3Þ

h proportional to g23y
4
t t, the effective

potential approximation gives the second line of Eq. (3.3)
of Ref. [47], which is not improved on in the present paper,
but is reproduced here for reference and comparison,

Δð3Þ;g2
3
y4t t

h ¼ g23y
4
t tð2764.365þ 1283.716Lt − 360L2

t

þ 240L3
t Þ: ð3:4Þ

It is interesting that Δð3Þ;g4
3
y2t t

h is numerically smaller than

Δð3Þ;g2
3
y4t t

h , despite the parametric relative enhancement
Ncg23=y

2
t of the former. In the approximation rh ¼ 0, this

effect was noted in Refs. [10,47] [see the discussion
involving Eqs. (6.21)–(6.28) of the former reference] as
the result of an unexplained but dramatic near cancellation
and is found here to be not changed by the inclusion of
terms higher order in rh.
Finally, for the part of Δð3Þ

h proportional to y6t t, the
effective potential approximation of Ref. [47] can be
improved on slightly as follows. In the present paper,

the non-QCD part of Δð2Þ
h is evaluated using master

integrals with external momentum invariant h rather than
Re½shpole�. Then, due to the fortunate circumstance that the

leading one-loop behavior of shpole − h in the limit y2t ≫
λ; g2; g02 is proportional to Lt,

shpole − h ¼ 1

16π2
4Ncy2t tLt; ð3:5Þ

we can fully repair the error in the three-loop part (caused by
using h rather than Re½shpole� in the two-loop part), simply by
requiring renormalization group invariance of the polemass.
This allows inference of the complete dependence propor-
tional to y6t tLt, due to the explicit dependence on Q. By
demanding (and checking) renormalization group invari-
ance of shpole through terms of three-loop order in the
approximation g23; y

2
t ≫ λ; g2; g02, I find that the end result

for the leading non-QCD three-loop contribution is that
Eq. (3.4) of Ref. [47] should be replaced by

Δð3Þ;y6t t
M2

h
¼ y6t t½−3433.724 − 2426.808Lt − 101.016L2

t

− 360L3
t þ Lhð36þ 648Lt þ 324L2

t Þ�; ð3:6Þ

where the analytic forms of the decimal coefficients are

−3433.724 ≈ −673 −
17π2

2
− 1962ζ3 þ 24c0H; ð3:7Þ

−2426.808 ≈ −
10491

4
þ 144

ffiffiffi
3

p
π − 42π2 − 144ζ3; ð3:8Þ

−101.016 ≈ −
855

2
þ 60

ffiffiffi
3

p
π: ð3:9Þ

This result differs from Eq. (3.4) of Ref. [47] by terms that
vanish when Lt ¼ 0, consistent with the approximation
made in that reference.
To recapitulate, in order to consistently include the three-

loop results given above, the non-QCD part ofΔð2Þ
h found in

the ancillary file of Ref. [47] should use s ¼ h in the

evaluation of the integrals, while Δð1Þ
h and the QCD part of

Δð2Þ
h provided in that reference should use s ¼ Re½shpole�

determined by iteration. All of these results for the Higgs
boson pole mass have now been implemented in version 1.2
of the computer code SMDR [50]. Figure 3 shows the results
for Mh, for the benchmark MS input parameters given in
Eq. (1.17). Recall that these parameters were chosen so as
to give the present experimental central value from the
RPPs,Mh ¼ 125.25 GeV, as the result of the calculation at
renormalization scale Q ¼ 160 GeV. The other results in
the figure were obtained by running the MS parameters in
Eq. (1.17) from the input scale Q0 ¼ 172.5 GeV to each

100 150 200
Renormalization scale Q  [GeV]

124.8

124.9

125.0

125.1

125.2

125.3

125.4

125.5

125.6

M
h  [

G
eV

]

1-loop
1-loop + 2-loop QCD
full 2-loop
2-loop plus leading 3-loop

FIG. 3. The real part of the calculated Higgs boson pole mass,
as a function of the renormalization scale Q. The different lines
show various approximations as labeled. The MS input param-
eters are as given in Eq. (1.17), which provide for Mh ¼
125.25 GeV when calculated at the renormalization scale Q ¼
160 GeV with the best available approximation as described in
the text.
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scale Q and redoing the calculation. The new contribu-
tions found in this paper give the best approximation
available at this writing, but still imply a scale dependence
of several tens of MeV. For example, the calculated Mh
decreases by about 56 MeV when Q is varied from 100 to
200 GeV, for fixed values of the MS input parameters.
This provides a lower bound on the theoretical error and
suggests that a still more refined calculation of the Higgs
pole mass, to include three-loop electroweak parts and
even leading four-loop contributions, would be worth-
while, since the experimental uncertainty on Mh from
future collider experiments may well be smaller [108]. It is
also possible [109] to refine further the gaugeless limit by
including momentum-dependent parts of the Higgs boson
self-energy function.
A famous feature of the observed Higgs boson mass

is that the Standard Model with no extensions can then
have the Higgs self-coupling λ run negative at a scale
that is far above the electroweak scale, but below the
Planck scale, implying a possibly metastable electro-
weak vacuum. This is illustrated in Fig. 4, using the
latest experimental values and the results of this paper to
relate Mh to λ in the most accurate available way. As is
well known (see, for example, Refs. [44–46,110]), the
scale of possible instability is lowered if the top-quark
mass is higher, or the QCD coupling is lower, or the
Higgs mass is lower, than their benchmark values, while
it is possible for the instability to be avoided up to the
Planck scale if the deviations are in the opposite
directions. While improved formulas and experimental
values for Mh are welcome, the dominant uncertainty in
these instability discussions comes from Mt (or yt), and
the second most important uncertainty is that of

αð5ÞS ðMZÞ, through their renormalization group running
influence on λ.

IV. THE W BOSON POLE MASS

Consider the W boson complex pole squared mass sWpole
as in Eq. (1.1). The complete one- and two-loop parts Δð1Þ

W

and Δð2Þ
W were given in Ref. [42]. The three-loop QCD part

splits into eight distinct contributions with different group
theory structures,

Δð3Þ;g4
3

W ¼ g43g
2NcCFðCG½Δð3;aÞ

W þ ðng − 1ÞΔð3;bÞ
W � þ CF½Δð3;cÞ

W þ ðng − 1ÞΔð3;dÞ
W �

þ TF½Δð3;eÞ
W þ ðng − 1ÞΔð3;fÞ

W þ ð2ng − 1ÞΔð3;gÞ
W þ ð2ng − 1Þðng − 1ÞΔð3;hÞ

W �Þ: ð4:1Þ
The four contributions from diagrams in which the W boson couples directly to massless quarks are relatively simple,

Δð3;bÞ
W ¼ W

�
−
44215

648
þ 454

9
ζ3 þ

20

3
ζ5 þ

�
41

2
−
44

3
ζ3

�
L−W −

11

6
L2
−W

�
; ð4:2Þ

Δð3;dÞ
W ¼ W

�
143

18
þ 74

3
ζ3 − 40ζ5 −

1

2
L−W

�
; ð4:3Þ

Δð3;fÞ
W ¼ 8

27
Wð7tþ 3WÞI7cð0; 0; 0; 0; 0; t; tÞ þ

8

243
ð128tþ 43WÞI6cð0; 0; 0; 0; t; tÞ −

4

27
ð18tþ 7WÞI6fð0; 0; 0; 0; t; tÞ

þ 16

243t
ð5W − 17tÞI5cð0; 0; 0; t; tÞ þ

80

81t
I4ð0; 0; t; tÞ þ

�
448

243
ζ3 −

4138

729

�
tþ 2599

486
W þ 40

2187

W2

t

þ
�
5572

243
t −

112

9
ζ3t −

1660

243
W

�
Lt −

176

81
tL2

t −
56

243
tL3

t þ
2

243
ð884t − 217WÞL−W þ

�
80

27
W −

16

3
t

�
LtL−W

þ 136

81
tL2

t L−W þ 10

81
WL2

−W −
8

243
ð17tþ 10WÞLtL2

−W; ð4:4Þ
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FIG. 4. The running Higgs self-coupling parameter λ as a
function of the MS renormalization scale Q, using the results of
this paper to relate it to Mh in the most accurate available way.
The central value obtained from the present experimental data as
in Eqs. (1.16) and (1.17) is the black line. The shaded envelopes
are the envelopes obtained by varying Mh ¼ 125.25�0.17GeV,

Mt ¼ 172.5� 0.7 GeV, and αð5ÞS ðMZÞ ¼ 0.1179� 0.0010 in
their 1-sigma and 2-sigma ranges.
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Δð3;hÞ
W ¼W

�
3701

162
−
152

9
ζ3þ

�
16

3
ζ3−

22

3

�
L−W þ2

3
L2
−W

�
:

ð4:5Þ

In fact, Δð3;bÞ
W , Δð3;dÞ

W , Δð3;fÞ
W , and Δð3;hÞ

W can be obtained

from, respectively, Δð3;jÞ
Z , Δð3;kÞ

Z , Δð3;lÞ
Z , and Δð3;mÞ

Z in
Eqs. (2.5)–(2.8) by replacing Z → W and dividing by 2.
The reason for this is that they come from exactly the same
Feynman diagram topologies.
The remaining four contributions Δð3;aÞ

W , Δð3;cÞ
W , Δð3;eÞ

W ,

and Δð3;gÞ
W in Eq. (4.1) are more complicated and are

relegated to the Supplemental Material (file DeltaW3)
[107]. They each have the form of Eq. (1.8), with
renormalized ϵ-finite master integrals that are a subset of
Eqs. (6.2)–(6.4) of Ref. [55],

I ð1Þ ¼ fAðtÞ; Bð0; tÞg; ð4:6Þ

I ð2Þ ¼ fSð0; 0; tÞ; Sðt; t; tÞ; Uðt; 0; t; tÞ;Mð0; 0; t; t; 0Þg;
ð4:7Þ

I ð3Þ ¼ fHð0; t; t; t; 0; tÞ; I4ð0; t; t; tÞ; I6dð0; 0; t; 0; t; 0Þ; I6dð0; 0; t; t; 0; tÞ; I6dðt; 0; 0; 0; 0; 0Þ;
I6eð0; t; 0; 0; 0; tÞ; I6eðt; 0; t; 0; 0; tÞ; I6fð0; t; t; 0; 0; tÞ; I6f1ðt; 0; 0; t; 0; tÞ;
I7að0; 0; 0; 0; t; t; tÞ; I7að0; 0; t; t; 0; 0; 0Þ; I7að0; t; t; 0; 0; t; 0Þ; I7aðt; t; 0; 0; t; t; 0Þ;
I7a5ðt; t; 0; 0; t; t; 0Þ; I7bð0; 0; t; 0; t; 0; 0Þ; I7cð0; 0; t; t; 0; 0; 0Þ; I7dð0; t; 0; t; t; 0; tÞ;
I7eð0; t; t; 0; 0; 0; 0Þ; I8bð0; 0; 0; t; t; 0; 0; tÞ; I8cð0; 0; 0; t; t; 0; 0; tÞ; Ipk8c ðt; t; t; 0; 0; 0; 0; 0Þg: ð4:8Þ

I have checked that Eq. (4.1) gives a pole mass sWpole that is
renormalization group invariant through three-loop terms
of order g43, using the derivatives of the master integrals
with respect to Q found in the ancillary file QddQ of
Ref. [55].
For practical numerical evaluation, after plugging in the

Standard Model group theory values in Eq. (1.15) and
applying the expansions for the master integrals in the
Ref. [55] ancillary files Ioddseries and Ievenseries (the
latter being needed only for the contribution Δð3;fÞ

W in which
theW boson couplings are to a massless quark loop, with a
top-quark loop correcting a gluon propagator), I obtain a
series expansion

Δð3Þ;g4
3

W ¼ g43g
2tðδW1 þ δW2 Þ; ð4:9Þ

where δW1 comes from Δð3;aÞ
W , Δð3;cÞ

W , Δð3;eÞ
W , and Δð3;gÞ

W ,
which follow from diagrams where the W boson couples
directly to a top-bottom pair, and δW2 comes from

Δð3;bÞ
W , Δð3;dÞ

W , Δð3;fÞ
W , and Δð3;hÞ

W from diagrams in which

the W boson couples directly to light-quark pairs. The
Supplemental Material [107] (file DeltaW3series) provided
with this paper gives the results, both analytically and
numerically, to orders ρ30W and r16W , where

ρW ≡W
t
¼ g2

2y2t
and rW ¼ ρW

4
; ð4:10Þ

and the coefficients involve Lt ¼ lnðt=Q2Þ and L−W ¼
lnðW=Q2Þ − iπ ¼ 2 − Bð0; 0Þjs¼Wþiϵ, as well as ζ2, ζ3, ζ4,
ζ5, c0H from Eq. (2.14), and

cI ¼
ffiffiffi
3

p
Im½Li2ðe2πi=3Þ� ≈ 1.1719536193…: ð4:11Þ

Note that δW2 is the same as δZ4 appearing in Eqs. (2.12) and
(2.18) with the replacement rZ → rW . The series for δW1 and
δW2 converge for ρW < 1 and rW < 1, respectively, which is
clearly satisfied by the relevant value of W=t in the
Standard Model.
The numerical form of the first few terms in the series are

δW1 ¼ 12.8299þ 24.9541Lt þ 63L2
t − 30L3

t þ ρWð−23.800 − 54.693Lt þ 14L2
t Þ

þ ρ2Wð−2.327 − 17.873Lt − 1.5L2
t Þ þ ρ3Wð−0.700 − 7.496Lt − 7.2L2

t Þ þ � � � ; ð4:12Þ

δW2 ¼ rWð−56.799 − 14.758Lt − 10.667L2
t þ 180.381L−W þ 21.333LtL−W − 122.667L2

−WÞ
þ r2W ½−88.570 − 33.375ðLt − L−WÞ − 3.793ðLt − L−WÞ2�
þ r3W ½4.074þ 2.521ðLt − L−WÞ þ 0.406ðLt − L−WÞ2� þ � � � : ð4:13Þ
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As in the case of the Z boson, it is interesting to note that, in
this expansion in small W=t, the subleading contribution is
numerically comparable to or larger than the leading
contribution (obtained by ρW ¼ rW ¼ 0), depending on
the choice ofQ. This is due mostly to the term proportional
to rWL2

−W in the contribution from massless quark loops,
because of the large magnitude of the coefficient −122.667
and because L2

−W ¼ ½−iπ þ lnðW=Q2Þ�2 provides up to an
order of magnitude enhancement.

The contribution Δð3Þ;g4
3

W is now implemented in the new
version 1.2 of the computer code SMDR [50]. Figure 5
shows the results for MPDG

W and for ΓW obtained from the
complex pole squared mass sWpole, for the MS input
parameters in Eq. (1.17) at the reference scale
Q0 ¼ 172.5 GeV. The default scale used by SMDR v1.2

for the W mass calculation is Q ¼ 160 GeV, which gives
MPDG

W ¼ 80.3525 and ΓW ¼ 2.0896 GeV. The results for
other renormalization scalesQ are obtained by first running
the MS parameters to Q and then recalculating sWpole. The

three-loop QCD contribution toMPDG
W is seen to be as large

as about 6 MeV. In the idealized case, the total sWpole would

not depend on Q. The computed value of MPDG
W varies by

less than 2.4 MeVas Q is varied from 80 to 180 GeV. This
is significantly larger than the scale dependence of the
computed MPDG

Z as found in Fig. 2, but compares
quite favorably to the present experimental uncertainty
of 12 MeV. The range for MPDG

W from the average
of experimental data released through 2021 is
80.379� 0.012 GeV. The CDF Collaboration has recently
produced a result that is substantially higher,
80.4335� 0.0064stat � 0.0069syst GeV, which is in stark
disagreement with the Standard Model prediction. These
results are also shown in Fig. 5. As seen in the right panel of
Fig. 5, the total variation in ΓW as Q varies from 60 to

220 GeV is about 3.5 MeV, but the spread is only about
2.3 MeV as Q varies from 80 to 180 GeV. These scale
variations are improved over the full two-loop order
calculation found in Ref. [42]. For comparison, the largest
parametric uncertainty contributing to theMW prediction is
that of the top-quark pole massMt. If one fixes Eqs. (1.16)
and (1.17) as a reference model and then adjusts the

Standard Model inputs to fit varying Mt;MZ;Δα
ð5Þ
had, and

αð5ÞS ðMZÞ, then one finds approximately
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FIG. 6. Comparison of Standard Model predictions for the W
boson mass in the PDG convention, as a function of the top-quark

pole massMt, using data forMPDG
Z ,Gμ, α

ð5Þ
S ðMZÞ, Δαð5Þhad, andMh

from Eq. (1.16). The solid black line is the pure MS scheme
result, obtained using SMDR v1.2 incorporating the results of this
paper. The short dashed (blue) line is the on-shell scheme result,
obtained from the interpolating formula in Ref. [38]. The long
dashed (red) line is the result from the hybrid MS-on-shell
scheme of Ref. [17]. Also shown are the experimental central
values and 1σ ranges forMPDF

W as given by the 2021 update to the
2020 RPPs and from the 2022 result from CDF [54].
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FIG. 5. The PDG-conventionW boson mass, and the width ΓW , obtained from the calculated complex pole mass sWpole, as a function of
the renormalization scale Q. The different lines show various approximations as labeled. The MS input parameters are as given in
Eq. (1.17). Also shown are the experimental central values and 1σ ranges for MPDF

W as given by the 2021 update to the 2020 RPPs and
from the 2022 result from CDF [54] with statistical and systematic errors combined in quadrature.
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MPDG
W ¼ MPDG;ref

W þ 6.1 MeV

�
Mt −Mref

t

GeV

�

þ 1.3 MeV

�
MPDG

Z −MPDG;ref
Z

MeV

�

− 1.8 MeV

�
Δαð5Þhad − Δαð5Þ;refhad

0.0001

�

− 0.7 MeV

�
αð5ÞS ðMZÞ − αð5ÞS ðMZÞref

0.001

�
ð4:14Þ

as the prediction for the W boson mass in the PDG
convention, with MPDG;ref

W ¼ 80.3525 GeV.
In Fig. 6, I compare the prediction for MPDF

W from
SMDR v1.2 (incorporating the results of this paper) in the pure
MS scheme to the corresponding results in the on-shell
scheme using the interpolation formula in Ref. [38] and to
those in the hybrid MS-on-shell scheme of Ref. [17], as a
function of the top-quark pole mass. The other on-shell

parameters MPDG
Z , Gμ, αð5ÞS ðMZÞ, Δαð5Þhad, and Mh are

chosen to be the same and equal to the data given from
Eq. (1.16) from the 2021 update to the 2020RPPs, so that the
results are directly comparable. (In the MS scheme, this
entails doing a fit to determine the Lagrangian parameters,
which is readily accomplished using the C function
SMDR_Fit_Inputs or the interactive command-line tool calc_
fit-int.) The pure MS scheme gives results between those of

the on-shell and hybrid schemes, with a total spread between
the three schemes of about 4.5 MeV.

V. OUTLOOK

In this paper, I have reported the three-loop QCD con-
tributions to the W, Z, and Higgs boson physical masses in
the StandardModel, in the pure MS renormalization scheme
with a tadpole-free treatment of the Higgs VEV. The results
show improved renormalization group scale independence,
especially for theW and Z boson cases, and in all three cases
the scale variation is less than the present experimental
uncertainty. Alternative methods based on on-shell type
schemes have already included four-loopQCDcontributions
through the rho parameter, but it is not clear that these should
be numerically more important than three-loop mixed and
pure electroweak contributions. The results of this paper have
all been incorporated in the latest version 1.2 of the code
SMDR [50]. Further improvements in the approach of the
present paper could come from computing all of the
remaining three-loop self-energy contributions to the pole
masses, which in the case of the most general diagrams will
be a challenging, but perhaps not insurmountable, goal.
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