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The properties of QED-vacuum polarization, caused by the supercritical external Coulomb source with
charge Z and size R, are explored in an essentially nonperturbative approach with emphasis on the vacuum
energy EVP (where VP stands for vacuum polarization.) It is shown that in the supercritical region EVP turns
out to be a decreasing function of the Coulomb charge, resulting in decay into the negative range as
∼ − Z4=R. Moreover, it is indeed the decline of EVP, which provides the required energy for (presumably
possible) positron emission. Found this way, properties of the resonance decay are in agreement with those
achieved by other methods. The additional problems of spontaneous emission, caused by lepton number,
are also discussed.
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I. INTRODUCTION

So far, the assumption of a deep QED-vacuum
reconstruction, caused by discrete levels diving into the
lower continuum and accompanied by such nontrivial
effects as spontaneous positron emission combined with
vacuum shells formation (see, e.g., Refs. [1–5] and cita-
tions therein), is subject to active research [1,6–11]. In
3þ 1 QED, such effects are expected for extended
Coulomb sources of nucleus size with charges
Z > Zcr;1 ≃ 170, which are large enough for direct obser-
vation and probably could be created in low-energy heavy-
ion collisions at new heavy-ion facilities FAIR (Darmstadt),
NICA (Dubna), and HIAF (Lanzhou) [12–14].
Since any process of emission must be first analyzed via

energy balance in the system, in the present paper the
nonperturbative vacuum polarization (VP) effects, caused
by the quasistatic supercritical Coulomb sources with
Z > Zcr;1, are explored in terms of VP energy EVP. The
reason is that the spontaneous emission of positrons should
be provided solely by VP effects without any other
channels of energy transfer. EVP plays an essential role
in the region of supercriticality. In particular, EVP being
considered as a function of Z reveals with growing Z a
pronounced decline into the negative range, accompanied
with negative jumps, exactly equal to the electron rest mass,
which occur each time the discrete level dives into the
lower continuum. Moreover, it is indeed the decline of EVP
that provides the spontaneous positrons with corresponding

energy for emission. In turn, the emitted positrons carry
away the lepton number equal to ð−1Þ × their total number,
and so the corresponding amount of positive lepton
numbers must be transferred to VP density, concentrated
in vacuum shells. In this case, instead of an integer lepton
number of real particles there should appear the lepton
number VP density. Otherwise, either the lepton number
conservation in such processes must be broken or the
spontaneous positron emission prohibited. In view of recent
attempts in this field of interest [1,6,9–14], the last circum-
stance requires additional attention.
These questions are explored within the Dirac-Coulomb

(DC) problem with external static or adiabatically slowly
varying spherically symmetric Coulomb potential, created
by a uniformly charged sphere

VðrÞ ¼ −Zα
�

1

RðZÞ θðRðZÞ − rÞ þ 1

r
θðr − RðZÞÞ

�
ð1Þ

or charged ball

VðrÞ¼−Zα
�
3R2ðZÞ− r2

2R3ðZÞ θðRðZÞ− rÞþ1

r
θðr−RðZÞÞ

�
:

ð2Þ

Here and henceforth,

Q ¼ Zα; ð3Þ

while the relation between the radius of the Coulomb
source and its charge is given by
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RðZÞ ≃ 1.2ð2.5ZÞ1=3 fm; ð4Þ

which roughly imitates the size of a superheavy nucleus
with charge Z. In what follows, RðZÞ will be quite
frequently denoted simply as R.
It should be specially noted that the parameter Q plays

actually the role of the effective coupling constant for VP
effects under question. The size of the source RðZÞ and its
shape are also the additional input parameters, but their role
in VP effects is quite different from Q and in some
important questions, in particular, in the renormalization
procedure, this difference must be clearly tracked.
Furthermore, the difference between the charged sphere
and the ball, which seems more preferable as a model of
superheavy nucleus or heavy-ion cluster, in VP effects of
Coulomb supercriticality is small. At the same time, the
spherical shell model allows for an almost completely
analytical study of the problem, which has clear advantages
in many positions. The ball model does not share such
options, since explicit solution of the DC problem in this
case is absent, and so one has to use from the beginning the
numerical methods or special approximations. We will
briefly consider one of such approximations at the end of
Sec. V and in Appendix B.
As in basic works on this topic [1–5,15–17], radiative

corrections from virtual photons are neglected. Henceforth,
if it is not stipulated separately, relativistic units ℏ ¼ me ¼
c ¼ 1 and the standard representation of Dirac matrices are
used. Concrete calculations, illustrating the general picture,
are performed for α ¼ 1=137.036 by means of computer
algebra systems (such as Maple 21) to facilitate the analytic
calculations and GNU OCTAVE code for boosting the
numerical work.

II. PERTURBATIVE APPROACH TO EVP

It this section, it would be pertinent to show explicitly the
dependence onm. To the leading order, the perturbative VP

energy Eð1Þ
VP is obtained from the general first-order

Schwinger relation [4,18,19]

Eð1Þ
VP ¼

1

2

Z
dr⃗ϱð1ÞVPðr⃗ÞAext

0 ðr⃗Þ; ð5Þ

where ϱð1ÞVPðr⃗Þ is the first-order perturbative VP density,
which is obtained from the one-loop (Uehling) potential

Að1Þ
VP;0ðr⃗Þ in the following way:

ϱð1ÞVPðr⃗Þ ¼ −
1

4π
ΔAð1Þ

VP;0ðr⃗Þ; ð6Þ

where

Að1Þ
VP;0ðr⃗Þ ¼

1

ð2πÞ3
Z

dq⃗eiq⃗ r⃗ΠRð−q⃗2ÞÃ0ðq⃗Þ;

Ã0ðq⃗Þ ¼
Z

dr⃗0e−iq⃗r⃗0Aext
0 ðr⃗0Þ: ð7Þ

The polarization function ΠRðq2Þ, which enters Eq. (7), is
defined via general relation Πμν

R ðqÞ¼ ðqμqν−gμνq2ÞΠRðq2Þ
and so is dimensionless. In the adiabatic case under consid-
eration, q0 ¼ 0 and ΠRð−q⃗2Þ takes the form

ΠRð−q⃗2Þ ¼
2α

π

Z1
0

dβ βð1 − βÞ ln
�
1þ βð1 − βÞ q⃗2

m2 − iϵ

�

¼ α

π
Sðjq⃗j=mÞ; ð8Þ

where

SðxÞ ¼ −5=9þ 4=3x2 þ ðx2 − 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4

p
× ln ½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4

p
þ xÞ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4

p
− xÞ�=3x3: ð9Þ

Proceeding further, from (5)–(7) one finds

Eð1Þ
VP ¼

1

64π4

Z
dq⃗ q⃗2ΠRð−q⃗2Þ

����
Z

dr⃗ eiq⃗ r⃗Aext
0 ðr⃗Þ

����2: ð10Þ

Note that, since the function SðxÞ is strictly positive, the
perturbative VP energy is also positive, as predicted in
pioneering works on QED-vacuum polarization [18].
In the spherically symmetric case with Aext

0 ðr⃗Þ ¼ A0ðrÞ
the perturbative VP term belongs to the s channel and
equals

Eð1Þ
VP ¼

1

π

Z
∞

0

dq q4ΠRð−q2Þ
�Z

∞

0

r2drj0ðqrÞA0ðrÞ
�

2

:

ð11Þ

By means of condition

mRðZÞ ≪ 1; ð12Þ

which is satisfied by the Coulomb source with relation (4)
between its charge and radius up to Z ∼ 1000, the integrals
in (11) can be calculated analytically (see Ref. [3] for
details). In particular,

Eð1Þ
VP;sphere ¼

Q2

3πR

�
ln

�
1

2mR

�
− γE þ 1

6

�
;

Eð1Þ
VP;ball ¼

2Q2

5πR

�
ln

�
1

2mR

�
− γE þ 1

5

�
: ð13Þ

It should be remarked that if the condition (12) is satisfied,
then the ratio
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Eð1Þ
VP;ball=E

ð1Þ
VP;sphere ≃ 6=5 ð14Þ

is the same as for their classical electrostatic self-energies
3Z2α=5R and Z2α=2R.

III. VP ENERGY IN THE NONPERTURBATIVE
APPROACH

The starting expression for EVP is

EVP ¼
1

2

�X
ϵn<ϵF

ϵn −
X
ϵn≥ϵF

ϵn

�
; ð15Þ

where ϵF ¼ −1 is the Fermi level, which in such problems
with strong Coulomb fields is chosen at the lower thresh-
old, while ϵn are the eigenvalues of the corresponding DC
problem.
Expression (15) is obtained from the Dirac Hamiltonian,

written in the form that is consistent with Schwinger
prescription for the current (for details see, e.g.,
Ref. [3]) and is defined up to a constant, depending on
the choice of the energy reference point. Actually, EVP is
nothing else but the Casimir vacuum energy for the
electron-positron system [3]. Following the general pre-
scription for Casimir energy calculations [3,19], the natural
choice of the reference point for EVP is the free case
Aext ¼ 0. In the present case, the latter must be combined
with the circumstance that, unlike the purely photonic
Casimir effect, there exists also an infinite set of discrete
Coulomb levels. To pick out exclusively the interaction
effects, it is therefore necessary to subtract in addition from
each discrete level the mass of the free electron at rest.
Thus, in the physically motivated form and in agreement

with the VP density ϱVP, which is defined so that it
automatically vanishes in the free case [3,4,15,16,18],
the initial expression for the VP energy should be
written as

EVP ¼
1

2

�X
ϵn<ϵF

ϵn −
X
ϵn≥ϵF

ϵn þ
X

−1≤ϵn<1
1

�
A

−
1

2

�X
ϵn≤−1

ϵn −
X
ϵn≥1

ϵn

�
0

; ð16Þ

where the label A denotes the nonvanishing external field
Aext, while the label 0 corresponds to Aext ¼ 0. Defined in
such a way, VP energy vanishes by turning off the external
field, while by turning it on, it contains only the interaction
effects, and so the expansion of EVP in (even) powers of the
external field starts from OðQ2Þ.
For what follows, it would be pertinent to introduce a

number of additional definitions and notations. The reason
is that the purely Coulomb problem with spherical sym-
metry is just a start-up for more complicated problems,
where only the axial symmetry is preserved. These are, in

particular, the two-center Coulomb one, which imitates the
slow collision of two heavy ions, and the one-center
Coulomb one in the presence of an axial magnetic field.
In such problems, the total angular moment j⃗ is not
conserved; there remains only its projection mj. As a con-
sequence, the angular quantum number k ¼ �ðjþ 1=2Þ,
which is very suitable for enumerating the Coulomb states
of the Dirac fermion both in momentum and parity,
becomes out ofwork. In this situation, it is useful to represent
the Dirac bispinor with fixed mj in the form

ψmj
ðr⃗Þ ¼

� φmj
ðr⃗Þ

−iχmj
ðr⃗Þ

�
; ð17Þ

where the spinors ψ and χ are defined as the partial series
over integer orbital momentum l,

φmj
ðr⃗Þ ¼

X∞
l¼0

ðulðrÞΩðþÞ
lmj

ðn⃗Þ þ vlðrÞΩð−Þ
lþ1;mj

ðn⃗ÞÞ;

χmj
ðr⃗Þ ¼

X∞
l¼0

ðplðrÞΩðþÞ
lmj

ðn⃗Þ þ qlðrÞΩð−Þ
lþ1;mj

ðn⃗ÞÞ; ð18Þ

with n⃗ ¼ r⃗=r and Ωð�Þ
lmj

ðn⃗Þ being the spherical spinors

with the total momentum j ¼ l� 1=2 and fixed jz ¼ mj.
Each term in parentheses in series (18) corresponds to
j ¼ lþ 1=2, while from the structure of the DC problem
there follows that the radial functions ulðrÞ; vlðrÞ; plðrÞ, and
qlðrÞ can be always chosen real.
The spherical spinors are defined as follows:

ΩðþÞ
lmj

ðn⃗Þ ¼

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþmjþ1=2

2lþ1

q
Yl;mj−1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l−mjþ1=2
2lþ1

q
Yl;mjþ1=2

1
CCA;

Ωð−Þ
lmj

ðn⃗Þ ¼

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l−mjþ1=2

2lþ1

q
Yl;mj−1=2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþmjþ1=2

2lþ1

q
Yl;mjþ1=2

1
CCA; ð19Þ

whence ðσ⃗ n⃗ÞΩðþÞ
lmj

ðn⃗Þ ¼ Ωð−Þ
lþ1;mj

ðn⃗Þ, whereas the phase of
spherical functions is chosen in a standard way,
providing l�Ylm¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl∓mÞðl�mþ1Þp
Yl;m�1 and Yl;−jmj¼

ð−1ÞjmjY�
l;jmj.

For the spherically symmetric Coulomb potential VðrÞ of
the type (1) and (2), the spectral DC problem for the energy
level ϵ divides into two radial subsystems, containing either
ðul; qlÞ or ðpl; vlÞ pairs, of the following form:
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8>>><
>>>:

�
∂r − l

r

�
ul ¼ ðϵ − VðrÞ þ 1Þql;�

∂r þ lþ2
r

�
ql ¼ −ðϵ − VðrÞ − 1Þul;

ð20Þ

8>>><
>>>:

�
∂r − l

r

�
pl ¼ −ðϵ − VðrÞ − 1Þvl;�

∂r þ lþ2
r

�
vl ¼ ðϵ − VðrÞ þ 1Þpl:

ð21Þ

Equations (20) and (21) are subject of crossing symmetry:
under simultaneous change of the sign of external potential
and energy Q → −Q and ϵ → −ϵ, the pairs ðul; qlÞ and
ðpl; vlÞ interchange. This symmetry will be used further by
calculation of the VP energy via the phase integral method.
Now let us extract from (16) separately the contributions

from the discrete and continuous spectra for each value of
orbital momentum l, and afterward use for the difference of
integrals over continua ðR dk⃗

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
ÞA − ðR dk⃗

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
Þ0

the well-known technique, which represents this difference
in the form of an integral of the elastic scattering phase δlðkÞ
[8,20–22]. Compared to the one-dimensional case consid-
ered in detail in Ref. [8], the only difference is that instead of
the one-dimensional bag −L ≤ x ≤ þL with boundary
condition iαψð�LÞ � βψð�LÞ ¼ 0 in the present case,
one has to use the three-dimensional fermionic bag confine-
ment condition [23]

ðin⃗ α⃗þβÞψ jRbag
¼ 0: ð22Þ

Within the partial expansion (17) and (18), the boundary
condition (22) transforms into

ðul þ qlÞjRbag
¼ ðpl þ vlÞjRbag

¼ 0: ð23Þ

Further steps for each partial term repeat completely those
of Ref. [8] and yield the final answer for EVPðZÞ, which
as a partial series over angular momentum l is given by the
following expression:

EVPðZÞ ¼
X
l¼0

EVP;lðZÞ; ð24Þ

where

EVP;lðZÞ ¼ ðlþ 1Þ
�
1

π

Z
∞

0

kdkffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p δtotðl; kÞ

þ
X
�

X
−1≤ϵ�n;l<1

ð1 − ϵ�n;lÞ
�
: ð25Þ

In (25), δtotðl; kÞ is the total phase shift for the givenvalues of
the wave number k and orbital momentum l, including the

contributions of the scattering states of the problems (20)
and (21) from both continua and both parities. In the discrete
spectrum contribution to EVP;lðZÞ, the additional sum

P
�

also takes into account both parities. Note also that the
multiplier lþ 1 in (25) appears as a product of the degen-
eracy factor 2ðlþ 1Þ ¼ 2jþ 1 and 1=2 in (16).
Such approach to evaluation of EVP turns out to be quite

effective, since for the external potentials of the type (1)
and (2) each partial VP energy turns out to be finite
without any special regularization. First, δtotðl; kÞ behaves
both in IR and UV limits in the k variable much better than
each of the scattering phase shifts separately. Namely,
δtotðl; kÞ is finite for k → 0 and behaves like Oð1=k3Þ for
k → ∞; hence, the phase integral in (25) is always con-
vergent. Moreover, δtotðl; kÞ is by construction an even
function of the external field, more precisely, of the effective
coupling constantQ. Thereby the complete dependence onZ
is more diverse, since the latter defines also the shape of the
external source and potential in a different way via (4).
Second, in the bound states contribution to EVP;lðZÞ, the
condensation point ϵ�n;l → 1 turns out to be a regular one for
each l and parity, because 1 − ϵ�n;l ∼Oð1=n2Þ for n → ∞.
The latter circumstance permits one to avoid intermediate
cutoff of the Coulomb asymptotics of the external potential
for r → ∞, which significantly simplifies all the subsequent
calculations.
The principal problem of convergence of the partial

series (24) can be explored along the lines of Ref. [24],
which deals with the similar expansion for EVPðZÞ in 2þ 1
dimensions. Let us consider first the behavior of partial VP
energy (25) for large l ≫ Q. More precisely, the last
condition implies

ðlþ 1Þ2 ≫ Q2 þ 2QR: ð26Þ
For such l the main component ∼Q2 of the total scattering
phase δtotðl; kÞ per each parity [or, equivalently, for pairs
ðul; qlÞ or ðpl; vlÞ] can be reliably estimated via the
quasiclassical (WKB) approximation

δWKBðl; kÞ ¼ δþðl; kÞ þ δ−ðl; kÞ − 2δ0ðl; kÞ; ð27Þ
where

δ�ðl; kÞ ¼
Z

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵðkÞ ∓ VðrÞÞ2 − 1 −

ðlþ 1Þ2
r2

r
;

δ0ðl; kÞ ¼
Z

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

ðlþ 1Þ2
r2

r
; ð28Þ

and

ϵðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
; ð29Þ

while the integration is performed over regions, where the
expressions under square root are non-negative. In turn, the
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total WKB phase shift is twice the contribution of each
parity

δWKB
tot ðl; kÞ ¼ 2δWKBðl; kÞ: ð30Þ

For a rigorous justification of such formulas for WKB
phase shifts in the Dirac equation (DE) with spherically

symmetric Coulomb-like potentials, see Refs. [25] (and
references therein).
For the case of a charged sphere (1), all the calculations

can be performed analytically and lead to the following
result:

δWKBðl; kÞ ¼ θð0 ≤ k ≤ k−Þπðlþ 1 − ϰlÞ þ θðk− ≤ k ≤ kþÞ
�
πðlþ 1Þ − πϰl

2
− ðlþ 1Þarctg

�
AþðkÞ
lþ 1

�

þϰl arctg

�
ϵðkÞQR − ϰ2l
ϰlAþðkÞ

�
þ ϵðkÞQ

k
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ k2ðlþ 1Þ2

p
kAþðkÞ þ k2Rþ ϵðkÞQ

��

þ θðkþ ≤ k ≤ ∞Þ
�
ðlþ 1Þ

�
π − arctg

�
AþðkÞ
lþ 1

�
− arctg

�
A−ðkÞ
lþ 1

��

þϰl

�
arctg

�
ϵðkÞQR − ϰ2l
ϰlAþðkÞ

�
− arctg

�
ϵðkÞQRþ ϰ2l

ϰlA−ðkÞ
��

þ ϵðkÞQ
k

ln
�
kA−ðkÞ þ k2R − ϵðkÞQ
kAþðkÞ þ k2Rþ ϵðkÞQ

��
; ð31Þ

where

ϰl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 −Q2

q
; ð32Þ

k� ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 þQ2 � 2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 þ R2

qr
; ð33Þ

and

A�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkRÞ2 � 2ϵðkÞQRþQ2 − ðlþ 1Þ2

q
: ð34Þ

The typical behavior of δWKBðl; kÞ is shown for Z ¼ 100
and l ¼ 100 in Fig. 1.
The main properties of the total WKB phase (30) are the

following. For k < k− < ðlþ 1Þ=R, it is a constant

δWKB
tot ðl; kÞ ¼ 2πðlþ 1 − ϰlÞ;

k < k− < ðlþ 1Þ=R; ð35Þ

while for large k ≫ kþ > ðlþ 1Þ=R it vanishes ∼1=k3,
namely,

δWKB
tot ðl; kÞ → 4Q2ððlþ 1Þ2 − 3R2Þ

3ðkRÞ3 ;

k ≫ kþ > ðlþ 1Þ=R: ð36Þ

In the region between k− and kþ, it behaves as a smooth
interpolation function. Moreover, the smaller the R, the
greater the value of k is needed (the correct condition reads
kR ≫ l) to alter the behavior of δWKB

tot ðl; kÞ from the
constant value (35) into the decreasing one (36).
These results reproduce quite well the behavior of the

exact total phase δtotðl; kÞwith the following remarks. First,
the decrease as either Oð1=k3Þ or Oð1=y3Þ of the uv
asymptotics is a common feature of the integrands in VP
integral expressions, regardless of which VP observable is
under consideration. This applies equally to calculating the
VP energy by means of (25) within the phase integral
method or as elaborated recently in Refs. [26,27], an even
more sophisticated approach to evaluate the VP energy,
based on the ln½Wronskian� techniques. Second, the qua-
siclassical approximation does not reproduce oscillations of
the exact phase for large k, which are caused by diffraction
on a sphere of the radius R. In more detail, this topic is
discussed within the 2þ 1-dimensional case in Ref. [24].
At the same time, the behavior of both δWKB

tot ðl; kÞ and
δtotðl; kÞ for kR ≪ l can be easily understood by comparing
them with the total phase for a pointlike Coulomb source
with the potential VðrÞ ¼ −Q=r (for lþ 1 > Q). TheFIG. 1. δWKBðl; kÞ for Z ¼ 100 and l ¼ 100.
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analytic solution of the corresponding DE is well known
(see, e.g., Ref. [28]) and gives the following exact answer
for each of the partial phase shifts. Namely, for the ðul; qlÞ
pair,

δ�uqðl; kÞ ¼
π

2
ðlþ 1Þ � ϵðkÞQ

k
ln 2kr −

πϰl
2

∓ Arg½Γð1þ ϰl þ iϵðkÞQ=kÞ�

þ 1

2
Arg

�
lþ 1þ iQ=k
ϰl ∓ iϵðkÞQ=k

�
; ð37Þ

where the signs � correspond to the phase shifts for the
upper and lower continua, while for the ðpl; vlÞ pair the
phase shifts are obtained from (37) via simple replacement
of lþ 1þ iQ=k → lþ 1 − iQ=k in the last term. From
these results, one obtains that for all 0 ≤ k ≤ ∞ the exact
total phase for a pointlike source equals a constant

δtotðl; kÞjR→0 ¼ 2πðlþ 1 − ϰlÞ; ð38Þ

which exactly coincides with the answer of the WKB
approximation (35) for k < k− < ðlþ 1Þ=R. This result
should be quite clear, since for large l the condition kR ≪ l
implies scattering with a large impact parameter d ≫ R. In
the last case, the difference between the sphere of size R
and a pointlike source is negligibly small. It should be
remarked, however, that for such behavior of the exact
phase the WKB condition l ≫ Q is crucial; otherwise,
δtotðl; kÞ for k → 0 remains finite, but its limiting value in
this case can be sufficiently different from (38), especially
in the case lþ 1 < Q, when ϰl becomes imaginary [see
below Eqs. (87) and (89)].
In the next step, let us consider the behavior of the partial

phase integrals in (25),

IðlÞ ¼ 1

π

Z
∞

0

kdkffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p δtotðl; kÞ ð39Þ

for l ≫ Q, or more precisely, subject to condition (26). The
details of this calculation are presented in Appendix A. The
final result reads

IðlÞ → 2

π

Z
∞

0

drV2ðrÞ − Q2

lþ 1
þO

�
Q4

ðlþ 1Þ3
�
; l → ∞:

ð40Þ

At the same time, the discrete spectrum with the same
conditions on l [that means l → ∞ or at least l subject to
condition (26)] corresponds with high precision to the well-
known solution of the Coulomb-Schrödinger problem for a
pointlike source with the same Z. In this limit, the main
contribution to the total sum of discrete levels comes from
the vicinity of condensation point ϵn;l → 1, where both
parities reveal the same properties and so can be freely

treated at the same footing. The leading ∼Q2 terms in
bound energies of discrete levels per each parity are given
by the Bohr formula

1 − ϵ�nr;l ¼
Q2

2ðnr þ lþ 1Þ2 ; l → ∞: ð41Þ

Upon summing the bound energies (41) over nr one obtains

X∞
nr¼0

ð1 − ϵ�nr;lÞ ¼
Q2

2
Polygamma½1; lþ 1�

¼ Q2

2

�
1

ðlþ 1Þ þ
1

2ðlþ 1Þ2 þ
1

6ðlþ 1Þ3

þO

�
1

ðlþ 1Þ4
��

: ð42Þ

The next-to-leading ∼Q4 terms in bound energies in this
limit are given by the first relativistic (fine-structure)
correction to (41),

Q4

�
1

2ðlþ 1Þðnr þ lþ 1Þ3 −
3

8ðnr þ lþ 1Þ4
�

ð43Þ

and upon summing over nr yield the terms ∼Q4=ðlþ 1Þ3 in
the sum over discrete levels in EVP;lðZÞ. At the same time,
the correction to Bohr levels (41), caused by the non-
vanishing size of the Coulomb source, equals [for the
external potential (1)]

−
Q2

ðnr þ lþ 1Þ2
�

2QR
nr þ lþ 1

�
2lþ2

×
ðnr þ 2lþ 1Þ!

nr!
ð2lþ 2Þð2lþ 3Þ

ð2lþ 3Þ!2 ; ð44Þ

and for growing l turns out to be negligibly (in fact
exponentially) small, since in this limit the dominating
factor in (44) is 1=ð2lþ 3Þ!2. However, for small or even
moderate l, and especially for the case lþ 1 < Q, the
nonzero size of the Coulomb source plays an essential role
in all the VP effects under consideration.
As a result, the partial VP energy (25) in the large l limit

can be represented as

EVP;lðZÞ ¼ ðlþ 1Þ
�
2

π

Z
∞

0

drV2ðrÞ − Q2

lþ 1

þQ2Polygamma½1; lþ 1� þO

�
Q4

ðlþ 1Þ3
��

:

ð45Þ

Thus, in agreement with similar results in 1þ 1 and 2þ 1
dimensions [7,8,24,29,30], the partial series (24) for EVP

diverges quadratically in the leading OðQ2Þ order and so
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requires regularization and subsequent renormalization,
although each partial EVP;lðZÞ in itself is finite without
any additional manipulations. The degree of divergence of
the partial series (24) is formally the same as in 3þ 1 QED
for the fermionic loop with two external lines. The latter
circumstance shows that by calculation of EVP via a princi-
pally different nonperturbative approach, which does not
reveal any connection with perturbation theory (PT) and
Feynman graphs, we nevertheless meet the same divergence
of the theory, as in PT. Actually, it should be indeed so, since
both approaches deal with the same physical phenomenon
(VP effects caused by the strong Coulomb field) with the
main difference in the methods of calculation. Therefore, in
the present approach, the cancellation of divergent terms
should follow the same rules as in PT, based on regularization
of the fermionic loop with two external lines, which
preserves the physical content of the whole renormalization
procedure and simultaneously provides the mutual agree-
ment between perturbative and nonperturbative approaches
to the calculation of EVP. This conclusion is in complete
agreement with results obtained earlier in Refs. [16,31].
One more but quite general reason is that for Q → 0, but

with fixed RðZÞ, both the total renormalized VP density
and VP energy should coincide with results obtained within
PT by means of (5)–(7). Because of spherical symmetry of
the external field, they both belong to the partial s channel
with l ¼ 0. However, in the general case, the nonrenor-
malized (but already finite) partial VP density ϱVP;0ðrÞ and
VP energy EVP;0 do not reproduce the corresponding

perturbative answers for Q → 0. For Eð1Þ
VP and EVP;0, the

difference is quite transparent, since the perturbative VP
energy originates from the distorted continuum and so has
nothing to do with the discrete levels. To the contrary, EVP;0

contains by construction a nonvanishing OðQ2Þ contribu-
tion from the latter, since for Coulomb-like potentials the
discrete spectrum exists for any infinitesimally small Q.
Thus, in complete analogy with the renormalization of

VP density [7,8,16,24,29–31], we should pass to the
renormalized VP energy by means of relations

Eren
VPðZÞ ¼

X
l¼0

Eren
VP;lðZÞ; ð46Þ

where

Eren
VP;lðZÞ ¼ EVP;lðZÞ þ ζlZ2; ð47Þ

with the renormalization coefficients ζl defined in the
following way:

ζl ¼ lim
Z0→0

�
Eð1Þ
VPðZ0Þδl;0 − EVP;lðZ0Þ

Z2
0

�
R¼RðZÞ

: ð48Þ

The essence of relations (46)–(48) is to remove [for fixed
Z and RðZÞ!] the divergent OðQ2Þ component from the

nonrenormalized partial terms EVP;lðZÞ in the series (24)
and replace them further by renormalized via the fermionic

loop perturbative contribution to VP energy Eð1Þ
VPδl;0. Such

procedure provides simultaneously the convergence of the
regulated this way partial series (46) and the correct limit of
Eren
VPðZÞ for Q → 0 with fixed RðZÞ.
So renormalization via fermionic loop turns out to be a

universal method, which removes the divergencies of the
theory simultaneously in purely perturbative and essentially
nonperturbative approaches to VP. The concrete imple-
mentation of this general method depends on the VP
quantity under consideration. Within the considered
approach, the subtraction proceeds directly on the level
of EVP;lðZÞ by means of (47) and (48), while the renorm-
alization coefficients ζl are determined through the limiting
procedure, in which the effective coupling constant Q0 ¼
Z0α tends to zero, but the shape of the external field is
preserved. So ζl contain a nontrivial dependence on RðZÞ
and hence on the current charge Z of the Coulomb source.
This dependence, however, has nothing to do with the
renormalization procedure presented above, since the latter
deals with the coupling constant Q ¼ Zα, but not with the
shape of the external potential.
Moreover, the complete analogy between renormaliza-

tions of VP density and VP energy implies the validity of
the Schwinger relation [3,4,8] for renormalized quantities

δEren
VP ¼

Z
dr⃗ϱrenVPðr⃗ÞδAext

0 ðr⃗Þ þ δEN; ð49Þ

since EN is responsible only for jumps in the VP energy
caused by discrete levels crossing through the border of the
lower continuum and so is an essentially nonperturbative
quantity, which does not need any renormalization. The
relation (49) can be represented also in the partial form

δEren
VP;l ¼

Z
∞

0

r2dr ϱrenVP;lðrÞδAext
0 ðrÞ þ δEN;l; ð50Þ

from which it follows that the convergence of the partial
series for VP density implies the convergence of the partial
series for VP energy and vice versa. EN;l is always finite
and, moreover, vanishes for l > lmaxðZÞ together with
discrete levels diving and therefore does not influence
the convergence of the partial series.

IV. TOTAL PHASE AND DISCRETE SPECTRUM
FOR THE POTENTIAL (1)

Now—having dealt with the first principles of essentially
nonperturbative evaluation of VP energy by means of the
phase integral method this way—let us turn to the explicit
evaluation of Eren

VPðZÞ for the external potential (1). It would
be pertinent to present the details of this procedure in terms
of separate pairs ðul; qlÞ and ðpl; vlÞ, introduced via general
expansion (18). Although each pair contains states with
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different parity, a more detailed description of solutions of
the DC problem per each parity is here of no use, since the
calculation of Eren

VPðZÞ itself implies the summation over
both parities.
The evaluation of total elastic phase δtotðl; kÞ proceeds as

follows. It suffices to consider only the ðul; qlÞ pair, since
the contribution of the ðpl; vlÞ pair to δtotðl; kÞ can be
achieved via crossing symmetry of the initial DC problem
(20) and (21). First we consider the region lþ 1 > Q; that
means for real ϰl defined in (32). In this case, in the upper
continuum with

ϵðkÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
≥ 1; ð51Þ

the solutions of the DC problem up to a common
normalization factor can be represented in the next form.
For r ≤ RðZÞ,

(
ulðk; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ þ V0 þ 1

p
Jlþ1=2ðξðkÞrÞ=

ffiffiffi
r

p
;

qlðk; rÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ þ V0 − 1

p
Jlþ3=2ðξðkÞrÞ=

ffiffiffi
r

p
;

ð52Þ

with JνðzÞ being the Bessel functions,

ξðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵðkÞ þ V0Þ2 − 1

q
; V0 ¼ Q=R: ð53Þ

For r ≥ RðZÞ the scattering states of the DC problem
should be written in terms of the Kummer Φðb; c; zÞ and
Tricomi Ψðb; c; zÞ or modified Kummer Φ̃ðb; c; zÞ ¼
z1−cΦðb − cþ 1; 2 − c; zÞ functions [32]. The reason is
that due to the Kummer relation Φðb; c; xÞ ¼ exΦðc − b;
c;−xÞ for real ϰl such solutions cannot be represented in
terms of Φðb; c; zÞ and Φ�ðb; c; zÞ. For our purposes, the
modified Kummer function Φ̃ðb; c; zÞ is more preferable
than the Tricomi one due to the reasons of numerical
calculations.
The parameters b and c of the Kummer functions are

defined as

bl ¼ ϰl − iϵðkÞQ=k; cl ¼ 1þ 2ϰl: ð54Þ

Upon introducing the subsidiary phases ξ1 and ξ2,

e−2iξ1 ¼ bl
lþ 1þ iQ=k

; e2iξ2 ¼ bl
lþ 1 − iQ=k

; ð55Þ

and corresponding functions

Φ1ðl; k; rÞ ¼ eiðkrþξ1ÞΦðbl; cl;−2ikrÞ;
Φ2ðl; k; rÞ ¼ eiðkrþξ2−πϰlÞΦ̃ðbl; cl;−2ikrÞ; ð56Þ

the real-valued scattering solutions in the upper continuum
are defined as follows:

(
ulðk; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ þ 1

p
rϰl−1ðRe½Φ1ðl; k; rÞ� þ λþuqðl; kÞIm½Φ2ðl; k; rÞ�Þ;

qlðk; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − 1

p
rϰl−1ð−Im½Φ1ðl; k; rÞ� þ λþuqðl; kÞRe½Φ2ðl; k; rÞ�Þ;

ð57Þ

with λþuqðl; kÞ being the matching coefficient between inner r ≤ RðZÞ and outer r ≥ RðZÞ solutions

λþuqðl; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðϵ − 1Þðϵþ V0 þ 1Þp

Jlþ1=2ðξRÞIm½Φ1� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðϵþ 1Þðϵþ V0 − 1Þp

Jlþ3=2ðξRÞRe½Φ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðϵ − 1Þðϵþ V0 þ 1Þp
Jlþ1=2ðξRÞRe½Φ2� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðϵþ 1Þðϵþ V0 − 1Þp
Jlþ3=2ðξRÞIm½Φ2�

: ð58Þ

On the rhs of (58), ϵ≡ ϵðkÞ ¼þ
ffiffiffiffiffiffiffiffiffiffiffiffi
k2þ 1

p
≥ 1;ξ¼ ξðkÞ;

R¼RðZÞ, while the arguments of functions Φ1 and Φ2

are ðl; k; RðZÞÞ.
The phase shift δþuqðl; kÞ in the upper continuum is

defined in the standard way via asymptotics for r → ∞ and
equals

δþuqðl; kÞ ¼
πl
2
þ ϵðkÞQ

k
ln ð2krÞ þ δ̃þuqðl; kÞ; ð59Þ

where

δ̃þuqðl; kÞ ¼ −
Re½Aðl; kÞ� − λþuqðl; kÞIm½Bðl; kÞ�
Im½Aðl; kÞ� þ λþuqðl; kÞRe½Bðl; kÞ�

; ð60Þ

while the functions Aðl; kÞ and Bðl; kÞ are defined as
follows:

Aðl; kÞ ¼ e−iπϰl=2
Γð1þ 2ϰlÞ

Γðϰl þ iϵðkÞQ=kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1þ iQ=k
ϰl þ iϵðkÞQ=k

s
;

Bðl; kÞ ¼ eiπϰl=2
Γð1 − 2ϰlÞ

Γð−ϰl þ iϵðkÞQ=kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1þ iQ=k
ϰl − iϵðkÞQ=k

s
:

ð61Þ

In the lower continuum, where

ϵðkÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
< −1; ð62Þ
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the solutions are more diverse, since now the whole half-
axis 0 ≤ k ≤ ∞ should be divided in three intervals
0 ≤ k ≤ k1, k1 ≤ k ≤ k2, and k2 ≤ k ≤ ∞, where

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV0 − 1Þ2 − 1

q
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV0 þ 1Þ2 − 1

q
: ð63Þ

Note that in the case under consideration V0 turns out to be
about several dozens or even hundreds, so k1 is always well
defined.
According to this division, the inner solutions of the DC

problem in the lower continuum are defined as follows. For
0 ≤ k ≤ k1,(
ulðk; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ þ V0 þ 1

p
Jlþ1=2ðξðkÞrÞ=

ffiffiffi
r

p
;

qlðk; rÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ þ V0 − 1

p
Jlþ3=2ðξðkÞrÞ=

ffiffiffi
r

p
;

ð64Þ

where ξðkÞ is defined as before in (53), while for the second
interval k1 ≤ k ≤ k2,

(
ulðk; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ þ V0 þ 1

p
Ilþ1=2ðξ̃ðkÞrÞ=

ffiffiffi
r

p
;

qlðk; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijϵðkÞj − V0 þ 1

p
Ilþ3=2ðξ̃ðkÞrÞ=

ffiffiffi
r

p
;

ð65Þ

with IνðzÞ being the Infeld functions and

ξ̃ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵðkÞ þ V0Þ2

q
: ð66Þ

In the third interval k2 ≤ k ≤ ∞,

�
ulðk; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijϵðkÞj − V0 − 1
p

Jlþ1=2ðξðkÞrÞ=
ffiffiffi
r

p
;

qlðk; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijϵðkÞj − V0 þ 1

p
Jlþ3=2ðξðkÞrÞ=

ffiffiffi
r

p
:

ð67Þ

The real-valued scattering solutions in the lower continuum
are

�
ulðk; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijϵðkÞj − 1
p

rϰl−1ðRe½Φ1ðl; k; rÞ� þ λ−uqðl; kÞIm½Φ2ðl; k; rÞ�Þ;
qlðk; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijϵðkÞj þ 1
p

rϰl−1ðIm½Φ1ðl; k; rÞ� − λ−uqðl; kÞRe½Φ2ðl; k; rÞ�Þ;
ð68Þ

while the corresponding matching coefficients contain now triplets λ−i;uqðl; kÞ, i ¼ 1, 2, 3, which belong to three intervals
0 ≤ k ≤ k1; k1 ≤ k ≤ k2, and k2 ≤ k ≤ ∞ and take the following form:

8>>>>>>>>><
>>>>>>>>>:

λ−1;uqðl; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1 − ϵÞðϵþ V0 þ 1Þjp

Jlþ1=2ðξRÞIm½Φ1� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1þ ϵÞðϵþ V0 − 1Þjp

Jlþ3=2ðξRÞRe½Φ1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1 − ϵÞðϵþ V0 þ 1Þjp
Jlþ1=2ðξRÞRe½Φ2� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1þ ϵÞðϵþ V0 − 1Þjp
Jlþ3=2ðξRÞIm½Φ2�

;

λ−2;uqðl; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1 − ϵÞðϵþ V0 þ 1Þjp

Ilþ1=2ðξ̃RÞIm½Φ1� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1þ ϵÞðϵþ V0 − 1Þjp

Ilþ3=2ðξ̃RÞRe½Φ1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1 − ϵÞðϵþ V0 þ 1Þjp
Ilþ1=2ðξ̃RÞRe½Φ2� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1þ ϵÞðϵþ V0 − 1Þjp
Ilþ3=2ðξ̃RÞIm½Φ2�

;

λ−3;uqðl; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1 − ϵÞðϵþ V0 þ 1Þjp

Jlþ1=2ðξRÞIm½Φ1� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1þ ϵÞðϵþ V0 − 1Þjp

Jlþ3=2ðξRÞRe½Φ1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1 − ϵÞðϵþ V0 þ 1Þjp
Jlþ1=2ðξRÞRe½Φ2� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1þ ϵÞðϵþ V0 − 1Þjp
Jlþ3=2ðξRÞIm½Φ2�

:

ð69Þ

On the rhs of (69), ϵ≡ ϵðkÞ < −1; ξ ¼ ξðkÞ; ξ̃ ¼ ξ̃ðkÞ,
and R ¼ RðZÞ, the parameters b and c of Kummer’s
functions are defined in (54), but with negative ϵðkÞ < −1,
while the arguments in the functions Φ1 and Φ2 remain the
same as in (58).
The phase shifts δ−uqðl; kÞ are given by the same

expressions (59)–(61) as for the upper one with two main
differences. First, ϵðkÞ is negative and, second, the match-
ing coefficients are defined via (69) in accordance with
three intervals 0 ≤ k ≤ k1; k1 ≤ k ≤ k2, and k2 ≤ k ≤ ∞.
The calculation of phase shifts for the region lþ 1 < Q,

that means for imaginary ϰl, proceeds as follows. The inner
solutions for r ≤ RðZÞ remain unchanged, while for
r ≥ RðZÞ the scattering states of the DC problem can be
written now in terms of the Kummer Φðb; c; zÞ and
conjugated Kummer Φ�ðb; c; zÞ ones, since for imaginary

ϰl the Kummer relation does not destroy the independence
of solutions built in such a way.
Upon introducing the notation

ϰl ¼ iηl; ð70Þ

where

ηl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − ðlþ 1Þ2

q
; ð71Þ

and the parameters b and c of Kummer’s functions in the
form

bl ¼ iðηl − ϵðkÞQ=kÞ; cl ¼ 1þ 2i ηl; ð72Þ
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the real-valued scattering solution for the ðul; qlÞ pair in the upper continuum is represented as(
ulðk; rÞ ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ þ 1

p
Re½eikðr−RÞðrRÞiηlN�

Rðl; kÞF1ðl; k; rÞ�;
qlðk; rÞ ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − 1

p
Im½eikðr−RÞðrRÞiηlN�

Rðl; kÞF2ðl; k; rÞ�;
ð73Þ

where

F1ðl; k; rÞ ¼ blΦðbl þ 1; cl;−2ikrÞ þ ðlþ 1þ iQ=kÞΦðbl; cl;−2ikrÞ;
F2ðl; k; rÞ ¼ blΦðbl þ 1; cl;−2ikrÞ − ðlþ 1þ iQ=kÞΦðbl; cl;−2ikrÞ; ð74Þ

and

NRðl; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ − 1Þðϵþ V0 þ 1Þ

p
Jlþ1=2ðξRÞF2R þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵþ 1Þðϵþ V0 − 1Þ

p
Jlþ3=2ðξRÞF1R: ð75Þ

On the rhs of (75), ϵ≡ ϵðkÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
≥ 1; ξ ¼ ξðkÞ, and R ¼ RðZÞ with the same set of arguments ðl; k; RðZÞÞ in

functions F1R and F2R.
From (73)–(75) for the phase shift δþuqðl; kÞ, one finds

δþuqðl; kÞ ¼
πl
2
þ ϵðkÞQ

k
ln ð2krÞ þ Arg½Cðl; kÞ�; ð76Þ

where

Cðl; kÞ ¼ i

�
e−πηl=2ÑRðl; kÞ

�
ΓðclÞ
ΓðblÞ

��
þ eπηl=2Ñ�

Rðl; kÞðlþ 1þ iQ=kÞ ΓðclÞ
Γð1þ iðηl þ ϵðkÞQ=kÞÞ

�
; ð77Þ

and

ÑRðl; kÞ ¼ eiðkRþηl ln ð2kRÞÞNRðl; kÞ: ð78Þ

In the lower continuum with ϵðkÞ < −1, we again deal with three separate intervals 0 ≤ k ≤ k1, k1 ≤ k ≤ k2, and
k2 ≤ k ≤ ∞. The general answer for scattering solutions in this case reads(

ulðk; rÞ ¼ 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijϵðkÞj − 1
p

Im½eikðr−RÞðrRÞiηl N�
Rðl; kÞF1ðl; k; rÞ�;

qlðk; rÞ ¼ 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijϵðkÞj þ 1
p

Re½eikðr−RÞðrRÞiηl N�
Rðl; kÞF2ðl; k; rÞ�;

ð79Þ

where

NRðl; kÞ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1þ ϵÞðϵþ V0 − 1Þjp
Jlþ3=2ðξRÞF1R þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1 − ϵÞðϵþ V0 þ 1Þjp
Jlþ1=2ðξRÞF2R; 0 ≤ k ≤ k1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1þ ϵÞðϵþ V0 − 1Þjp

Ilþ3=2ðξ̃RÞF1R − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1 − ϵÞðϵþ V0 þ 1Þjp

Ilþ1=2ðξ̃RÞF2R; k1 ≤ k ≤ k2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1þ ϵÞðϵþ V0 − 1Þjp
Jlþ3=2ðξRÞF1R − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð1 − ϵÞðϵþ V0 þ 1Þjp
Jlþ1=2ðξRÞF2R; k2 ≤ k ≤ ∞:

ð80Þ

From (79) and (80), for the phase shift one finds

δ−uqðl; kÞ ¼
πl
2
þ ϵðkÞQ

k
ln ð2krÞ þ Arg½Dðl; kÞ�; ð81Þ

where

Dðl; kÞ ¼ eπηl=2Ñ�
Rðl; kÞðlþ 1þ iQ=kÞ ΓðclÞ

Γð1þ iðηl þ ϵðkÞQ=kÞÞ − e−πηl=2ÑRðl; kÞ
�
ΓðclÞ
ΓðblÞ

��
: ð82Þ
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Finally, the total elastic phase δtotðl; kÞ is obtained by
summing up all the four separate phases for ðul; qlÞ and
ðpl; vlÞ pairs

δtotðl; kÞ ¼ δþuqðl; kÞ þ δ−uqðl; kÞ þ δþpvðl; kÞ þ δ−pvðl; kÞ;
ð83Þ

where δ�pvðl; kÞ are obtained from δ�uqðl; kÞ via the crossing-
symmetry prescription. δtotðl; kÞ automatically includes con-
tributions from both continua and both parities and reveals
the following general properties. First, each separate phase in
(83) is determined from the asymptotics of scattering
solutions only up to the additional term πs. Therefore, the
term 2πl in δtotðl; kÞ can be freely replaced by any other 2πs
and so should be chosen bymeans of additional grounds, the
main of which is δtotðl; k → ∞Þ → 0. Second, the Coulomb
logarithms �Qðjϵj=kÞ lnð2krÞ, which enter each separate
phase, in the total phase cancel each other. However, after
canceling Coulomb logarithms, the separate phase shifts
contain still the singularities for both k → 0 and k → ∞. In
particular, for k → ∞ in the asymptotics of separate phases
there remain the singular terms ∓ Qjϵj lnð2kRÞ=k, but they
also cancel mutually in the total phase just as in the 2þ 1-
dimensional case [24,30]. As a result, δtotðl; k → ∞Þ shows
up for any ϰl the following vanishing asymptotics1:

δtotðl; k → ∞Þ ¼ 1

ðkRÞ3
�
4

3
Q2ððlþ 1Þ2 − 3R2Þ

− ðlþ 1ÞQ sinð2QÞ cosð2kR − πlÞ
�

þO

�
1

ðkRÞ4
�
: ð84Þ

As it was already stated above in Sec. III, the leading
Oð1=ðkRÞ3Þ nonoscillating term of δtotðl; k → ∞Þ coincides
exactly with the leading-orderWKB asymptotics (36), while
the oscillating ones in δtotðl; k → ∞Þ are responsible for
diffraction on a sphere of the radius R. It would be also
worthwhile to notice that the explicit asymptotics (84)
confirms that the total phase is an even function of Q, but
not of Z, since the dependence on Z includes also the
function RðZÞ.
The IR asymptotics of separate phases contain also the

singularities of the form �Qð1 − lnðQ=kÞÞ=k. These sin-
gularities again cancel each other in δtotðl; k → 0Þ, and so
the total phase for k → 0 possesses a finite limit, which for
large l ≫ Q coincides with the WKB approximation and
reproduces the answer for a pointlike source, but in a
general case turns out to be quite different, especially for
imaginary ϰl. The explicit expressions for δtotðl; k → 0Þ
depend strongly on whether ϰl is real or imaginary. In the
case of real ϰl by means of the subsidiary functions

fl ¼
J2ϰlð

ffiffiffiffiffiffiffiffiffiffi
8QR

p Þ½z0j1 − ðlþ 1þ ϰlÞj2� þ j2
ffiffiffiffiffiffiffiffiffiffi
2QR

p
J1þ2ϰlð

ffiffiffiffiffiffiffiffiffiffi
8QR

p Þ
J−2ϰlð

ffiffiffiffiffiffiffiffiffiffi
8QR

p Þ½z0j1 − ðlþ 1 − ϰlÞj2� þ j2
ffiffiffiffiffiffiffiffiffiffi
2QR

p
J1−2ϰlð

ffiffiffiffiffiffiffiffiffiffi
8QR

p Þ ;

gl ¼
J2ϰlð

ffiffiffiffiffiffiffiffiffiffi
8QR

p Þ½ðlþ 1 − ϰlÞj1 − z0j2� þ j1
ffiffiffiffiffiffiffiffiffiffi
2QR

p
J1þ2ϰlð

ffiffiffiffiffiffiffiffiffiffi
8QR

p Þ
J−2ϰlð

ffiffiffiffiffiffiffiffiffiffi
8QR

p Þ½ðlþ 1þ ϰlÞj1 − z0j2� þ j1
ffiffiffiffiffiffiffiffiffiffi
2QR

p
J1−2ϰlð

ffiffiffiffiffiffiffiffiffiffi
8QR

p Þ ; ð85Þ

where

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2QR

p
; j1 ¼ Jlþ1=2ðz0Þ; j2 ¼ Jlþ3=2ðz0Þ; ð86Þ

the answer for δtotðl; k → 0Þ reads

tan ðδtotðl; k → 0ÞÞ ¼ tanfArg½ð1 − e2πiϰlflÞð1 − e2πiϰlglÞ� − 2πϰlg: ð87Þ
At the same time, for imaginary ϰl ¼ iηl by means of two subsidiary phases,

φl ¼−Arg
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þV0=2
p

j12QJ2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 

þ

ffiffiffiffiffiffiffiffi
2V0

p
j2
h ffiffiffiffiffiffiffiffiffiffi

2QR
p

J1þ2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 

−
	
lþ1þ iηl



J2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 
io
;

χl ¼−Arg
n ffiffiffiffiffiffiffiffi

2V0

p
j1
h ffiffiffiffiffiffiffiffiffiffi

2QR
p

J1þ2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 

þ
	
lþ1− iηl



J2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 
i
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þV0=2

p
j22QJ2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 
o
; ð88Þ

instead of (87) one finds

1Here there is shown only the leading order of the asymptotical expansion of δtotðl; k → ∞Þ in inverse powers of kR. At the same time,
by means of computer algebra tools, it is possible to derive in explicit form as many orders of this expansion as needed. It is quite
important, since for concrete calculation of the phase integral such explicit terms of asymptotics are very useful, because it allows one to
perform the integration over large k in the phase integral with given accuracy purely analytically.
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tan ðδtotðl; k → 0ÞÞ
¼ tanfArg½ðeπηlþiφl − e−πηl−iφlÞðeπηlþiχl − e−πηl−iχlÞ�g:

ð89Þ

The peculiar feature in the behavior of δtotðl; kÞ is the
appearance of (positronic) elastic resonances upon diving
of each subsequent discrete level into the lower continuum.
Here it should be noted that the additional πs in the separate
phase shifts, mentioned above, are in principle unavoid-
able, since this arbitrariness comes from the possibility to
alter the common factor in the corresponding wave func-
tions. So one needs to apply a special procedure, which
provides the means to distinguish between such artificial
jumps in the phases by π of purely mathematical origin in
the inverse tan function, and the physical ones, which are
caused by resonances and for extremely narrow low-energy
resonances look just like the same jumps by π. Removing
the first ones, coming from the inverse tan function, we
provide the continuity of the phases, while the latter contain
an important physical information. Hence, no matter how
narrow they might be, they must necessarily be preserved in
the phase function, and so this procedure should be
performed with a very high level of accuracy.
In Fig. 2, the pertinent set of total phase curves

for Z ¼ 300 is shown. For such Z only the four first levels
from the s channel have already dived into the lower con-
tinuum, namely, 1s1=2ðZcr;1≃173.6Þ;2p1=2ðZcr;2≃188.5Þ ,
2s1=2ðZcr;3 ≃ 244.3Þ, and 3p1=2ðZcr;4 ≃ 270.5Þ.2 So for
Z ¼ 300 it is only the s channel, where δtotðl; kÞ undergoes
corresponding resonant jumps by π. It should be remarked,
however, that eachZcr;i given above corresponds to the case of
an external Coulomb source with charge Z ¼ Zcr;i and radius
Ri ¼ RðZcr;iÞ. Hence, this is not exactly the case under
consideration with Z ¼ 300 and RðZ ¼ 300Þ fixed; rather
it is a qualitative picture of what happens with the first four
lowest s levels in this case. They are absent in the discrete
spectrum and show up as positronic resonances, the rough
disposition of which can be understood as a result of diving
of corresponding levels at Zcr;i. However, their exact
positions on the k axis can be found only via thorough
restoration of the form of δtotð0; kÞ.
In particular, the two first low-energy narrow jumps in

Fig. 2(a) correspond to resonances that are caused by diving
of 2s1=2 and 3p1=2, which happens quite close to Z ¼ 300.
At the same time, the jumps caused by diving of 1s1=2 and
2p1=2 have been already gradually smoothed and almost
merged together; hence they look like one big 2π jump,

which is already significantly shifted to the region of
larger k. In the other channels with l ≥ 1, there are no
diving levels for such Z and so δtotðl; kÞ in these channels
look like a decreasing function, whose behavior roughly
resembles the one of the WKB phase up to an oscillat-
ing tail.
In Fig. 3 the behavior of total phases in pertinent channels

is presented forZ ¼ 600. For suchZ, diving of discrete levels
occurs already up to l ¼ 3. The dived levels naturally group
into pairs containing states of different parity. For l ¼ 0 these
are f1s1=2; 2p1=2g;…; f5s1=2; 6p1=2g and the last unpaired
6s1=2 with corresponding Zcr ≃ 576.4. For l ¼ 1 it is
the set f2p3=2; 3d3=2g;…; f5p3=2; 6d3=2g with the last
unpaired 6p3=2ðZcr ≃ 581.2Þ, while for l ¼ 2 one has
f3d5=2; 4f5=2g;…; f5p3=2; 6f5=2g with the last 6f5=2ðZcr≃
564.5Þ. Diving stops at l ¼ 3 with the pair f4f7=2; 5g7=2g ,
corresponding to critical charges ≃578.6 and ≃582.7. The
meaning of Zcr;i in this case is the same as for Z ¼ 300. The
behavior of total phases in these channels differs only by
the number of resonant jumps from the s channel for
Z ¼ 300, therefore in the appearance of curves. For the s
channel, the total number of dived levels exceeds 11, and
δtotð0; kÞ undergoes the corresponding number of jumps by
π, which at small k practically overlap eachother.At the same
time, for l ¼ 2 and l ¼ 3 all the jumps are quite clearly
pronounced, transparent, and lie in one-to-one correspon-
dencewith the sequence of dived levels. In the other channels
with l ≥ 4 there are no dived levels and so the behavior of
δtotðl; kÞ is quite similar to those from Z ¼ 300 with l ≥ 1.
In the discrete spectrum, it also suffices to consider only

the ðul; qlÞ pair, since the contribution of the ðpl; vlÞ pair
can be again achieved via crossing symmetry of the initial
DC problem. For the external potential (1), the discrete
levels with jϵj < 1 are found via equations written in terms
of the Tricomi function Ψðb; c; zÞ, which are valid for any
ϰl. By means of denotations,

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
; bl ¼ ϰl − ϵQ=γ; cl ¼ 1þ 2ϰl;

Ψ ¼ Ψðbl; cl; 2γRÞ; Ψþ ¼ Ψðbl þ 1; cl; 2γRÞ; ð90Þ

and

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵþ V0Þ2 − 1

q
; ð91Þ

the equation for ðul; qlÞ levels reads

ðlþ 1 −Q=γÞΨþ
Ψ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ϵÞðϵþ V0 − 1Þp

Jlþ3=2ðξRÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ϵÞðϵþ V0 þ 1Þp

Jlþ1=2ðξRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ϵÞðϵþ V0 − 1Þp
Jlþ3=2ðξRÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ϵÞðϵþ V0 þ 1Þp
Jlþ1=2ðξRÞ

: ð92Þ

2Such Zcr;i are determined from (96) with RðZÞ defined as in (101).
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However, for imaginary ϰl ¼ i ηl, another form of equations turns out to be more pertinent for concrete calculations, since it
deals with the Kummer function instead of the Tricomi one

Im½XlblΦþ�
Im½XlΦ� ¼ ðlþ 1þQ=γÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ϵÞðϵþ V0 þ 1Þp
Jlþ1=2ðξRÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ϵÞðϵþ V0 − 1Þp
Jlþ3=2ðξRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ϵÞðϵþ V0 þ 1Þp

Jlþ1=2ðξRÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ϵÞðϵþ V0 − 1Þp

Jlþ3=2ðξRÞ
; ð93Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 2. δtotðl; kÞ for Z ¼ 300 and (a),(b) l ¼ 0; (c),(d) l ¼ 1; (e) l ¼ 2; (f) l ¼ 3.
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(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 3. δtotðl; kÞ for Z ¼ 600 and (a) l ¼ 0, (b) l ¼ 1, (c) l ¼ 2, (d) l ¼ 3, (e) l ¼ 4, (f) l ¼ 5, (g) l ¼ 6.

P. GRASHIN and K. SVESHNIKOV PHYS. REV. D 106, 013003 (2022)

013003-14



where

bl ¼ iηl − ϵQ=γ; cl ¼ 1þ 2iηl;

Φ ¼ Φðbl; cl; 2γRÞ; Φþ ¼ Φðbl þ 1; cl; 2γRÞ; ð94Þ
and

Xl ¼ eiηl lnð2γRÞ
ΓðblÞ
ΓðclÞ

; ð95Þ

with the same γ and ξ.
Discrete levels on the threshold of the lower continuum

with ϵ ¼ −1 are directly connected with the corresponding
critical charges Zcr;i of the external source and so are the
subject of another procedure, which deals specially with
this case. For details see, e.g., Ref. [4]. The result is that
such levels appear only for ϰl ¼ iηl, while the critical
charges for both parities (�) are found in this case from
equations

2z1K2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 

J� ∓

h ffiffiffiffiffiffiffiffiffiffi
2QR

p 	
K1þ2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 

þ K1−2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 


� 2ðlþ 1ÞK2iηl

	 ffiffiffiffiffiffiffiffiffiffi
8QR

p 
i
J∓ ¼ 0; ð96Þ

where KνðzÞ is the McDonald function, ηl is defined
in (71), and

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 2QR

p
;

Jþ ¼ Jlþ3=2ðz1Þ; J− ¼ Jlþ1=2ðz1Þ: ð97Þ

The meaning of Eqs. (96) and (97) is twofold. First, for the
given charge Z and R ¼ RðZÞ by means of these equations,
the existence of levels with ϵ ¼ −1 can be checked. The
answer is positive if and only if the current Z coincides with
one of Zcr;i, otherwise there are no levels at the lower
threshold. Second, by solving these equations with respect to
Z and R ¼ RðZÞ, one finds the complete set of critical
charges Zcr;i.
The asymptotical behavior of the discrete spectrum for

both ðul; qlÞ and ðpl; vlÞ pairs in the vicinity of the
condensation point ϵn;l → 1 reproduces the Coulomb-
Schrödinger problem for a pointlike source with the same
Z including OðQ4Þ fine-structure correction and OðQ2lþ4Þ
correction coming from the nonvanishing size of the
Coulomb source

1 − ϵnr;l ¼
Q2

2ðnr þ lþ 1Þ2 þQ4

�
1

2ðlþ 1Þðnr þ lþ 1Þ3 −
3

8ðnr þ lþ 1Þ4
�

−
Q2

ðnr þ lþ 1Þ2
�

2QR
nr þ lþ 1

�
2lþ2 ðnr þ 2lþ 1Þ!

nr!
ð2lþ 2Þð2lþ 3Þ

ð2lþ 3Þ!2 ; nr → ∞: ð98Þ

For any l in this asymptotics, the terms with Bohr levels
and fine-structure correction are exactly summable over nr
starting from certain n0 via

X∞
nr¼n0

1

ðnr þ aÞ2 ¼ ψ ð1Þðn0 þ aÞ;

X∞
nr¼n0

1

ðnr þ aÞ3 ¼ −
1

2
ψ ð2Þðn0 þ aÞ;

X∞
nr¼n0

1

ðnr þ aÞ4 ¼
1

6
ψ ð3Þðn0 þ aÞ; ð99Þ

where ψ ðnÞðzÞ ¼ dnψðzÞ=dzn and ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ. The
correction from the nonzero size of the source in (98) is also
exactly summable over nr ≥ n0 in terms of ψ ðnÞðn0 þ aÞ,
but the general answer for arbitrary l is very cumbersome.
Thus, for any l, the global strategy of summation over the

discrete spectrum in order to find its contribution to the
partial EVP;lðZÞ turns out to be the following. Summation is

performed separately for ðul; qlÞ and ðpl; vlÞ pairs. In the
first step for each pair, one finds the set of lowest levels
with nr < n0ðlÞ, where n0ðlÞ is the subject of the condition
that for nr ≥ n0ðlÞ the levels coincide with the asymptotics
(98) with a given accuracy. Since n0ðlÞ is always finite,
summation over this part of the discrete spectrum poses no
problems. In the next step, the remaining infinite part of the
spectrum is summed up by means of (98) and (99).
Proceeding this way, we find with given accuracy the sum

SðlÞ ¼
X
�

X
−1≤ϵ�n;l<1

ð1 − ϵ�n;lÞ; ð100Þ

which is the discrete spectrum contribution to the partial VP
energy (25). It should be noted, however, that for small or
even moderate l and especially for the case lþ 1 < Q with
ϰl ¼ iηl accounting for nonzero size of the Coulomb
source in this calculation takes care, since the more
current Z and RðZÞ, the more n0ðlÞ. In actual calculations
up to Z ≃ 1000 the value of n0ðlÞ exceeds thousands or
even dozens of thousands, and since all the levels with
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nr < n0ðlÞ must be found by solving the corresponding
equations numerically, it takes some definite time.3

V. RENORMALIZED VP ENERGY FOR
THE COULOMB SOURCE (1)

For greater clarity of results, we restrict this presentation
to the case of charged sphere (1) on the interval 0 < Z <
600 with the numerical coefficient in Eq. (4) chosen as4

RðZÞ ¼ 1.228935ð2.5ZÞ1=3 fm: ð101Þ

On this interval of Z the main contribution comes from the
partial channels with l ¼ 0;…; 3, in which a nonzero
number of discrete levels has already reached the lower
continuum. In Fig. 4 there are shown the specific features of
partial phase integrals, partial sums over discrete levels, and
renormalized partial VP energies.
As it follows from Fig. 4(a), phase integrals increase

monotonically with growing Z and are always positive. The
clearly seen bending, which is in fact nothing else but the
negative jump in the derivative of the curve, for each
channel starts when the first discrete level in this channel
crosses the border of the lower continuum. The origin of
this effect is the sharp jump by π in δtotðl; kÞ due to the
resonance just born. In each l channel, such effect is the
mostly pronounced for the first level diving, which takes
place at Zcr;1 ≃ 173.6 for l ¼ 0, at Zcr;5 ≃ 307.4 for l ¼ 1, at
Zcr;15 ≃ 442.7 for l ¼ 2, and at Zcr;26 ≃ 578.6 for l ¼ 3.
The subsequent levels diving leads also to jumps in the

derivative of IðlÞ, but they turn out to be much less
pronounced, since with increasing Zcr there shows up
the effect of “catalyst poisoning”—just below the threshold
of the lower continuum for Z ¼ Zcr þ ΔZ and ΔZ ≪ Zcr,
the resonance broadening and its rate of further diving into
the lower continuum are exponentially slower in agreement
with the well-known result [33], according to which the
resonance width just under the threshold behaves like
∼ exp ð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zcr=ΔZ
p Þ. This effect leads to that for each

subsequent resonance the region of the phase jump by π
with increasing Z grows exponentially slower, and the
derivative of the phase integral changes in the same way.
If not for this effect, then every next level upon reaching
the lower continuum would lead to the same negative jump
in the derivative as the first one, and the phase integral
curve in the overcritical region would have a continuously
increasing negative curvature with all the ensuing

(a)

(b)

(c)

FIG. 4. ðlþ1ÞIðlÞ;ðlþ1ÞSðlÞ;Eren
VP;lðZÞ, and Itot¼

P
3
l¼0ðlþ1Þ×

IðlÞ;Stot¼
P

4
l¼3ðlþ1ÞSðlÞ;Eren

VP;totðZÞ¼
P

3
l¼0E

ren
VP;lðZÞ on the

interval 0 < Z < 600.

3There exists another procedure of “quasiexact” summation
over the discrete spectrum in such DC problems, which takes
account of the nonzero size of the Coulomb source in an
essentially nonperturbative way and therefore works much more
rapidly. Within this approach, one needs to calculate exactly via
Eqs. (92) and (93) only a few numbers, not more than 100 for
reasonable accuracies lying in the interval 10−16–10−20, of the
lowest levels lying below 0.99. Afterward the summation for the
rest is performed in a closed form by means of (98) and (99), but
already without the nonzero size correction. However, this
method requires a thorough analysis of asymptotics of confluent
hypergeometric functions in certain nontrivial regimes, combined
with a number of additional original tricks, and so will be
presented separately.

4With such a choice for a charged ball with Z ¼ 170, the
lowest 1s1=2 level lies precisely at ϵ1s ¼ −0.99999. Furthermore,
it is quite close to 1.23, which is the most commonly used
coefficient in heavy nuclei physics.
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consequences for the rate of decrease of Eren
VPðZÞ. At the

same time, before the first level diving the curves of IðlÞ in
all the partial channels reveal an almost quadratical growth.
For the last channel with l ¼ 3 this growth takes place
during almost the whole interval 0 < Z < 600, since the
first level diving in this channel occurs at Z ≃ 578.6, which
is very close to Z ¼ 600 and simultaneously large enough
already to be subject to the Zeldovich-Popov effect dis-
cussed just above.
The behavior of the total bound energy of discrete levels

per each partial channel SðlÞ is shown in Fig. 4(b). SðlÞ are
discontinuous functions with jumps emerging each time,
when the charge of the source reaches the subsequent
critical value and the corresponding discrete level dives into
the lower continuum. At this moment the bound energy
loses exactly two units of mc2, which in the final answer
must be multiplied by the degeneracy factor lþ 1. Because
of this factor the jumps in the curves of SðlÞ are more
pronounced with growing l. On the intervals between two
neighboring Zcr the bound energy is always positive and
increases monotonically, since there grow the bound
energies of all the discrete levels, while on the intervals
between Z ¼ 0 up to first level diving their growth is
almost quadratic.
The partial VP energies Eren

VP;lðZÞ are shown in Fig. 4(c).
Note that the behavior of the s channel is different from the
others, since in this channel the structure of the renorm-
alization coefficient ζ0 differs from those with l ≥ 1 by the

perturbative (Uehling) contribution to VP energy Eð1Þ
VPðZÞ. It

is indeed the latter term in the total VP energy that is
responsible for an almost quadratic growth with Z of VP
energy on the interval 0 < Z < Zcr;1. The global change in
the behavior of Eren

VP;0ðZÞ from the perturbative quadratic
growth for Z ≪ Zcr;1, where the dominant contribution

comes from Eð1Þ
VPðZÞ, to the regime of decrease into the

negative range with increasing Z beyond Zcr;1 is shown
below in Sec. VI in Figs. 5 and 6. At the same time, in the

channels with l ≥ 1 the quadratic perturbative contribution
is absent. Therefore, upon renormalization (46)–(48),
which removes the quadratic component in IðlÞ and
SðlÞ, just after first level diving Eren

VP;lðZÞ reveal with
increasing Z a well-pronounced decrease into the negative
range.
To specify the dependence of partial VP energies Eren

VP;lðZÞ
on l below there are given Tables I and II with the required
information. From these tables it is clearly seen that the main
contribution to the total VP energy for a given Z is produced
indeed by those partial channels, where a nonzero number of
discrete levels has already reached the lower continuum. At
the same time, the number of dived levels and their
contribution toVP energy per partial channel do not correlate
precisely. It is only the case of Z ¼ 300, when all the dived
levels belong to the s channel, and indeed this channel
dominates in Eren

VPðZÞ. However, already for Z ¼ 600 the
situation is different and with further growth of Z this
discrepancy becomes more and more pronounced. Note also
that vanishing of Eren

VP;lðZÞ in the channels with l large enough
to prevent levels diving proceeds even faster than predicted
by WKB analysis performed in Sec. III.
The final answers for the total VP energy achieved this

way are

Eren
VPð300Þ ¼ −23.3; Eren

VPð600Þ ¼ −1102.7: ð102Þ

For such Z the decrease of the total VP energy into the
negative range proceeds very fast, but with further growth
of Z the decay rate becomes smaller. In particular,

Eren
VPð1000Þ ¼ −8398.6; ð103Þ

while the reasonable estimate of asymptotical behavior of
Eren
VPðZÞ as a function of Z, achieved from the interval

1000 < Z < 3000, reads

Eren
VPðZÞ ∼ −Z4=RðZÞ: ð104Þ

TABLE II. Dependence of partial VP energies on l for Z ¼ 600 with and without multiplicity factor lþ 1.

l 0 1 2 3 4 5

Eren
VP;lðZÞ −277.969408 −483.912426 −302.902746 −37.850795 −0.035715 −0.014984

Eren
VP;lðZÞ=ðlþ 1Þ −277.969408 −241.956213 −100.967582 −9.462698 −0.007143 −0.002497

Number of dived levels with
multiplicity factor 2jþ 1

22 36 36 16 0 0

TABLE I. Dependence of partial VP energies on l for Z ¼ 300 with and without multiplicity factor lþ 1.

l 0 1 2 3

Eren
VP;lðZÞ −23.107040 −0.172432 −0.028663 −0.007796

Eren
VP;lðZÞ=ðlþ 1Þ −23.107040 −0.086216 −0.009554 −0.001949

Number of dived levels with multiplicity factor 2jþ 1 8 0 0 0
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It should be specially noted that the results (102)–(104)
for the total VP energy are by no means something
extraordinary. First, they correspond to the essentially
nonperturbative region in effective coupling constant Zα

in contrast to the perturbative one, where Eð1Þ
VP is

strictly positive. Furthermore, the values of Eren
VPðZÞ in

Eqs. (102) and (103) should not be misleading, since the
corresponding classical electrostatic self-energies EclðZÞ ¼
Z2α=2RðZÞ are much larger, namely, 11361,36069, and
84505, while matching between Eren

VPðZÞ and EclðZÞ takes
place only at Z ≃ 3000, which is far beyond any reasonable
charges of the Coulomb source.
Now let us consider the main differences in VP energy

between the models of a uniformly charged sphere (1) and
ball (2). Since they differ only by the shape of the potential
inside the source, the general approach to evaluate the VP
effects for the ball configuration, based on the techniques of
the phase integral method and renormalization via fer-
mionic loop, remains unchanged. The main difference is
the structure of the inner solutions of the DC problem. In
the case of the sphere, the latter can be found in analytical
form, but for the ball such option is absent. In the last case,
the most straightforward approach is to find numerically for
given Z the inner solutions via direct solving of the
corresponding DE. However, this turns out to be time
consuming, since the inner solutions in the ball case are
rapidly oscillating functions akin to Bessel-type ones, but
with more complicated behavior, the calculation of which
with the given accuracy takes time. However, for the
potential (2) it is possible to apply another method, based
on the approximation of the inner potential via a steplike
function. Such approximation works quite well and already
for a steplike function consisting of 100 < N < 1000
segments yields the answer, which coincides with high
precision with the exact numerical solution. The main
advantage here is that the existing soft- and hardware
nowadays is able to solve the appearing recurrences
directly in analytical form and so avoids the problems
with numerical solving of the DE. The details of such
slicing of the ball are given in Appendix B.
Proceeding this way in the ball case, one obtains for

δtotðl; kÞ an analytical expression, which in explicit form
looks quite cumbersome, but poses no problems for
numerical evaluation in any point ðl; kÞ. Moreover, it can
be easily verified by means of the WKB analysis, presented
in Sec. III, that the leading-order asymptotics for k → ∞
of the total phase for the ball remains Oð1=ðkRÞ3Þ. IR
asymptotics of δtotðl; kÞ remains also finite, but now instead
of compact explicit answers (87) and (89) for the sphere, it
is given by quite lengthy expressions, which nevertheless
allow for an effective numerical evaluation. So calculation
of phase integrals (39) for the ball configuration by means
of the steplike approximation can be implemented for any l
without any serious loss of time and accuracy compared to
the sphere.

Such slicing provides quite effective dealing with dis-
crete levels in the ball case as well (for details see
Appendix B). Further steps in order to find the total bound
states contribution (100) to the partial VP energy (25) for
the ball are the same as described above for the sphere.5 The
general behavior of Eren

VPðZÞ obtained this way for the ball
configuration looks quite similar to that for the sphere with
two main differences. The first one is that all the negative
jumps in Eren

VPðZÞ, caused by discrete levels diving into the
lower continuum, are slightly shifted to the left. The second
is that the general magnitude of VP energy in the ball case
is approximately ð6=5Þ × VP energy for the sphere.
Remarkably enough, the same result (14) holds for the

perturbative contributions Eð1Þ
VPðZÞ to VP energy under

condition (12).

VI. SPONTANEOUS POSITRON EMISSION

Now let us consider more thoroughly the interval
10 ≤ Z ≤ 240, when only the two first levels 1s1=2 and
2p1=2 with opposite parity (�) have already dived into the
lower continuum at Zcr;1 and Zcr;2. This interval is of
special interest, since indeed here lies the, nowadays, at
least in principle, attainable region in heavy-ion collisions.
The plots of fixed parity Eren

VP;�ðZÞ for the charged
sphere and ball source configurations are presented in
Figs. 5 and 6.
The general approach (see Refs. [1–4] and citations

therein), based on the framework [34], predicts that after
discrete level diving into the lower continuum it transforms
into a metastable state with lifetime ∼10−19 sec; afterward
there should occur the spontaneous positron emission
accompanied with vacuum shells formation. Such sponta-
neous emission of positrons should be provided solely byVP
effects without any other channels of energy transfer. The
corresponding positron spectra have been calculated first in
Refs. [35,36] and were explored quite recently with more
details in Refs. [9,11]. These spectra demonstrate, in par-
ticular, that the emission of low-energy positrons should be
strongly suppressed by the repulsive interaction with the
nuclei, while at high energy the spectra fall off exponentially.
In terms of Eren

VPðZÞ, the energy balance suggests the
following picture of this process. First, due to spherical
symmetry of the source, all the angular quantum numbers
and parity of the dived level are preserved by the metastable
state and further by positrons created. The rest mass of
positrons is created just after levels diving via negative
jumps in VP energy at corresponding Zcr;i, which are
exactly equal to 2 ×mc2 in accordance with two possible
spin projections. However, to create a real positron

5The procedure of quasiexact summation over the discrete
spectrum in such DC problems, which takes into account the
nonzero size of the Coulomb source in an essentially non-
perturbative way, can be extended for the ball case too.
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scattering state it is not enough due to repulsion between
positrons and the Coulomb source. To supply the emerging
vacuum positrons with corresponding potential energy, an
additional decrease of Eren

VPðZÞ in each parity channel is

required. So we are led to the following energy balance
conditions for spontaneous positrons emission after level
diving at Zcr;i for a given Z > Zcr;i. In the even 1s
case,

(a) (b)

FIG. 6. a) Eren
VP;þðZÞ, b) Eren

VP;−ðZÞ on the interval 10 ≤ Z ≤ 240 (ball).

(a) (b)

(c)

FIG. 5. a) Eren
VP;þðZÞ, b) Eren

VP;−ðZÞ, c) Eren
VPðZÞon the interval 10 ≤ Z ≤ 240 (sphere).
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Eren
VP;þðZcr;1 þ 0Þ − Eren

VP;þðZÞ ¼ 2ϵþkinðZÞ; ð105Þ

while in the odd 2p case,

Eren
VP;−ðZcr;2 þ 0Þ − Eren

VP;−ðZÞ ¼ 2ϵ−kinðZÞ; ð106Þ

where ϵ�kinðZÞ is the positron kinetic energy at the peak of
resonance and it is assumed that for each parity positrons
are created in pairs with opposite spin projections.
Eren
VP;�ðZcr;i þ 0Þ in (105) and (106) signifies that the rest

mass of positrons 2 ×mc2 is already created by the
negative jump in Eren

VPðZÞ, which takes place exactly at Zcr;i.
It should be specially noted, that the relations (105) and

(106) do not in any way mean that for a given Z > Zcr;i
only positrons with such fixed energy can be emitted.
Actually, they define the arguments of energetic δ functions
in the well-known general quantum-mechanical expression
for the metastable state decay rate

γ ¼ 2π

ℏ

X
f≠i

jTfij2δðEf − EiÞ: ð107Þ

In the present case, the in-state is the metastable hole in
the lower continuum with definite parity, created after
corresponding discrete level diving, with energy Ei ¼
Eren
VP;�ðZcr þ 0Þ − Eren

VP;�ðZÞ > 0, while the final state con-
tains two emitted positrons, whence Ef ¼ 2ϵ�kin. In agree-
ment with Refs. [9,11], in the considered range of Z the
spontaneous positrons are limited to the energy 0 < ϵkin <
800 (seeFig. 7),while the relatednatural resonancewidths do
not exceed a few keV [37]. Note that, in the present
spherically symmetric case, the widths of resonances can
be found directly from the jumps byπ in δtotðl; kÞ, considered
in Sec. IV (see Figs. 2 and 3).
Now let us explore with more qualitative arguments the

conditions for the most reliable vacuum positron detection

on the nuclear conversion pairs background. To a large
extent this issue is motivated by the nontrivial role of lepton
number in such processes, since it is possible that either the
lepton number conservation must be broken or the positron
emission prohibited. Recent papers [9,11], aimed at the
detailed study of spontaneous emission in slow heavy-ion
collisions, have shown that one could expect a clear signal
of transition to the supercritical mode for bare Cm nuclei
with the highest Z ¼ 96, whose colliding trajectories are
close to head-on ones. These results look quite promising,
but one should keep in mind that the slow head-on
collisions of charged particles are highly unstable with
respect to deviations in the transverse plane. Meanwhile,
the case under consideration in Refs. [9,11] implies the
scenario of colliding beams with total number of particles
not less than 106; hence the deviations of colliding
trajectories due to interparticle interactions in the beam
are inevitable. So one should expect that the most part of
such slow collisions reduces to the peripheral ones, which
cannot produce a clear signal distinguished from the
nuclear conversion.
Another point of view is based on the treatment of

spontaneous emission as a specific lepton pair creation, in
which instead of a real electron there appears a vacuum
shell with corresponding VP densities of charge and
(presumably) of the lepton number. General properties of
pair production [5,18] predict the natural scales for such
processes as ∼mc2 in energy and ∼ℏ=mc in spatial extent.
Therefore, it is useful to introduce the parameter d via the
relation6

(a) (b)

FIG. 7. ϵkinðZÞ with definite parity on the pertinent intervals of Z for sphere and ball source configurations and (a) 1s channel (even),
(b) 2p channel (odd).

6Such d can be interpreted as the distance from the center of
the Coulomb source and the conditional point of the vacuum
positron creation, although the uncertainty relation inhibits any
kind of spatial localization in the scattering state with fixed
energy. However, such treatment of the parameter d turns out to
be quite pertinent and, additionally, can be reliably justified at
least in the quasiclassical approximation.
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ϵkinðZÞ ¼ Zα=d: ð108Þ

From the arguments presented above, there follows that the
reasonable choice for d should be approximately one
electron Compton length λC (¼ 1 in the units accepted).
Moreover, λC is a reliable estimate from above for the
average radius of vacuum shells, created together with the
positron emission, in the considered range of Z (≃0.9 for 1s
shell and ≃0.6 for 2p shell for the charged sphere).
At the same time, performed calculations show that the

spontaneous emission is quite sensitive to d. In particular,
upon inverting Eqs. (105), (106), and (108) into the
functions Z�

�ðdÞ, shown in Tables III and IV and Fig. 8,
one finds that for d ≃ 1 the emission of positrons cannot
occur earlier than Z exceeds Z�

1sð1Þ ≃ 217; Z�
2pð1Þ ≃ 227

(sphere), Z�
1sð1Þ ≃ 211; Z�

2pð1Þ ≃ 215 (ball) [to compare
with Zcr;1¼173.6;Zcr;2¼188.5 (sphere), Zcr;1¼170;Zcr;2¼
183.1 (ball)]. Note also that Z�

�ðdÞ increase very rapidly
for d < λC. In particular, already for d ¼ 2=3 one
obtains Z�

1sð2=3Þ ≃ 233; Z�
2pð2=3Þ ≃ 244 (sphere) and

Z�
1sð2=3Þ ≃ 224; Z�

2pð2=3Þ ≃ 229 (ball). Such Z� lie far
beyond the interval 170 ≤ Z ≤ 192, which is nowadays
the main region of theoretical and experimental activity

in heavy-ion collisions aimed at the study of such VP
effects [9,11–14].
It would be worth noting that, if allowed by the lepton

number, spontaneous positrons can by no means be emitted
also just beyond the corresponding diving point. In particu-
lar, for d ¼ 137 (one Bohr radius) one obtains Z�

1sð137Þ≃
174.0;Z�

2pð137Þ≃188.8 (sphere) andZ�
1sð137Þ ≃ 170.7;

Z�
2pð137Þ ≃ 183.3 (ball), which lie quite close to the

corresponding Zcr;i. However, in this case they appear in
scattering states localized far enough from the Coulomb
source with very small ϵkin ∼ 0.01. Therefore, the creation of
such positrons should be strongly suppressed and so cannot
significantly alter the nuclear conversion pairs background.
To the contrary, vacuum positrons created with d ≃ 1 would
reveal a high peak, which allows for an unambiguous
detection, but the charge of the Coulomb source should
be taken in this case to be not less than Z� ≃ 210. The
negative result of early investigations at GSI [38] can be at
least partially explained by the last circumstance.

VII. CONCLUDING REMARKS

To conclude, it should be mentioned first that, like the
one- and two-dimensional models of supercriticality in
QED systems [7,8,24,27,29,30,39], in the present case the
evaluation of VP energy by means of the renormalization
procedure (46)–(48) proceeds similar to, but actually
without any references to, VP density and vacuum shells
formation. So the renormalization via fermionic loop turns
out to be a universal tool, which removes the divergence of
the theory both in the purely perturbative and in the
essentially nonperturbative regimes of vacuum polarization
by the external electromagnetic field. Moreover, such
approach can be easily extended to the study of VP effects
in more complicated problems, e.g., with two Coulomb
centers or including an axial magnetic field, when the
spherical symmetry is lost, and so there remains only jz as a
conserved angular quantum number.
The substantial decrease of Eren

VPðZÞ in the overcritical
region ∼ − Z4=R can be reliably justified via the properties
of partial terms in the series (46). Each Eren

VP;lðZÞ in (46) has

TABLE III. Z�
�ðdÞ for 2=3 ≤ d ≤ 137 (sphere).

d 2=3 1 2 3 4 5 7 10 20 50 80 100 137

Z�
1sðdÞ 233.0 216.8 199.4 192.7 189.0 186.5 183.5 181.1 177.8 175.6 174.9 174.8 174.0

Z�
2pðdÞ 243.4 227.1 209.6 203.3 200.0 198.0 195.6 193.7 191.4 189.9 189.6 189.0 188.8

TABLE IV. Z�
�ðdÞ for 2=3 ≤ d ≤ 137 (ball).

d 2=3 1 2 3 4 5 7 10 20 50 80 100 137

Z�
1sðdÞ 224.0 210.3 194.8 188.6 185.1 182.8 180.0 177.6 174.3 171.9 171.2 171.0 170.7

Z�
2pðdÞ 228.4 215.1 200.9 195.6 192.8 191.0 188.9 187.2 185.2 183.9 183.6 183.4 183.3

FIG. 8. Z�
�ðdÞ for 1 ≤ d ≤ 100.
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the structure, which by omitting the degeneracy factor
2ðlþ 1Þ is quite similar to Eren

VPðZÞ in 1þ 1 dimensions
[7,8]. The direct consequence is that, in the overcritical
region, the negative contribution from the renormalization
term ζlZ2 turns out to be the dominant one in Eren

VP;lðZÞ,
since in this region the growth rate of the nonrenormalized
partial VP energies (25), as in 1þ 1 and 2þ 1 dimensions,
is estimated as ∼Zν; 1 < ν < 2. Such estimate is clearly
seen in the plots shown in Fig. 4, where both the phase
integral and the sum over discrete levels reveal an almost
quadratic growth before first level diving, but afterward
their curves undergo either bending or negative jumps,
which noticeably change the slope of the curves. So, in
essence, the decrease of Eren

VP in the overcritical region is
governed by the nonperturbative changes in the VP density
for Z > Zcr;1 due to discrete levels diving into the lower
continuum. Furthermore, the total number of partial
channels, in which the levels have already sunk into the
lower continuum, grows approximately linearly with
increasing Z. At the same time, indeed these channels
yield the main contribution to VP energy (see Tables I
and II). So the rate of decrease of the total VP energy into
the negative range acquires an additional factor ∼Z2, which
in turn leads to the final answer Eren

VPðZÞ ∼ −Z4=R in the
overcritical region. Moreover, estimating the self-energy
contribution to the radiative part of QED effects due to
virtual photon exchange near the lower continuum shows
that it is just a perturbative correction to essentially non-
linear VP effects caused by fermionic loop [10], and so
does not alter the results presented above.
Lepton number also poses serious questions for both

theory and experiment dealing with Coulomb supercriti-
cality, since the emitted positrons must carry away the
lepton number equal to ð−1Þ× their total number. Hence,
the corresponding amount of positive lepton numbers must
be transferred to VP density, concentrated in vacuum shells.
In this case, instead of integer lepton number of real
particles, there should appear the lepton number VP
density. Otherwise, either the lepton number conservation
in such processes must be broken or the positron emission
prohibited. So any reliable answer concerning the sponta-
neous positron emission—either positive or negative—is
important for our understanding of the nature of this
number, since so far leptons show up as pointlike particles
with no indications on existence of any kind intrinsic
structure. Therefore, the reasonable conditions, under

which the vacuum positron emission can be unambiguously
detected on the nuclear conversion pair background, should
play an exceptional role in slow ion collisions, aimed at the
search of such events [40].
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APPENDIX A: IðlÞ FOR l ≫ Q

For these purposes we replace first δtotðl; kÞ by the total
WKB phase (31). In the limit (26) the difference between
δtotðl; kÞ and δWKB

tot ðl; kÞ shows up only in oscillations of the
exact phase for large k, caused by diffraction on a sphere of
the radius R, but they are smoothed upon integration over
dk, and so this difference can be freely ignored.
Proceeding further, we rewrite IðlÞ as

IðlÞ ¼ 1

π

Z∞
1

dϵ δWKB
tot ðl; ϵÞ ðA1Þ

and introduce in (A1) an intermediate UV cutoff Λ. The
latter is necessary to provide permutations in the sequence
of integrations. As a result, upon introducing the turning
point

r0 ¼
ðlþ 1Þ2 −Q2

2Q
≫ R; ðA2Þ

and the subsidiary function

Wðl; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðlþ 1Þ2=r2

q
; ðA3Þ

the expression (A1) can be represented as

IðlÞ ¼ 2

π
lim
Λ→∞

��Zr0
0

dr
ZΛ

VðrÞþWðl;rÞ≥1

dϵþ
Z∞
r0

dr
ZΛ
1

dϵ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ − VðrÞÞ2 −W2ðl; rÞ

q

þ
Z∞
0

dr
ZΛ

−VðrÞþWðl;rÞ≥1

dϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵþ VðrÞÞ2 −W2ðl; rÞ

q
− 2

Z∞
0

dr
ZΛ
1

dϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −W2ðl; rÞ

q �
; ðA4Þ
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where the first term originates from δþðl; kÞ, the second one comes from δ−ðl; kÞ, and the last one comes from δ0ðl; kÞ.
Thereafter, we replace ϵ − VðrÞ → tWðl; rÞ in the first term, ϵþ VðrÞ → tWðl; rÞ in the second, and ϵ → tWðl; rÞ in the last
one, which gives

IðlÞ ¼ 2

π
lim
Λ→∞

8>><
>>:
2
64Z

r0

0

drW2ðl; rÞ
ZΛ−VðrÞWðl;rÞ

1

dtþ
Z∞
r0

drW2ðl; rÞ
ZΛ−VðrÞWðl;rÞ

1−VðrÞ
Wðl;rÞ

dt

3
75 ffiffiffiffiffiffiffiffiffiffiffiffi

t2 − 1
p

þ
Z∞
0

dr W2ðl; rÞ
ZΛþVðrÞ
Wðl;rÞ

1

dt
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p
− 2

Z∞
0

dr W2ðl; rÞ
ZΛ=Wðl;rÞ

1

dt
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p
9>>=
>>;: ðA5Þ

Introducing further the subsidiary function

YðxÞ ¼ 1

2

h
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
− ln

	
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p 
i
; ðA6Þ

we recast the expression (A5) in the form

IðlÞ ¼ 2

π
lim
Λ→∞

�Z∞
0

drW2ðl; rÞ
�
Y

�
Λþ VðrÞ
Wðl; rÞ

�
þ Y

�
Λ − VðrÞ
Wðl; rÞ

�
− 2Y

�
Λ

Wðl; rÞ
��

−
Z

∞

r0

drW2ðl; rÞY
�
1 − VðrÞ
Wðl; rÞ

��
: ðA7Þ

Since by construction there holds jVðrÞj ≪ Λ for all
0 ≤ r ≤ ∞, we can freely expand the square bracket in
(A7) in the power series with the expansion parameter
VðrÞ=Wðl; rÞ in the vicinity of the point Λ=Wðl; rÞ.
Thereafter, by noticing that for Λ → ∞ there survives in
this expansion only the term with second derivative
Y 00ðΛÞ ¼ Λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 1

p
→ 1, one obtains

IðlÞ ¼ I0 þ ΔIðlÞ; ðA8Þ

where

I0 ¼
2

π

Z∞
0

drV2ðrÞ; ðA9Þ

and

ΔIðlÞ ¼ −
2

π

Z∞
r0

drW2ðl; rÞY
�
1 − VðrÞ
Wðl; rÞ

�
: ðA10Þ

The most important feature for the present analysis of I0 is
that for any extended Coulomb-like source the integral
on the rhs of (A9) converges and is an OðQ2Þ quantity.

The concrete value of I0 depends on the profile of the
Coulomb source chosen (sphere, ball, or spherical layer),
but there is no need to dive into such details here.
The remaining integral (A10) can be easily calculated

analytically and so the leading-order WKB answer for IðlÞ
subject to condition (26) reads

IðlÞ¼ I0−2ðlþ1−ϰlÞ

¼ 2

π

Z∞
0

drV2ðrÞ− Q2

lþ1
−

Q4

4ðlþ1Þ3þO

�
Q6

ðlþ1Þ5
�
:

ðA11Þ

The next-to-leading orders of the WKB approximation for
the total phase lead to OðQ4=ðlþ 1Þ3Þ corrections [25].
Hence, the large l asymptotics of the partial phase integral
reads

IðlÞ → 2

π

Z∞
0

drV2ðrÞ − Q2

lþ 1
þO

�
Q4

ðlþ 1Þ3
�
; l → ∞:

ðA12Þ
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APPENDIX B: SLICING THE BALL
CONFIGURATION

The simplest grid for such approximation of VðrÞ inside
the ball, that means for 0 ≤ r ≤ R, can be chosen in the
form

Ri ¼
ffiffiffiffi
i
N

r
R; Vi ¼ −

3Q
2R

þ i
2N

Q
R
; ðB1Þ

where 1 ≤ i ≤ N is the numerator of separate segments with
constant values of the potential Vi. Note that the grid is
uniform in the step between subsequent Vi,

ΔV ¼ Vi − Vi−1 ¼
1

2N
Q
R
; ðB2Þ

but not uniform in the length of subsequent segments in the
radial variable. This is made specially to optimize the
approximation of parabolic behavior ofVðrÞ on this interval.
Within such a grid, the solutionof theDCproblem for the ball
case proceeds as follows.As in the case of the sphere,we start
with assembling the total phase δtotðl; kÞ from ðul; qlÞ and
ðpl; vlÞ components using the crossing symmetry to restore
the contribution from the ðpl; vlÞ pair via the ðul; qlÞ pair. For
the latter, in the upper continuum with ϵðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
≥ 1

upon introducing

ξiðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵðkÞ − ViÞ2 − 1

q
; ðB3Þ

the corresponding solutions on the ith radial segment
(i ¼ 1;…; N) with Ri−1 ≤ r ≤ Ri should be written as

(
ulðk; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − Vi þ 1

p ½Jlþ1=2ðξiðkÞrÞ þ σiðl; kÞYlþ1=2ðξiðkÞrÞ�=
ffiffiffi
r

p
;

qlðk; rÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − Vi − 1

p ½Jlþ3=2ðξiðkÞrÞ þ σiðl; kÞYlþ3=2ðξiðkÞrÞ�=
ffiffiffi
r

p
;

ðB4Þ

with YνðzÞ being the Neumann function.
The coefficients σi in Eqs. (B4) are determined from the following recurrence relations:

σ1ðl; kÞ ¼ 0; ðB5Þ

σiðl; kÞ ¼ −U1ðiÞ=U2ðiÞ; 2 ≤ i ≤ N; ðB6Þ

where

8>>>>>><
>>>>>>:

U1ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − Vi−1 þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − Vi − 1

p ½Jlþ1=2ðξi−1ðkÞRi−1Þ þ σi−1ðl; kÞYlþ1=2ðξi−1ðkÞRi−1Þ�Jlþ3=2ðξiðkÞRi−1Þ
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵðkÞ − Vi−1 − 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵðkÞ − Vi þ 1
p ½Jlþ1=2ðξi−1ðkÞRi−1Þ þ σi−1ðl; kÞYlþ1=2ðξi−1ðkÞRi−1Þ�Jlþ1=2ðξiðkÞRi−1Þ;

U2ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − Vi−1 þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − Vi − 1

p ½Jlþ1=2ðξi−1ðkÞRi−1Þ þ σi−1ðl; kÞYlþ1=2ðξi−1ðkÞRi−1Þ�Ylþ3=2ðξiðkÞRi−1Þ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − Vi−1 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ − Vi þ 1

p ½Jlþ1=2ðξi−1ðkÞRi−1Þ þ σi−1ðl; kÞYlþ1=2ðξi−1ðkÞRi−1Þ�Ylþ1=2ðξiðkÞRi−1Þ:

ðB7Þ

Upon solving the recurrences (B5)–(B7), one finds the set of coefficients σi and so the solutions for the ðul; qlÞ pair in each
segment Ri−1 ≤ r ≤ Ri of the grid, which are sewn together by continuity at points Ri. As a result, for the matching point
R ¼ RðZÞ between inner and outer solutions of the DC problem, one obtains from the inside

(
ulðk; RÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ þ V0 þ 1

p ½Jlþ1=2ðξRÞ þ σNðl; kÞYlþ1=2ðξRÞ�=
ffiffiffiffi
R

p
;

qlðk; RÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðkÞ þ V0 − 1

p ½Jlþ3=2ðξRÞ þ σNðl; kÞYlþ3=2ðξRÞ�=
ffiffiffiffi
R

p
;

ðB8Þ

where as in Sec. IV ξ ¼ ξðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵðkÞ þ V0Þ2 − 1

p
; V0 ¼ Q=R.

At the same time, the outer solutions remain the same as for the sphere. Therefore, by means of the expression (B8),
stitching the inner and outer solutions of the DC problem for the charged ball in the upper continuum proceeds very simply
by means of the following replacement in the matching coefficients λþuqðl; kÞ and NRðl; kÞ, defined in (58) and (75) for the
case of the charged sphere:
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�
Jlþ1=2ðξRÞ → Jlþ1=2ðξRÞ þ σNðl; kÞYlþ1=2ðξRÞ;
Jlþ3=2ðξRÞ → Jlþ3=2ðξRÞ þ σNðl; kÞYlþ3=2ðξRÞ:

ðB9Þ

Thereafter, the phase shifts δþuqðl; kÞ for the ball are
obtained from those of the sphere via replacing the
matching coefficients λþuqðl; kÞ and NRðl; kÞ by the new
ones, determined by the substitutions (B9).
In the lower continuum with ϵðkÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
< −1 for

each segment Ri−1 ≤ r ≤ Ri of the grid, the half-axis 0 ≤
k ≤ ∞ should be again divided in three intervals 0 ≤ k ≤
k1ðiÞ; k1ðiÞ ≤ k ≤ k2ðiÞ and k2ðiÞ ≤ k ≤ ∞, where

k1ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ViÞ2 − 1

q
< k2ðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ViÞ2 − 1

q
;

1 ≤ i ≤ N; ðB10Þ

while k1ðNÞ and k2ðNÞ coincide with k1 and k2, defined
earlier in Eq. (63). Upon introducing

ξ̃iðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵðkÞ − ViÞ2

q
; ðB11Þ

the solutions for the ith segment Ri−1 ≤ r ≤ Ri in this case
are written as follows:

ulðk; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjϵðkÞj þ Vi − 1j

p
8>><
>>:

Jlþ1=2ðξiðkÞrÞ þ σi1ðl; kÞYlþ1=2ðξiðkÞrÞ; 0 ≤ k ≤ k1ðiÞ;
Ilþ1=2ðξ̃iðkÞrÞ þ σi2ðl; kÞÞKlþ1=2ðξ̃iðkÞrÞ; k1ðiÞ ≤ k ≤ k2ðiÞ;
Jlþ1=2ðξiðkÞrÞ þ σi3ðl; kÞYlþ1=2ðξiðkÞrÞ; k2ðiÞ ≤ k ≤ ∞;

ðB12Þ

qlðk; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjϵðkÞj þ Vi þ 1j

p
8>><
>>:

−ðJlþ3=2ðξiðkÞrÞ þ σi1ðl; kÞYlþ3=2ðξiðkÞrÞÞ; 0 ≤ k ≤ k1ðiÞ;
Ilþ3=2ðξ̃iðkÞrÞ − σi2ðl; kÞKlþ3=2ðξ̃iðkÞrÞ; k1ðiÞ ≤ k ≤ k2ðiÞ;
Jlþ3=2ðξiðkÞrÞ þ σi3ðl; kÞYlþ3=2ðξiðkÞrÞ; k2ðiÞ ≤ k ≤ ∞:

ðB13Þ

Stitching the solutions (B12) and (B13) separately at
points Ri; i ¼ 1;…; N − 1, one obtains the recurrence
relations for the coefficients σijðl; kÞ; j ¼ 1, 2, 3, which
are solved with initial conditions

σ1jðl; kÞ ¼ 0; j ¼ 1; 2; 3: ðB14Þ

Afterward, the phase shifts δ−uqðl; kÞ for the ball are obtained
from those for the sphere by the same procedure of replacing
the matching coefficients λ−uqðl; kÞ and NRðl; kÞ by the new
ones, determined through the set of substitutions, similar to
(B9). The main difference is that this procedure should be
now implemented separately for each of three intervals
0 ≤ k ≤ k1ðNÞ; k1ðNÞ ≤ k ≤ k2ðNÞ, and k2ðNÞ ≤ k ≤ ∞.
The discrete spectrum for the charged ball configuration

is found from the corresponding equations for the sphere
(92) and (93) with the replacement (B9), where instead of
ϵðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
≥ 1 in all the expressions, including the

recurrences (B5)–(B7), one should insert ϵ, which is subject
to condition jϵj < 1. Proceeding further this way, for the
levels with ϵ ¼ −1 and so for the corresponding critical
charges one obtains the equations similar to Eqs. (96) and
(97), where instead of J� defined in (97) one should insert
now the combinations

J� þ γNðlÞY�; ðB15Þ

where

Y− ¼ Ylþ1=2ðz1Þ; Yþ ¼ Ylþ3=2ðz1Þ; ðB16Þ

z1 is defined in (97), while γNðlÞ are found from the
recurrences (B5)–(B7) with the replacement ϵðkÞ → −1.
Applying such procedure to the search for critical

charges in the ball configuration, one finds for the grid
with N ¼ 1000 segments the results, which coincide with
those obtained via direct numerical solution of DE in all the
characters given below. In particular, with the same relation
(101) for RðZÞ for the lowest 1s1=2 and 2p1=2 levels, one
finds Zcr;1 ≃ 170.0048 and Zcr;2 ≃ 183.0756, correspond-
ingly. Compared to the case of the sphere with Zcr;1 ≃
173.613 and Zcr;2 ≃ 188.5497, in the ball case the diving
points reveal a small shift to the left. Actually, the last
circumstance is a common feature of all the dived levels in
the ball case, but with each subsequent diving point it
becomes less and less pronounced.
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