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We show that recent improvements in the OðαÞ long-distance quantum electrodynamics (QED)
corrections to the radiative inclusive Ke3 decay rate using the Sirlin representation are free from infrared
divergences and collinear electron mass singularities in the limit me → 0, as predicted by the Kinoshita-
Lee-Nauenberg theorem. We also verify that in massless QED with the simultaneous dimensional
regularization of QED photon infrared divergences and electron mass singularities leads to the same result
for the inclusive rate in the limit of four space-time dimensions. The equivalence of the two approaches
results in part from an interesting interplay between a small chirality-breaking effect in the massless
electron limit and the generalization of space-time algebra and phase space integrals to d > 4 dimensions.
Our finding supports the small theoretical uncertainty claimed for Ke3 radiative inclusive rates and
reaffirms its utility in precision unitarity tests of the quark mixing matrix.
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I. INTRODUCTION

Radiative inclusive semileptonic kaon decays into elec-
trons or muons along with soft or hard bremsstrahlung
[K → πlνðγÞ, denoted as Kl3] provide one of the most
precise determinations of the first-row Cabibbo-Kobayashi-
Maskawa (CKM)[1,2] quark mixing matrix element jVusj.
The existence of six distinct charged and neutral such K
decay modes allows consistency checks and averaging that
currently result in a �0.2% determination of jVusj. That
quantity can be identified with sine of the Cabibbo angle in
the effective (two generations) four quark limit. It plays an
essential role in precision unitarity tests of the Standard
Model (SM).
In recent years, a significant roughly 1% difference has

been observed between the values of jVusj obtained from
Kl3 in comparison with the radiative inclusive leptonic
kaon decay mode [K → μνðγÞ, denoted as Kμ2] [3]:

jVusj ¼
(
0.22308ð55Þ; Kl3

0.22520ð50Þ; Kμ2
: ð1Þ

The discrepancy is about 2.9σ. Similarly, improvements in
the calculation of the inner radiative corrections (RCs) to
free neutron and nuclear beta decays [4–10] reduce the
central value of jVudj [11] and its theoretical uncertainty,
resulting in an apparent violation of the first-row CKM
unitarity relation jVudj2 þ jVusj2 þ jVubj2 ¼ 1 (with neg-
ligible jVubj2) up to about 3.2σ [12]. These various
inconsistencies between different precision experimental
extractions of the Cabibbo angle θC ¼ sin−1 jVusj and the
apparent violation of first row CKM unitarity are com-
monly referred to as the “Cabibbo angle anomaly”. Its
possible implications for “new physics” beyond the SM
expectations have been extensively discussed in the liter-
ature [13–35].
To confirm or negate the current disagreements between

experiments and SM theory predictions, highly precise
theory inputs are needed. In Kl3 decays, they include the
K0π− transition form factor fK

0π−þ ð0Þ at zero momentum
transfer [36–40] (determined to about 0.2% using lattice
QCD and currently representing the dominant theory
uncertainty), the phase space factors [41–47], quark mass
parameters used to estimate the isospin-breaking correction
for fK

þπ0þ (mainly due to π0ηmixing) [48–57], and the long-
distance electromagnetic radiative corrections (EMRCs). In
particular, a recent reanalysis of the Kl3 EMRC [3,58,59]
based on a new theory framework [60,61] that hybridizes
the classic Sirlin representation [62,63], the modern lan-
guage of chiral perturbation theory (ChPT) and the latest
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lattice calculations of mesonic γW-box diagrams [64,65]
achieves a precision level of Oð10−4Þ, an order of magni-
tude better than the existing pure ChPT analyses [66–68].
These new results sharpen the Kl3–Kμ2 discrepancy in the
jVusj extractions.
At the Oð10−4Þ level, every approximation and uncer-

tainty estimate made in the theory analysis must be
thoroughly scrutinized. In particular, the procedure of
separating the EMRC into perturbative and nonperturbative
pieces must be compatible with general properties of
quantum field theory. Measurable (infrared safe) quantities
must be properly regularized such that QED photonic
“infrared (IR) divergences” due to (virtual and real)
emission of low-energy photons cancel. For decays such
as Ke3 with a light electron in the final state, “mass
singularities” (i.e., terms enhanced by lnme) due to the
emission of a photon collinear to the positron (or electron)
are generally present in the differential decay rate.
However, such terms which are divergent in the massless
limit (me ¼ 0) cancel in the total integrated radiative
inclusive decay rate. Since the experimental values of
the Ke3 partial widths are derived from kaon lifetime
measurements which are by definition radiative inclusive
and experimental branching ratios, which are assumed to be
fully radiative inclusive, theory calculations used for
comparison must, therefore, also be radiative inclusive.
The cancellation of infrared photonic divergences

between real and virtual radiative corrections was realized
as early as the 1930s by Bloch and Nordsieck [69], and
later generalized by Yennie, Frautschi and Suura [70].
The cancellation of electron mass singularities in radiative
inclusive decays was first observed by Kinoshita and Sirlin
in their calculation of QED corrections to the muon total
decay rate in the Fermi V-A theory [71]. Later generali-
zation of that feature is known as the Kinoshita-Lee-
Nauenberg (KLN) theorem [72,73]. The theorem is valid
to all orders in perturbation theory for fully inclusive rate
expansions in terms of bare couplings and masses.
However, renormalization can induce mass singularities.
For example, electric charge renormalization at zero
momentum transfer used to define α, the fine structure
constant, if used as the expansion parameter will induce
two loop lnme dependent corrections. Based on that
connection, Roos and Sirlin derived the leading lnme
logarithmic QED radiative corrections to the muon lifetime
that start to appear at two loop order [74,75].
In Refs. [3,58,59], the cancellation of the photonic IR

divergences is explicitly demonstrated for Ke3 by comput-
ing the so-called convection term contribution [70,76] to
the virtual and real corrections analytically. In Sirlin’s
representation, that term represents the complete IR diver-
gence, but not the full electron mass singularities contri-
bution. The missing part was computed numerically using
the physical electron mass as input. Therefore, the expected
cancellation of electron mass singularities in the total

numerical result for the inclusive decay rate was not
directly tested. In principal, some lnme-enhanced contri-
butions could have been missed or lost in the approxima-
tions made. If so, it could invalidate the final error analysis
and might shift the theoretical result somewhat. Indeed, the
explicit cancellation of mass singularities in radiative
inclusive processes is a useful tool for checking difficult
calculations.
The first part of this paper serves to fill in this missing

check. By extending the analytically calculable terms in
both virtual and real corrections and expanding them with
respect to me (which we will call the “mass-expansion”
method), we demonstrate explicitly that the approximations
made in Refs. [3,58,59] within Sirlin’s representation
indeed result in a singularity-free total Ke3 decay rate. A
similar study was done previously in Ref. [77] but only in
the Kþ

e3 channel. Our analysis constitutes a more general
proof. Since cancellation is achieved in the total decay rate,
this calculation provides a nice check not just to the validity
of the approximations made on the interaction dynamics at
the level of the squared amplitude but also the correctness
of the kinematic settings of the three- and four-body phase
space integrations.
The second part of this paper is more theoretically

oriented. It examines the possibility of employing Mγ ¼
me ¼ 0, i.e., massless QED, from the start of a radiative
inclusive calculation. Because the kinematics are simpler
than the massive electron calculation, it represents a sim-
plified method of checking the Ke3 decay rate in the limit of
zero electron mass.
For such studies, a regulator that preserves the properties

of QED must be used. A powerful technique for this
purpose is the continuous dimensional regularization (DR)
approach [75,78–84] which generalizes the space-time
dimension to d ¼ 4 − ϵ. IR and mass singularities manifest
themselves as poles of order ð2=ϵÞ2 and (2=ϵ). Note that ϵ is
negative for d > 4, the space-time domain where infrared
effects are finite. This method is used extensively in the
study of perturbative quantum chromodynamics with
massless quarks (see, e.g., [85,86] and references therein).
An interesting comparison is the relationship between the
prediction of singularity-free quantities for the ϵ → 0 limit
in the DR method and the me → 0 limit in the mass-
expansion method. Reference [75] demonstrated the equiv-
alence between these two methods in the total radiatively
inclusiveW → eνðγÞ decay rate, but similar comparisons in
processes with more complicated kinematics like Ke3 have,
to the best of our knowledge, not been studied before. They
are of interest both in terms of testing the robustness of the
regularization techniques and achieving a better under-
standing of the general properties of the underlying
quantum field theory.
In this paper we demonstrate that the mass expansion and

DR methods both satisfy the KLN theorem and give the
same result for the total radiatively inclusive Ke3 decay rate
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in the massless electron limit. That finding is highly
nontrivial, particularly for the final finite decay rate
prediction. Two essential steps are needed: In the case of
DR, a generalization of the three- and four-body phase
space integrals along with algebraic manipulations lead to
an ϵ dependence which produces a finite contribution in the
limit ϵ ¼ 0. In the mass expansion approach, terms in the
bremsstrahlung process that are proportional to ðpe · kÞ−2,
with k the photon momentum must be kept even though
they are suppressed by m2

e in the squared amplitude. They
acquire a 1=m2

e enhancement upon performing the phase
space integration which lifts the suppression and results in a
small finite contribution in theme → 0 limit. When all such
effects are properly taken into account, the finite parts in the
two methods are in perfect agreement.
The contents of this paper are arranged as follows. In

Secs. II and III we briefly review the kinematics of Ke3 and
Sirlin’s representation of the virtual EMRCs. In Sec. IV we
study the integrals with IR divergences and mass singu-
larities in both the virtual corrections and bremsstrahlung
process using the mass-expansion method, and prove the
exact cancellation of both in the total decay rate. Next, in
Sec. V we discuss the aforementioned contribution from
the bremsstrahlung which remains finite in the me → 0
limit but is not explicitly present in massless QED; this
subtle chirality-breaking effect is crucial in reconciling the
mass-expansion method and DR. In Sec. VI we repeat a
similar analysis using DR and demonstrate the equivalence
between the two methods. Final discussions are given in
Sec. VII.

II. BRIEF REVIEW OF THE Ke3 KINEMATICS

Despite being available in many papers (e.g.,
Appendix A in Ref. [59]), we still start with a brief review
of the essential kinematics of the Ke3 decay to keep the
discussion self-contained. We are interested in the follow-
ing inclusive decay process: KðpÞ → πðp0Þ þ eþðpeÞ þ
νeðpνÞ þ nγ (n ≥ 0) with realistic physical masses, i.e.,
me ≠ 0. If all the massless particles in the final state are left
unobserved, then the decay process is fully described by
three scalar kinematic variables fx; y; zg defined as

P2 ≡ ðp − p0 − peÞ2 ¼ M2
Kx;

p · pe ¼
1

2
M2

Ky; p · p0 ¼ 1

2
M2

Kz; ð2Þ

notice that when n ¼ 0 we must have x ¼ 0 given that
P2 ¼ p2

ν ¼ 0 assuming massless neutrinos. We also define
rπ ≡M2

π=M2
K and re ≡m2

e=M2
K for notational simplicity.

The K − π squared momentum transfer is given by
t ¼ ðp − p0Þ2 ¼ M2

Kð1 − zþ rπÞ. Finally, in the K0 (Kþ)
decay channel it is also customary to define the respective
Mandelstam variables s ¼ ðp0 þ peÞ2 and u ¼ ðp − peÞ2.

Up to OðG2
FαÞ in the decay rate, only the n ¼ 0 (three-

body) and n ¼ 1 (four-body) decay processes need to be
included. The corresponding decay rate formulas are

Γ3-body ¼
MK

256π3

Z
D3

dydzjMj2K→πeν ð3Þ

and

Γ4-body ¼
M3

K

512π4

�Z
D3

dydz
Z

αþ

0

dxþ
Z
D4−3

dydz
Z

αþ

α−

dx

�

×
Z

dΓkdΓpν
ð2πÞ4δð4ÞðP − k − pνÞjMj2K→πeνγ;

ð4Þ

respectively, where

α�ðy; zÞ≡ 1 − y − zþ rπ þ re

þ yz
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4re

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

q
; ð5Þ

and we have also defined the following shorthand for the
integral measure:

dΓk ≡ d3k
ð2πÞ32Ek

: ð6Þ

The regions D3 and D4−3 are defined as

D3∶cðzÞ − dðzÞ < y < cðzÞ þ dðzÞ;
2

ffiffiffiffiffi
rπ

p
< z < 1þ rπ − re

D4−3∶2
ffiffiffiffi
re

p
< y < cðzÞ − dðzÞ;

2
ffiffiffiffiffi
rπ

p
< z < 1 −

ffiffiffiffi
re

p þ rπ
1 − ffiffiffiffi

re
p ; ð7Þ

where

cðzÞ ¼ ð2 − zÞð1þ re þ rπ − zÞ
2ð1þ rπ − zÞ ;

dðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

p
ð1þ rπ − re − zÞ

2ð1þ rπ − zÞ : ð8Þ

The tree-level n ¼ 0 decay amplitude can be written as

M0 ¼ −
GFffiffiffi
2

p LλFλðp0; pÞ; ð9Þ

where Lλ ¼ ūνγλð1 − γ5Þve is the lepton current, and

Fλðp0;pÞ¼ hπðp0ÞjJλ†Wð0ÞjKðpÞi
¼V�

us½fKπþ ðtÞðpþp0ÞλþfKπ− ðtÞðp−p0Þλ�; ð10Þ
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with JλW as the charged weak current, defines the two form
factors fKπ� ðtÞ. For simplicity we will omit the superscript
Kπ, knowing that they refer to K0π− (Kþπ0) in the K0

(Kþ)-channel. The squared amplitude (summing over
lepton spins) is given by

jM0j2ðx;y;zÞ
≡G2

FFμðp0;pÞF�
νðp0;pÞTr½=Pγμð=pe−meÞγνð1− γ5Þ�:

ð11Þ

Here, we purposely retain the x dependence so that the
same structure can be reused in the bremsstrahlung process.
By evaluating the trace, we find that terms involving f−ðtÞ
are suppressed by re, which makes their contribution to the
decay rate negligible. Given that the virtual corrections can
always be expressed as corrections to the form factors:

f�ðtÞ → f�ðtÞ þ δf�ðy; zÞ; ð12Þ

it is therefore only δfþðy; zÞ, which is of relevance in
practice.

III. SIRLIN’S REPRESENTATION OF THE
LONG-DISTANCE EMRC

In Sirlin’s representation (Ref. [62], see also
Refs. [60,61,63] for comprehensive reviews), the full OðαÞ
virtual electroweak RC splits into two parts. First is the
“weak” RCs that depend only on physics at the scale MW ;
they come from one-loop diagrams that involve only heavy

gauge bosons, orwith photons, but only pick up the first term
in the following splitting of the photon propagator:

−igμν
q02−M2

γ
¼ −igμν
q02−M2

W
þ M2

W

M2
W−q02

−igμν
q02−M2

γ
þOðM2

γÞ: ð13Þ

TheweakRCs are either reabsorbed into the definition of the
Fermi constant GF or provide a regular correction that is
proportional to the tree-level amplitude which is irrelevant
for our discussion. What remains are the long-distance
EMRCrepresented by the three Feynmandiagrams in Fig. 1:
(1) Contribution from the electron wave function re-

normalization: δM ¼ ð1=2ÞδZeM0,
(2) The long-distance EMRC to the Kπ form factor,

which can be divided into “two-point function” and
“three-point function”: δM ¼ δM2 þ δM3,

(3) The γW-box diagram, which splits into the piece
δMγW ¼ δMa

γW þ δMb
γW without (a) and with (b) a

totally-antisymmetric tensor.
Furthermore, using Ward identities, one may combine δM2

and δMa
γW to get an “analytic” piece and a “residual integral”

piece:

δM2 þ δMa
γW ¼ ðδM2 þ δMa

γWÞana þ ðδM2 þ δMa
γWÞint:

ð14Þ
Throughout this work we ignore small corrections from
perturbative QCD that are relevant to the actual numerical
calculation at the level of 10−4 [62] but do not affect the
structure of the infrared and mass singularities. This gives

ðδM2þδMa
γWÞana¼−

�
α

8π
þ2ie2

Z
d4q0

ð2πÞ4
M2

W

M2
W−q02

1

½ðpe−q0Þ2−m2
e�q02

�
M0;

ðδM2þδMa
γWÞint¼

GFe2ffiffiffi
2

p Lλ

Z
d4q0

ð2πÞ4
1

ðpe−q0Þ2−m2
e

�
2pe ·q0q0λ

ðq02−M2
γÞ2

Tμ
μþ

2peμ

q02−M2
γ
Tμλ−

ðp−p0Þμ
q02−M2

γ
Tλμþ i

q02−M2
γ
Γλ

�
: ð15Þ

The antisymmetric piece of the γW-box diagram reads

δMb
γW ¼ −i

GFe2ffiffiffi
2

p Lλ

Z
d4q0

ð2πÞ4
M2

W

M2
W − q02

1

ðpe − q0Þ2 −m2
e

1

q02
ϵμναλq0αTμν: ð16Þ

FIG. 1. One-loop EMRC in Sirlin’s representation. γ< denotes a photon which propagator is attached to a Pauli-Viilars-regulator
M2

W=ðM2
W − q02Þ.
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The nontrivial integrals above are expressed in terms of the
following quantities:

Tμνðq0;p0;pÞ≡
Z

d4xeiq
0·xhπðp0ÞjTfJμemðxÞJν†W ð0ÞgjKðpÞi;

Γμðq0;p0;pÞ≡
Z

d4xeiq
0·xhπðp0ÞjTfJμemðxÞ∂ · J†Wð0Þg

× jKðpÞi: ð17Þ

IV. CANCELLATION OF IR AND MASS
SINGULARITIES

To check the cancellation of IR and mass singularities we
only need the divergent pieces from the virtual and real
corrections; but to prove the equivalence between the mass-
expansion method and DRwe need the finite pieces as well.
Fortunately, not all the finite pieces are relevant: there are
parts of the loop/bremsstrahlung integrals that are intrinsi-
cally finite even atMγ ¼ me ¼ 0, so these parts must be the
same in both methods and can be discarded in our
discussion. What we are interested in are the loop/brems-
strahlung integrals with IR and mass singularities, which
we always split into divergent and finite pieces:

F ¼ Fdiv;m þ Ffin þOðM2
γ ; m2

eÞ; ð18Þ

where Fdiv;m (“m” stands for “mass expansion”) contains
only the terms proportional to lnðm2

e=μ2Þ or lnðM2
γ=μ2Þ (or

both), with μ as an arbitrarily chosen scale, while Ffin

represents all the remaining finite terms independent
of Mγ and me. The sum of the two pieces is of course
μ-independent. Analytic formulas for these integrals are in
given in Ref. [59] at nonzero me; here, we just need to
expand those expression with respect tome. Notice that this
procedure implicitly assumes the hierarchyme ≫ Mγ in the
mass-expansion method.
Throughout this study, we work in the Feynman gauge.

We start from the electron wave function renormalization
δZe ¼ δZdiv;m

e þ δZfin
e , where

δZdiv;m
e ¼ −

α

4π

�
−3 ln

m2
e

μ2
þ 2 ln

M2
γ

μ2

�
;

δZfin
e ¼ −

α

4π

�
ln
M2

W

μ2
þ 9

2

�
: ð19Þ

Next, the “analytic” piece in δM2 þ δMa
γW gives

ðδM2 þ δMa
γWÞdiv;mana ¼ −

α

2π
ln
m2

e

μ2
M0;

ðδM2 þ δMa
γWÞfinana ¼

α

2π

�
ln
M2

W

μ2
þ 3

4

�
M0: ð20Þ

These are all exactly known contributions independent of
hadronic structure.

A. Born contribution to the remaining loop integrals

Evaluating the remaining loop integrals ðδM2þδMa
γWÞint

and δMb
γW in the virtual correction requires the knowledge

of the hadronic tensor Tμν and the vertex function Γμ. A
particularly important set of constraints comes from the EM
and charged weak Ward identities:

EM∶q0μTμνðq0;p0;pÞ¼−iFνðp0;pÞ;
Chargedweak∶qνTμνðq0;p0;pÞ¼−iFμðp0;pÞ−iΓμðq0;p0;pÞ;

ð21Þ

where q ¼ p0 − pþ q0. We have used both in the deriva-
tion of Eqs. (15), (16).
In Refs. [3,58,59], the so-called convection term con-

tribution [76] was analytically calculated. It involves the
following substitution for the hadronic tensor and the vertex
function:

Tμν;conv
K0π−

¼ −
ið2p0 þ q0ÞμFνðp0; pÞ

ðp0 þ q0Þ2 −M2
π

;

Tμν;conv
Kþπ0 ¼ ið2p − q0ÞμFνðp0; pÞ

ðp − q0Þ2 −M2
K

; ð22Þ

and

Γμ;conv
K0π−

¼ ð2p0 þ q0Þμðp0 − pÞλFλðp0; pÞ
ðp0 þ q0Þ2 −M2

π
;

Γμ;conv
Kþπ0 ¼ −

ð2p − q0Þμðp0 − pÞλFλðp0; pÞ
ðp − q0Þ2 −M2

K
: ð23Þ

Those relationships represent the simplest structures
that satisfy the exact EM Ward identity and are able to
reproduce the full IR divergence structure. However, they
fail to satisfy the charged weak Ward identity even in the
SUð3Þf limit, and therefore do not reproduce the full lnme

structure.
Fortunately, in the actual nonperturbative numerical

calculation of those works, what enters is not just the
convection term, but the full “Born” contribution which
includes more complete pole and seagull structures. Its
original implementation in the numerical calculation can be
found in Eqs. (4.3)–(4.5) of Ref. [59], but there theKπ form
factors depend on the loop momentum q0, which compli-
cates its analytic study. In this paper we make a further
simplification, namely to discard the q0 dependence in the
electromagnetic and the f� form factors, which is again
relevant to the actual numerical calculation but do not affect
the divergent structure:
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Tμν;B
K0π−

¼ −iV�
us

� ð2p0 þ q0Þμ
ðp0 þ q0Þ2 −M2

π
ðfþðtÞð2pþ qÞν − f−ðtÞqνÞ − gμνðfþðtÞ − f−ðtÞÞ

�
;

Tμν;B
Kþπ0 ¼ iV�

us

� ð2p − q0Þμ
ðp − q0Þ2 −M2

K
ðfþðtÞð2p0 − qÞν − f−ðtÞqνÞ − gμνðfþðtÞ þ f−ðtÞÞ

�
;

Γμ;B
K0π−

¼ −V�
us

M2
K −M2

π

ðp0 þ q0Þ2 −M2
π
ð2p0 þ q0Þμ

�
fþðtÞ þ

q2

M2
K −M2

π
f−ðtÞ

�
;

Γμ;B
Kþπ0 ¼ V�

us
M2

K −M2
π

ðp − q0Þ2 −M2
K
ð2p − q0Þμ

�
fþðtÞ þ

q2

M2
K −M2

π
f−ðtÞ

�
: ð24Þ

They satisfy the following relations:

q0μTμν;Bðq0;p0; pÞ þ iFνðp0; pÞ ¼ 0;

qνTμν;Bðq0;p0; pÞ þ iFμðp0; pÞ þ iΓμ;Bðq0;p0; pÞ ¼ iV�
usf−ðtÞð2ðp − p0Þμ − q0μÞ; ð25Þ

so the EMWard identity is obeyed. Meanwhile, the charged
weak Ward identity is not exactly satisfied. There is an
extra pole-free term on the right-hand side of the second
line. Fortunately, this term has only ðp − p0Þμ and q0μ
structures, which means that, upon plugging into the loop
integrals, it can only give rise to δf− and not δfþ. So, as far
as its contribution to δfþ is concerned, the Born term
satisfies both Ward identities. Therefore, it is able to
describe the complete mass singularities in the virtual
correction within the framework of Sirlin’s representation.
Now, we can discuss the divergence structures in the

remaining integrals. First, as explained in Ref. [59], the IR

divergences from δM2 (contained in the first term in
ðδM2 þ δMa

γWÞint) combined with δM3 gives

ðδfþÞdiv;m2ptþ3pt ¼ −
α

4π
ln
M2

γ

μ2
fþ: ð26Þ

Its finite contribution is irrelevant for our discussion
and need not be retained. Next, the second term in ðδM2 þ
δMa

γWÞint contains both IR and mass singularities, which
comes from the following scalar function1:

C0 ≡ 16π2

i

Z
d4k
ð2πÞ4

1

½ðp1 − kÞ2 −M2
1�½ðpe − kÞ2 −m2

e�½k2 −M2
γ �
¼ Cdiv;m

0 þ Cfin
0 ; ð27Þ

where

Cdiv;m
0 ¼ 1

M2
1 − v

�
−
1

2
ln
m2

e

μ2
ln
M2

γ

μ2
þ 1

4
ln2

m2
e

μ2
þ ln

M2
γ

μ2

�
1

2
ln
M2

1

μ2
− ln

M2
1

M2
1 − v

��
;

Cfin
0 ¼ 1

M2
1 − v

�
−
1

4
ln2

M2
1

μ2
þ ln

M2
1

μ2
ln

M2
1

M2
1 − v

−
1

2
ln2

M2
1

M2
1 − v

þ Li2

�
v

v −M2
1

��
: ð28Þ

Here we should take M1 ¼ Mπ , v ¼ s in the K0 decay, and M1 ¼ MK , v ¼ u in the Kþ decay. Finally, the mass
singularities from the third and fourth terms in ðδM2 þ δMa

γWÞint cancel out with that from δMb
γW , resulting in a finite sum.

(If only the convection term contribution is considered, then the cancellation does not occur and one obtains an extra
lnme-divergent piece from δMb

γW .) Finally, the sum of the divergent contributions to the virtual corrections reads

ðδfþÞdiv;m ¼
�
1

2
δZdiv;m

e −
α

2π
ðv −M2

i ÞCdiv;m
0 −

α

4π
ln
M2

γ

μ2

�
fþ;

¼ −
α

4π

�
ln
m2

e

μ2
ln
M2

γ

μ2
−
1

2
ln2

m2
e

μ2
þ 1

2
ln
m2

e

μ2
þ ln

M2
γ

μ2

�
2 − ln

M2
i

μ2
þ 2 ln

M2
i

M2
i − v

��
fþ: ð29Þ

1Notice that the definition of Cfin
0 here and Ifini in Eq. (33) are different from those in Ref. [59], because the full results there were not

expanded with respect to me.
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Throughout this work we use “i” to label the charged meson
in the decay process, i.e., π− (Kþ) in the K0 (Kþ) decay.

B. Divergent integrals in bremsstrahlung

Next we study the IR and mass singularities from the
bremsstrahlung process depicted in Fig. 2. Following the
treatment in Refs. [3,58,59], we split the bremsstrahlung
amplitude as

MK→πeνγ ¼ MA þMB; ð30Þ

where MA contains the full convection term contribution:

MA ¼ −
eGFffiffiffi

2
p Fμðp0; pÞε�νðkÞūνγμð1 − γ5Þ

×

��
pe

pe · k
−

pi

pi · k

�
ν

þ 1

2pe · k
=kγν

�
ve; ð31Þ

and MB is the remaining regular term that admits a ChPT
expansion. It is easy to check that all the singularities exist
only in the phase space integral over jMAj2. In particular,
the IR divergence exists only in theD3 region, which can be
isolated through the following separation:

jMAj2 ¼ −e2
�

pe

pe · k
−

pi

pi · k

�
2

jM0j2ð0; y; zÞ þ jMAj2res:

ð32Þ

The integral of the first term gives the full IR divergence
(and a part of the lnme divergences), while the second term
gives only lnme but not IR divergences. Meanwhile, the
integral of the whole jMAj2 in theD4−3 region gives the last
piece with mass singularities. Therefore, for the purpose of
this paper only these three contributions need to be studied.
First, the IR divergence is fully contained in the

following integral:

Ii ≡
Z

αþ

0

dx
Z

dΓkdΓpν
ð2πÞ4δð4ÞðP − k − pνÞ

×

�
pi

pi · k
−

pe

pe · k

�
2

¼ Idiv;mi þ Ifini : ð33Þ

Its analytic expression is given in Appendix D of Ref. [59],
and here we further expand it with respect tome. This gives

Idiv;mi ¼ 1

4πM2
K

�
− ln

m2
e

μ2
ln
M2

γ

μ2
þ 1

2
ln2

m2
e

μ2
þ
�
1þ 2 ln

�
αþ

1 − zþ rπ

��
ln
m2

e

μ2
−
�
2þ ln

�
μ2P2

0ð0Þð1 − cos χÞ2
M4

Kð1 − zþ rπÞ2
��

ln
M2

γ

μ2

�
;

Ifini ¼ 1

4πM2
K

�
−
1

2
ln2

�
μ2P2

0ð0Þð1 − cos χÞ2
M4

Kα
2þ

�
þ 4ln2

�
sin

χ

2

�
þ ln

�
M4

Kα
2þ

4P2
0ð0Þμ2

�

þ 2Li2

�
cos2

χ

2

�
þ 2ln2

�
αþ

1 − zþ rπ

�
þ 2 ln

�
αþ

1 − zþ rπ

�
þ 4Li2

�
αþ

1 − zþ rπ

��

þ 1

πM2
K

Z
αþ

0

dx
1

x
ln
�
P0ðxÞ − P1ðxÞ
P0ð0Þ − P1ð0Þ

�
; ð34Þ

where we have taken the me ¼ 0 kinematics:

P0ðxÞ ¼
pi · P
Mi

; P0ðxÞ − P1ðxÞ ¼
pe · P
pi · pe

Mi; χ ≡ cos−1
P1ð0Þ
P0ð0Þ

: ð35Þ

The remaining bremsstrahlung integral with mass singularities is

Im;1ðpiÞ≡ 8π

Z
dΓkdΓpν

ð2πÞ4δð4ÞðP − k − pνÞ
ðpi · kÞmpe · k

¼ Idiv;mm;1 ðpiÞ þ Ifinm;1ðpiÞ; ð36Þ

with m ¼ 1; 0;−1;−2. The divergent piece of these integrals is

Idiv;mm;1 ðpiÞ ¼ −
2ð2pe · PÞm−1

ðM2
KxÞmðpi · peÞm

ln
m2

e

μ2
; ð37Þ

FIG. 2. Tree-level bremsstrahlung diagrams contributing to the
Ke3 decay rate.
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while the finite pieces are

Ifin1;1ðpiÞ¼−
2

pe ·piM2
Kx

ln

�
μ2M2

i

4ðpe ·piÞ2
�
;

Ifin0;1ðpiÞ¼−
1

pe ·P
ln

�
μ2M2

Kx
4ðpe ·PÞ2

�
;

Ifin−1;1ðpiÞ¼−
pi ·pe

2ðpe ·PÞ2
M2

Kx

�
2þ ln

�
μ2M2

Kx
4ðpe ·PÞ2

��
þ pi ·P
pe ·P

;

Ifin−2;1ðpiÞ¼−
ðpe ·piÞ2
4ðpe ·PÞ3

M4
Kx

2

�
3þ ln

�
μ2M2

Kx
4ðpe ·PÞ2

��

þ 1

4pe ·P

�
2pi ·Ppi ·pe

pe ·P
M2

Kx−M2
i M

2
Kx

þ2ðpi ·PÞ2
�
: ð38Þ

These are all the divergent integrals that appear in the
bremsstrahlung.

C. Full cancellation of the IR and
mass singularities

Now we are ready to demonstrate the complete
cancellation of IR divergences and electron mass singu-
larities in the radiative inclusive total Ke3 decay rate. Since
in the previous subsections we explicitly isolated all the
terms that are logarithmically divergent with respect to Mγ

and me, in what follows we will take Mγ ¼ me ¼ 0

everywhere except in those logs. We start with the con-
tribution from ðδfþÞdiv;m:

ðδΓÞðδfþÞdiv;m ¼ MK

256π3

Z
D3

dydz

�
2ReðδfþÞdiv;m

fþ
jM0j2ð0; y; zÞ

�
;

¼ αG2
FjVusj2M5

K

64π4

Z
1þrπ

2
ffiffiffi
rπ

p dzf2þðtÞ
Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

�
ln
m2

e

μ2
ln
M2

γ

μ2
−
1

2
ln2

m2
e

μ2
þ 1

2
ln
m2

e

μ2

þ ln
M2

γ

μ2

�
2 − ln

M2
i

μ2
þ ln

M4
i

ðM2
i − vÞ2

��
½rπ þ ðy − 1Þðyþ z − 1Þ�: ð39Þ

Next, the divergent part of the bremsstrahlung integral Ii contributes

ðδΓÞIdiv;mi
¼ M3

K

512π4

Z
D3

dydzð−e2ÞIdiv;mi jM0j2ð0; y; zÞ;

¼ αG2
FjVusj2M5

K

64π4

Z
1þrπ

2
ffiffiffi
rπ

p dzf2þðtÞ
Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

�
− ln

m2
e

μ2
ln
M2

γ

μ2
þ 1

2
ln2

m2
e

μ2

þ ln
m2

e

μ2

�
1þ ln

α2þ
ð1 − zþ rπÞ2

�
− ln

M2
γ

μ2

�
2 − ln

M2
i

μ2
þ ln

M4
i

ðM2
i − vÞ2

��
½rπ þ ðy − 1Þðyþ z − 1Þ�: ð40Þ

Summing up the above two terms, the IR divergences
completely cancel, as originally demonstrated in Ref. [59].
However, the lnðm2

e=μ2Þ terms do not fully cancel; they
must be combined with those from jMAj2res in the D3 region
and from jMAj2 in the D4−3 region. To include these
contributions, we first write:

jMAj2res ¼
X
m;n

Cm;nðx; y; zÞ
ðpi · kÞmðpe · kÞn

;

jMAj2 ¼
X
m;n

C0
m;nðx; y; zÞ

ðpi · kÞmðpe · kÞn
; ð41Þ

where the coefficients Cð0Þ
m;nðx; y; zÞ are known quantities.

We are only interested in the coefficients with n ¼ 1 as they
are attached to the lnme-divergent integrals Im;1. To that
end, it is useful to define a new set of coefficients

X
m

Cð0Þ
m1ðx; y; zÞ

�
−

2ð2pe · PÞm−1

ðM2
KxÞmðpi · peÞm

�

≡ 64παM2
KG

2
FjVusj2f2þðtÞC̄ð0Þðx; y; zÞ; ð42Þ

which turns out to be channel independent:
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C̄ðx; y; zÞ ¼ −
x2y2

ð1 − x − zþ rπÞ3
þ xyðrπ − xþ 3y − 1Þ

ð1 − x − zþ rπÞ2
þ 2yðrπ þ 2y − 1Þ − 3xyþ x

1 − x − zþ rπ
− 2y;

C̄0ðx; y; zÞ ¼ C̄ðx; y; zÞ þ 2ðrπ þ ðy − 1Þðyþ z − 1ÞÞ
x

: ð43Þ

Based on the above, the final lnme singularities contribution from bremsstrahlung becomes

ðδΓÞIdiv;mm;1
¼ M3

K

4096π5
X
m

�Z
D3

dydz
Z

αþ

0

dxCm;1þ
Z
D4−3

dydz
Z

αþ

α−

dxC0
m;1

�
Idiv;mm;1 ;

¼ αG2
FjVusj2M5

K

64π4
ln
m2

e

μ2

Z
1þrπ

2
ffiffiffi
rπ

p dzf2þðtÞ
�Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

Z
αþ

0

dxC̄ðx;y;zÞþ
Z

cðzÞ−dðzÞ

0

dy
Z

αþ

α−

dxC̄0ðx;y;zÞ
�
; ð44Þ

and the sum of divergent contributions to the total Ke3 decay rate becomes

ðδΓÞdiv;m ¼ ðδΓÞðδfþÞdiv;m þ ðδΓÞIdiv;mi
þ ðδΓÞIdiv;mm;1

;

¼ αG2
FjVusj2M5

K

64π4
ln
m2

e

μ2

Z
1þrπ

2
ffiffiffi
rπ

p dzf2þðtÞ
�Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

�
3

2
þ ln

α2þ
ð1 − zþ rπÞ2

�
½rπ þ ðy − 1Þðyþ z − 1Þ�

þ
Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

Z
αþ

0

dxC̄ðx; y; zÞ þ
Z

cðzÞ−dðzÞ

0

dy
Z

αþ

α−

dxC̄0ðx; y; zÞ
�
: ð45Þ

The sum would vanish if the terms in the curly brackets add up to zero for all values of z. Indeed that happens, by direct
integration one can show thatZ

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

�
3

2
þ ln

α2þ
ð1 − zþ rπÞ2

�
½rπ þ ðy − 1Þðyþ z − 1Þ�

¼ 1

36
ðz2 − 4rπÞ3=2

�
12 ln

�
2 − zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

p �
þ 1

�
≡ g1ðzÞ;Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

Z
αþ

0

dxC̄ðx; y; zÞ

¼ 1

36

�
−4rπ

h
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

q
þ 9z − 18

i
þ 8ðz2 − 3zþ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

q
þ 9z2ðz − 2Þ

þ 6

�
ðz2 − 6zþ 2rπ þ 6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

q
þ ðz − 2Þ3

�
ln

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − zþ rπ

p

2 − z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

p ��
≡ g2ðzÞ; ð46Þ

and Z
cðzÞ−dðzÞ

0

dy
Z

αþ

α−
dxC̄0ðx; y; zÞ ¼ −g1ðzÞ − g2ðzÞ: ð47Þ

So, we have ðδΓÞdiv;m ¼ 0. This calculation shows that the
full numerical result of theKe3 decay rate in Refs. [3,58,59] is
free from photonic IR divergences and electron mass singu-
larities. It supports the small error estimate given there for the
1 loop RC by demonstrating that no potentially numerically
large contributions enhanced by lnme were missed.

V. EXTRA FINITE TERMS WHEN me IS
INFINITESIMAL BUT NONZERO

In the previous section the emphasis was on terms with
lnMγ divergences and/or lnme singularities, assuming that

all the remaining terms without such divergences would not
distinguish between the mass-expansion and DR in the zero
mass limit. However, the way equality comes about is quite
novel and particularly interesting. We will show in this
section that there exists a contribution from the brems-
strahlung that remains finite whenme → 0, i.e., exists in the
mass-expansion method, but naively appears to be absent
when we setme ¼ 0 from the beginning. Its presence in DR
will be subsequently discussed.
So far, in the bremsstrahlung process, we only examined

the integrals Im;1 that give a lnme divergence. However,
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there exists another set of integrals Im;2 that gives a
potentially more severe, 1=m2

e-power divergence:

Im;2ðpi; peÞ ¼ 8π

Z
dΓkdΓpν

ð2πÞ4δð4ÞðP − k − pνÞ
ðpi · kÞmðpe · kÞ2

;

¼ 4ð2pe · PÞm
m2

eðM2
KxÞmþ1ðpi · peÞm

þOðm0
eÞ: ð48Þ

Upon inspection, one finds that their coefficients

Cð0Þ
m;2ðx; y; zÞ always contain a factor m2

e, i.e., they are
chirally suppressed in the squared-amplitude level.
Therefore, in the me → 0 limit such terms make a finite
contribution to the total decay rate. In other words, they
represent a novel nonvanishing chirality-breaking effect in
the me → 0 limit. We emphasize that such contributions
exists only in the mass-expansion method and not in DR,

because in the latter the coefficients Cð0Þ
m;2 are identically

zero as we have set me ¼ 0 from the beginning.
The existence of such phenomena were recognized in
the literature, e.g., Refs. [87,88], where it was argued that
the me ¼ 0 is not smooth for certain observables in
quantum electrodynamics because of such terms. Our
interpretation will be somewhat different. However, we
will first evaluate the magnitude of those contributions to
the Ke3 radiative inclusive decay rate.
To account for the effects of such terms, we may define a

new set of coefficients D̄ð0Þðx; y; zÞ by

lim
me→0

X
m

Cð0Þ
m;2ðx; y; zÞ

�
4ð2pe · PÞm

m2
eðM2

KxÞmþ1ðpi · peÞm
�

¼ 64παM2
KG

2
FjVusj2f2þðtÞD̄ð0Þðx; y; zÞ: ð49Þ

Again, these coefficients turn out to be channel
independent:

D̄ðx; y; zÞ ¼ 2y½rπð2yþ z − 2Þ − xðyþ z − 2Þ − ðz − 1Þð2yþ z − 2Þ�
ð1 − x − zþ rπÞ2

;

D̄ð0Þðx; y; zÞ ¼ D̄ðx; y; zÞ þ 2½rπ þ ðy − 1Þðyþ z − 1Þ�
x

: ð50Þ

With them, the extra finite contribution to the decay rate in the mass-expansion method is given in the me → 0 limit as

ðδΓÞext;m ¼ M3
K

4096π5
lim
me→0

X
m

�Z
D3

dydz
Z

αþ

0

dxCm;2 þ
Z
D4−3

dydz
Z

αþ

α−

dxCm;2
0
�
Im;2;

¼ αG2
FjVusj2M5

K

64π4

Z
1þrπ

2
ffiffiffi
rπ

p dzf2þðtÞ
�Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

Z
αþ

0

dxD̄ðx; y; zÞ þ
Z

cðzÞ−dðzÞ

0

dy
Z

αþ

α−

dxD̄0ðx; y; zÞ
�
: ð51Þ

Direct integration of the terms in the curly brackets returns a rather elegant expression:Z
cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

Z
αþ

0

dxD̄ðx; y; zÞ þ
Z

cðzÞ−dðzÞ

0

dy
Z

αþ

α−

dxD̄0ðx; y; zÞ

¼ 1

18
ðz2 − 4rπÞ3=2

�
3 ln

� ðz2 − 4rπÞð2 − z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

p
Þ

ð1 − zþ rπÞð2 − zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

p
Þ

�
þ 1

�
≡HðzÞ: ð52Þ

Numerically, utilizing a simple monopole parametrization
of fþðtÞ [89] one obtains ðδΓÞext;m=ΓKe3

≈ −0.01%, mak-
ing up a negligibly small part in the full long-distance
EM correction δKlEM, which is 1.16(3)% in the K0e channel
and 0.21(5)% in the Kþe channel respectively. In
Refs. [3,58,59], this contribution was automatically in-
cluded in the numerical results because no me ¼ 0 sim-
plifications were made in the analytic expressions.

VI. THE SAME CALCULATION WITH
DIMENSIONAL REGULARIZATION

Now we proceed to the second goal of this paper, namely
to demonstrate the full equivalence between DR and the

mass expansion in reproducing the finite terms of the total
radiatively inclusive Ke3 decay rate in the zero electron
mass limit.
We begin by setting Mγ ¼ me ¼ 0 from the beginning

and generalize the space-time dimension to d ¼ 4 − ϵ.
Some obvious generalizations of the basic formula in the
previous section are

d4q0

ð2πÞ4 → μϵ
ddq0

ð2πÞd ð53Þ

in the loop integrals, and
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ð2πÞ4δð4ÞðkÞ → μ−ϵð2πÞdδðdÞðkÞ;
d3k

ð2πÞ32Ek
→ μϵ

dd−1k
ð2πÞd−12Ek

≡ μϵdΓk ð54Þ

in the phase space integrals. This is, however, not the full
story. We will now demonstrate that extra modifications of
the phase space formula are required to reproduce the
correct finite pieces.

A. Three- and four-body phase space in d dimensions

We start by considering the following Lorentz-invariant
integral:

I ¼ 1

2MK
μϵ

Z
dΓp0μϵ

Z
dΓpe

Aðx; y; zÞ; ð55Þ

where Aðx; y; zÞ is an arbitrary scalar function of x, y, z.
This is a straightforward generalization of the integral
defined in Eq. (A.1) of Ref. [59]. In general, the integral
measure of the d − 1 spatial components of a momentum k⃗
can be written as [82]

Z
dd−1k ¼

Z
djk⃗jjk⃗jd−2

�Yd−3
a¼1

Z
π

0

dθasind−a−2θa

�

×
Z

2π

0

dθd−2: ð56Þ

Now, since Aðx; y; zÞ is Lorentz invariant, we may evaluate
it in the kaon rest frame, namely

p⃗¼ 0⃗; p⃗0 ¼ jp⃗0jð1;0;0;…Þ p⃗e¼Eeðcosθe;sinθe;0;…Þ:
ð57Þ

In this way, we can integrate all angles in p⃗0 and all except
the first angle in p⃗e using the formula:

Z
π

0

dθ sinm θ ¼ ffiffiffi
π

p Γð1
2
ðmþ 1ÞÞ

Γð1
2
ðmþ 2ÞÞ ; ð58Þ

which gives

I¼ 1

2MK

ffiffiffi
π

p
64π4Γð3−ϵ

2
ÞΓð2−ϵ

2
Þ
Z

dE0dEe

×
Z þ1

−1
dcosθe

�
16π2μ4

jp⃗0j2E2
eð1− cos2θeÞ

�
ϵ=2

Eejp⃗0jAðx;y;zÞ:

ð59Þ

To further proceed, we notice that Eq. (57) allows us to
express E0, Ee and cos θe using x, y, z. In particular, we find

jp⃗0j2E2
eð1 − cos2 θeÞ ¼ M4

Kfðx; y; zÞ; ð60Þ
where

fðx; y; zÞ≡ 1

4
½−r2π þ rπð2x − yðyþ z − 2Þ þ 2ðz − 1ÞÞ

− ðxþ yþ z − 1Þðx − yzþ yþ z − 1Þ�: ð61Þ

With this definition, we obtain

I¼K
M3

K

512π4

Z
∞

2
ffiffiffi
rπ

p dz
Z

∞

0

dy
Z

αþ

α−

dx½fðx;y;zÞ�−ϵ=2Aðx;y;zÞ;

ð62Þ

where

K ≡
ffiffiffi
π

p
2Γð3−ϵ

2
ÞΓð2−ϵ

2
Þ
�
16π2μ4

M4
K

�
ϵ=2

ð63Þ

is an overall constant multiplicative factor, which equals 1
when ϵ ¼ 0. Although the equation above is defined by
choosing a specific frame, since the final form is explicitly
Lorentz invariant, it obviously holds in every frame. This
expression is analogous to the one in Eq. (A.1) of Ref. [59],
so we may follow exactly the same logic in Appendix A of
that paper to derive the three- and four-body phase space
formula in d dimensions:

Γ3-body¼K
MK

256π3

Z
D3

dydzðfð0;y;zÞÞ−ϵ=2jMj2K→πeν

Γ4-body¼K
M3

K

512π4

�Z
D3

dydz
Z

αþ

0

dxþ
Z
D4−3

dydz
Z

αþ

α−

dx

�
μϵ
Z

dΓkdΓpν
ð2πÞdδðdÞðP−k−pνÞðfðx;y;zÞÞ−ϵ=2jMj2K→πeνγ:

ð64Þ

There are two new ingredients: (1) the overall multiplica-
tive factor K, and (2) the factor ðfðx; y; zÞÞ−ϵ=2 in the
integrand. The former is irrelevant as long as the final decay
rate is singularity free, but the latter is important in order to
get the correct finite contributions.

It turns out that if we keep me finite (i.e., do not pay
attention to mass singularities), then the two new ingre-
dients above are irrelevant (which is implicitly assumed in
Ref. [59]). The reasons are twofold: (1) when there are only
IR singularities, the poles in both virtual and real
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corrections are only at the order (2=ϵ), and (2) these poles already cancel each other upon the x integration, without touching
y and z. To explain this idea more clearly, let us write the following:

Γ3-bodyþΓ4-body¼K
MK

256π3

Z
D3

dydzðfð0;y;zÞÞ−ϵ=2
�
jMj2K→πeνþ

M2
K

2π

Z
αþ

0

dxμϵ
Z

dΓkdΓpν
ð2πÞdδðdÞðP−k−pνÞjMj2K→πeνγ

�

þK
M3

K

512π4

Z
D3

dydz
Z

αþ

0

dxμϵ
Z

dΓkdΓpν
ð2πÞdδðdÞðP−k−pνÞfðfðx;y;zÞÞ−ϵ=2−ðfð0;y;zÞÞ−ϵ=2gjMj2K→πeνγ

þK
M3

K

512π4

Z
D4−3

dydz
Z

αþ

α−

dxμϵ
Z

dΓkdΓpν
ð2πÞdδðdÞðP−k−pνÞðfðx;y;zÞÞ−ϵ=2jMj2K→πeνγ: ð65Þ

There are three terms on the right-hand side, and the IR
divergence occurs only within the curly brackets of the first
term; in particular, in bremsstrahlung it appears as a log-
divergence in the x integral at x → 0. The claim is that the
IR divergences within the two terms in the curly bracket
cancel out each other, so we can set ϵ ¼ 0 in the remaining
parts of the first integral, which brings K, ðfð0; y; zÞÞ−ϵ=2
both to 1. In the second term, the factor ðfðx; y; zÞÞ−ϵ=2 −
ðfð0; y; zÞÞ−ϵ=2 renders the x-integration finite, so we can
set ϵ ¼ 0 from the beginning, which simply kills the entire
term. Finally, the third term is by itself IR finite; so we can
again take ϵ ¼ 0, which brings K, ðfðx; y; zÞÞ−ϵ=2 to 1. This
proves our assertion.
Things are more complicated when mass singularities

are also regularized using DR, because now one obtains
poles of the order ð2=ϵÞ2 and (2=ϵ); the former cancels
within the x integration, but the latter only cancels upon the
y integration, therefore ðfðx; y; zÞÞ−ϵ=2 gives a nonzero
finite contribution, which is the analog of the small chiral
breaking contribution found in the massive electron cal-
culation, as we shall show.

B. Divergent quantities in virtual corrections

We may study the total Ke3 decay rate at me ¼ Mγ ¼ 0
in Sirlin’s representation using DR, starting from the
virtual corrections. As an effective bookkeeping method
for possible finite differences with the mass-expansion
method, we apply the following strategy: for every
quantity F with singularities, we always make the follow-
ing separation:

F ¼ Fdiv;DR þ Ffin þOðϵÞ; ð66Þ

where Ffin is defined to be exactly the same as that in the
mass-expansion method [see Eq. (18)], which means
Fdiv;DR may contain finite terms that are not proportional
to ð2=ϵÞ2 or (2=ϵ). In this way, the comparison between the
finite terms in DR and mass-expansion method can simply
be done by comparing the effect of Fdiv;DR and Fdiv;m in
the total decay rate.

One more technical detail is in order. In Sirlin’s repre-
sentation, one utilizes the following identity

γμγνγα ¼ gμνγα − gμαγν þ gναγμ − iϵμναβγβγ5 ð67Þ

to split the full γW-box diagram into δMa
γW and δMb

γW ; the
former is combined with δM2 such that the residual
integrals are ultraviolet insensitive. A conceptual problem
then arises when standard dimensional regularization is
applied to the formalism, because in DR the generalization
into d-dimensional vectors applies both to momenta and to
the Dirac matrices γμ, and the latter renders the totally
antisymmetric tensor ϵμναβ ill defined. This is more of a
problem since there is a mass singularity in δMb

γW (which
contains an antisymmetric tensor) that has to be canceled
with that in ðδM2 þ δMa

γWÞint, as we discussed in Sec. IVA.
Although in transforming the δMb

γW contribution into δfþ
one again makes use of Eq. (67) to get rid of the
antisymmetric tensor, so it is possible that the final result
is unambiguous since we have made “even number of
mistakes,” but it is still important to keep this in mind in
order to track down possible extra finite terms in the final
result.
An approach to bypass the ambiguity above is to adopt

the dimensional reduction formalism [90], where only
momenta are treated in d-dimension whereas the Dirac
matrices remain 4-vectors. In this way the ϵ tensor can be
rigorously defined, but the formalism itself has its own
problems, e.g., mathematical inconsistencies [91]. To stay
on the safe side, in this work we apply both methods in the
analysis; the finite difference between the two methods
comes mainly from the fact that γμγαγμ equals ð2 − dÞγα in
DR but −2γα in dimensional reduction. In what follows we
label both methods collectively as “DR,” but we will
specify dimensional regularization or dimensional reduc-
tion whenever they make a difference.
Now we present the essential results of our DR analysis

to the virtual corrections, where the replacement in Eq. (53)
applies to all loop integrals. First, the divergent part of the
electron wave function renormalization reads
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δZdiv;DR
e ¼ −

α

4π
R

�
−
2

ϵ
− 5þ δ

�
; ð68Þ

with δ equals 1 in dimensional regulation and 0 in
dimensional reduction. Here we have defined

R≡
�
eγE

4π

�
−ϵ=2

ð69Þ

as a convenient multiplicative constant to absorb the effect
of γE and ln 4π which always appear in DR. Next, for the
analytic piece in δM2 þ δMa

γW we have

ðδM2 þ δMa
γWÞdiv;DRana ¼ −

α

2π
R

�
2

ϵ
þ 2

�
M0: ð70Þ

Next we study the sum of the two-point and three-point
function; since it involves only IR divergence and no mass
singularity, there is a universal matching relation between
these two schemes [82]: lnðM2

γ=μ2Þ ↔ Rð2=ϵÞ. Applying
this to Eq. (26) gives

ðδfþÞdiv;DR2ptþ3pt ¼ −
α

4π
R

�
2

ϵ

�
fþ: ð71Þ

And finally, the divergent part of the scalar function C0

reads

Cdiv;DR
0 ¼ R

M2
1 − v

�
−
1

2

�
2

ϵ

�
2

þ
�
2

ϵ

��
1

2
ln
M2

1

μ2
− ln

M2
1

M2
1 − v

�
−
π2

24

�
: ð72Þ

With all the above, the total divergent contribution to
δfþ is given in DR by

ðδfþÞdiv;DR ¼
�
1

2
δZdiv;DR

e −
α

2π
ðv −M2

i ÞCdiv;DR
0

−
α

4π
R
�
2

ϵ

��
fþ;

¼ −
α

4π
R

��
2

ϵ

�
2

þ
�
2

ϵ

��
5

2
− ln

M2
i

μ2

þ 2 ln
M2

i

M2
i − v

�
þ 3þ δ

2
þ π2

12

�
fþ; ð73Þ

which is to be compared with the same quantity in the
mass-expansion method, Eq. (29). One observes that,
unlike the case of finite me, in the presence of collinear
mass singularity there is no simple matching that connects
lnðm2

e=μ2Þ and lnðM2
γ=μ2Þ to (2=ϵ).

C. Divergent integrals in bremsstrahlung

Next we study the divergent integrals in the bremsstrah-
lung process, starting from the integral Ii. Since the original
definition in Eq. (33) involves the integration over x, in
DR it must include the factor ðfðx; y; zÞÞ−ϵ=2 due to the
generalized phase space formula discussed in Sec. VI A.
It is defined as

Ii ≡
Z

αþ

0

dxðfðx; y; zÞÞ−ϵ=2μϵ
Z

dΓkdΓpν
ð2πÞdδðdÞðP − k − pνÞ

�
pi

pi · k
−

pe

pe · k

�
2

; ð74Þ

where the divergent piece reads

Idiv;DRi ¼ R
4πM2

K
ðfð0; y; zÞÞ−ϵ=2

�
−
�
2

ϵ

�
2

−
�
2

ϵ

��
1þ ln

�
μ2P2

0ð0Þð1 − cos χÞ2
M4

Kα
2þ

��

þ 2Li2

�
αþ
α−

�
þ π2

4
− 2ln2

�
αþ

1 − zþ rπ

�
− 2 ln

�
αþ

1 − zþ rπ

�
− 4Li2

�
αþ

1 − zþ rπ

��
: ð75Þ

The remaining bremsstrahlung integrals with mass singularities are those in Eq. (36), which are defined in DR as

Im;1ðpiÞ≡ 8πμϵ
Z

dΓkdΓpν

ð2πÞdδðdÞðP − k − pνÞ
ðpi · kÞmpe · k

: ð76Þ

Their divergent piece is given by

Idiv;DRm;1 ðpiÞ ¼ −
2ð2pe · PÞm−1

ðM2
KxÞmðpi · peÞm

R

�
2

ϵ
þ ln

ð1 − x − zþ rπÞ2
x2

�
: ð77Þ
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D. Reconciling DR and the mass expansion

Now we may collect all the aforementioned divergent contributions in DR to the total decay rate. They are

ðδΓÞðδfþÞdiv;DR ¼ K
MK

256π3

Z
D3

dydzðfð0; y; zÞÞ−ϵ=2
�
2ReðδfþÞdiv;DR

fþ
jM0j2ð0; y; zÞ

�
;

ðδΓÞIdiv;DRi
¼ K

M3
K

512π4

Z
D3

dydzð−e2ÞIdiv;DRi jM0j2ð0; y; zÞ;

ðδΓÞIdiv;DRm;1
¼ K

M3
K

4096π5
X
m

�Z
D3

dydz
Z

αþ

0

dxCm;1 þ
Z
D4−3

dydz
Z

αþ

α−

dxC0
m;1

�
ðfðx; y; zÞÞ−ϵ=2Idiv;DRm;1 : ð78Þ

Based on the analysis in Sec. IV C, it is easy to check that all the divergences of order ð2=ϵÞ2 and (2=ϵ) cancel upon
summing the above three terms. and what left over is the extra finite terms in the DR method relative to the mass-expansion
method. It is given in the ϵ → 0 limit by

ðδΓÞext;DR ¼ ðδΓÞðδfþÞdiv;DR þ ðδΓÞIdiv;DRi
þ ðδΓÞIdiv;DRm;1

¼ αG2
FjVusj2M5

K

64π4

Z
1þrπ

2
ffiffiffi
rπ

p dzf2þðtÞhðzÞ; ð79Þ

where

hðzÞ≡
Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy½rπ þ ðy − 1Þðyþ z − 1Þ�

�
− ln fð0; y; zÞ

�
3

2
þ ln

α2þ
ð1 − zþ rπÞ2

�

þ 3þ δ

2
þ 2Li2

�
αþ
α−

�
þ π2

3
− 2ln2

�
αþ

1 − zþ rπ

�
− 2 ln

�
αþ

1 − zþ rπ

�
− 4Li2

�
αþ

1 − zþ rπ

��

þ
Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

Z
αþ

0

dx

�
C̄ðx; y; zÞð− ln fðx; y; zÞ þ ln

ð1 − x − zþ rπÞ2
x2

�
þ δ

4xfðx; y; zÞ
ð1 − x − zþ rπÞ3

�

þ
Z

cðzÞ−dðzÞ

0

dy
Z

αþ

α−

dx

�
C̄0ðx; y; zÞð− ln fðx; y; zÞ þ ln

ð1 − x − zþ rπÞ2
x2

�
þ δ

4xfðx; y; zÞ
ð1 − x − zþ rπÞ3

�
: ð80Þ

Let us study the complicated expression above. First we observe that, apart from the electron wave function
renormalization, there are also contributions from bremsstrahlung in the D3 and D4−3 regions that are proportional
to δ, and thus differentiate dimensional regulation from dimensional reduction. This comes from a part of jMAj2:

jMAj2¼−
e2G2

F

4

�
1

pe ·k

�
2

Tr½ð=P−=kÞγμ=kγα=peγα=kγνð1− γ5Þ�FμF�
νþ��� : ð81Þ

The two schemes give a difference in the value of γα=peγα at the order (ϵ=2), which then combines with the (2=ϵ)
divergence in the Im;1 integrals to give a finite difference. However, it is easy to check that all the terms proportional to δ add
up to zero:

−
1

12
ðz2 − 4rπÞ3=2 ¼

Z
cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

1

2
½rπ þ ðy − 1Þðyþ z − 1Þ�;

¼ −
�Z

cðzÞþdðzÞ

cðzÞ−dðzÞ
dy

Z
αþ

0

dxþ
Z

cðzÞ−dðzÞ

0

dy
Z

αþ

α−

dx

�
4xfðx; y; zÞ

ð1 − x − zþ rπÞ3
; ð82Þ

which means dimensional regulation and dimensional
reduction give the same total decay rate. This is an important
confirmation of the formalism independence of our result.

Finally, all the integrals in hðzÞ can in fact be explicitly
performed. The outcome turns out to be exactly equal to
HðzÞ in Eq. (52):
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hðzÞ ¼ 1

18
ðz2 − 4rπÞ3=2

�
3 ln

� ðz2 − 4rπÞð2 − z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

p
Þ

ð1 − zþ rπÞð2 − zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4rπ

p
Þ

�
þ 1

�
¼ HðzÞ; ð83Þ

That equality can also be checked numerically. This implies
ðδΓÞext;m ¼ ðδΓÞext;DR, i.e., the DR method at ϵ → 0 agrees
perfectly with the mass-expansion method atme → 0 in the
total, IR-finite Ke3 decay rate. The effect of small chiral
breaking terms proportional to m2

e in the bremsstrahlung
squared amplitude integral from collinear electron-photon
configurations are reproduced by the space-time DR
dependence.

VII. FINAL DISCUSSIONS

In our discussion of the QED RC to Ke3 decays, we have
tried to further clarify some aspects of the relatively recent
improvements in the theory [3,58,59] and to provide cross-
checks for the very small uncertainty, Oð10−4Þ, they found.
By introducing an electron mass expansion, wewere able to
demonstrate the cancellation of electron mass singularities
in the radiative inclusive decay rates and verify agreement
with the KLN theorem. As a further check on the results, a
study of the inclusive rates for the case me ¼ 0, that is
massless QED, was carried out using dimensional regulari-
zation of infrared photonic divergences and electron mass
singularities. In the d → 4 limit, it confirmed the me → 0
electron mass expansion results. Particularly interesting is a
very small contribution of about −0.01% from a set of m2

e-
suppressed terms in the bremsstrahlung squared amplitude
that was subsequently power-enhanced by 1=m2

e from the
phase-space integration. That contribution was found to be
needed for full agreement with the extra finite terms in the
DR massless QED calculation that originate from the loop/
bremsstrahlung integrals and from the nontrivial modifica-
tion of the phase space formula in d dimension.
The major sources of theory uncertainty in the Ke3 RC

are (1) lattice QCD uncertainties in the mesonic γW-box
diagram that are quantifiable through standard procedures,
and (2) residual hadronic structure-dependent uncertainties
incalculable within Sirlin’s representation (and not con-
strained by lattice). In particular, (2) is kept under control

through a careful separation of the nonperturbative pieces
from the perturbative ones. Our results in this work support
the error analysis in Refs. [3,58,59], that all the lnme-
enhanced terms are fully contained in the nonperturbative
pieces that were precisely calculated either analytically or
numerically. The remaining, perturbative terms are free
from lnme enhancement, hence the standard chiral power
counting argument adopted in those papers provides a
reliable estimation of its theory error.
Given the smallness of theRCQED theory uncertainty, the

emphasis should nowbeplaced onotherSM theory inputs. In
particular, we strongly encourage more precise lattice QCD
calculations of the form factor fþðtÞ, not only its t ¼ 0 value
but also its t dependence. The latter can provide useful
independent constraints on the Kπ phase space factors. In
addition, a lattice QCD calculation of fþðtÞ that is free of
QED effects avoids any issue of double counting which is
potentially present in experimental measurements which
presumably use an approximate Monte Carlo program to
subtract out QED effects. Of course improved experimental
measurements of all the kaon lifetimes and measurements of
the radiative inclusive Kl3 branching ratios, including the
least-precise KSμ channel, are also very desirable.
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