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We propose UV complete (partially) composite Higgs models with compositeness scale up to the Planck
scale assisted by a novel mechanism. This mechanism is based on softly breaking a global Z2 symmetry by
technically natural small vacuum misalignment, dynamically triggering the electroweak symmetry
breaking and Standard Model fermion mass generation. This mechanism can be present in various
models based on vacuum misalignment. For concreteness, we demonstrate it in a minimal partially
composite two-Higgs boson scheme, where the Higgs boson is a mixture of a composite and an elementary
state, transforming odd under a Z2 symmetry. For this concrete model example, all dimensionful
fundamental parameters are approximately Oð1018Þ GeV. We study the vacuum stability of this model by
investigating the renormalization group running of the quartic coupling of the Higgs boson. Furthermore,
the parameter space can already be searched by gravitational waves from a confinement-induced phase
transition. Finally, the mass and mixing of the neutrinos may be naturally generated via loops of a second
Higgs doublet transforming even under the Z2 symmetry, which may be challenged by lattice calculations
and a more accurate measurement of the top mass.
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I. INTRODUCTION

Fundamental strongly coupled gauge Yukawa models
with a strongly interacting fermion sector were proposed in
Ref. [1] for electroweak symmetry breaking (EWSB) and
Standard Model (SM) fermion mass generation. The
motivation was to achieve dynamical EWSB and to
alleviate the SM naturalness problem. A challenging aspect
in this framework is, however, the fermion mass generation,
where various ideas have been proposed to address this, for
example, with the following approaches:

(i) extended technicolor (ETC) [2],
(ii) partial compositeness (PC) [3],
(iii) fundamental partial compositeness (FPC) [4,5],
(iv) partially composite Higgs (PCH) [6,7].

However, these fermion mass generation approaches may
suffer from problems due to, for example, reintroduction of
new naturalness problems, generation of dangerous flavor
changing neutral currents (FCNCs), or instability of the
Higgs vacuum. In the following, we will discuss these types

of issues for the different approaches before we present a
novel mechanism alleviating these problems.
For the two former fermion mass generation approaches

(the ETC and PC approaches), the SM fermions couple to
the strong sector arising via higher-dimension operators:
for example, bilinear ETC-type and linear PC operators of
the SM fermions of the form ffΨΨ and fΨΨΨ, respec-
tively. Here the fields f and Ψ represent, respectively, one
of the SM fermions and the new strongly interacting
fermions (hyperfermions). Those effective couplings may
arise from the exchange of heavy scalar multiplets or heavy
vectors at different “flavor” scales Λf corresponding to the
SM fermions f. For the ETC approach [2], those operators
are responsible for generating the SM-fermion masses mf

and Higgs-Yukawa couplings yf typically as follows [8]:

mf ¼ yf
vEWffiffiffi
2

p ∼ gfLgfR

�
ΛHC

Λf

�
2

vEW; ð1Þ

where vEW ≈ 246 GeV is the EW vacuum expectation
value (VEV), gfL=R are the couplings between the left-
and right-handed SM fermions, respectively, and their
corresponding heavy scalars or vectors, and ΛHC is the
compositeness scale of the composite dynamics by a new
strong hypercolor (HC) gauge group GHC. However, the
main problem in the ETC approach is the generation of
dangerous FCNCs, since the flavor scale for the top quark
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must be small enough to generate the top mass. However, in
the old ETC models, it was assumed that the large top mass
would be generated by the presence of an infrared con-
formal phase [9] relying on the property that the strong
sector enters a “walking” phase [10] above the compos-
iteness scale. Assuming a new strong coupling conformal
from the flavor scale of the top quark Λt, down to ΛHC, the
top mass renormalized at Λt is modified by [8]

mtðΛtÞ ≃mtðΛHCÞ
�

Λt

ΛHC

�
−γm

; ð2Þ

where γm is the anomalous mass dimension of the fermion
bilinear, which is nonperturbatively determined. From the
unitarity bounds of scaling dimensions of these operators,
we have γm ≥ −2 [11]. The walking dynamics can thus lift
the fermion mass and suppress the FCNCs by increasing Λt

due to the fact that the FCNC terms are suppressed by∼Λ−2
t

[8]. However, according to Ref. [12], the anomalous mass
dimension can be a maximum of γm ≈ −2 to achieve the
observed top mass, which is very close to the minimum
value regarding the unitarity bound. It is, therefore, difficult
to obtain the observed top mass with ETC-type operators
without generating a severe amount of FCNCs.
An alternative fermion mass generation approach revived

in the holographic model is the PC approach [3], where the
top quark features a linear coupling to the strong sector of
the form fΨΨΨ. This approach helps to avoid FCNCs and
generate a large enough top mass due to the relaxed
unitarity bounds of the anomalous dimensions of operators
consisting of three hyperfermions, γm ≥ −3. Therefore, we
need −2≳ γm ≳ −3 [12] in this scenario to generate the
observed top mass. This enhancement from large anoma-
lous dimensions of the fermionic operators allows us to
push the flavor scale high enough without suppressing the
SM-fermion mass operators. The first realistic attempt that
provides a UV completion of CH models was proposed in
Refs. [13,14], where the SM-fermion masses are generated
based on a PC mechanism. In this work, the Techni-Pati-
Salam CH model is presented, based on a renormalizable
gauge theory SUð8ÞPS ⊗ SUð2ÞL ⊗ SUð2ÞR. This gauge
group spontaneously breaks in several steps down to
GHC ⊗ GSM with the new strong gauge group GHC ¼
Spð4ÞHC and the SM gauge group GSM, resulting in
different heavy gauge bosons and scalars. However, the
realization of this framework turns out to be highly non-
trivial in practice due to the theoretical and phenomeno-
logical requirements. In the following, the main motivation
will, therefore, be to construct a more simple UV com-
pletion, which is easier to realize. Before considering such
model examples, we consider the latter two fermion mass
generation approaches that do not include effective oper-
ators, namely, the FPC and PCH approaches.
For the FPC approach [4,5], the fermion masses are

generated via fundamental Yukawa couplings of the form

fΨS, involving scalars S charged under the new strong
gauge interactions, GHC. Unfortunately, the FPC models
are not free from hierarchy problems, since the new
strongly interacting scalars (hyperscalars) need to achieve
their mass from new Higgs-like mechanisms. Regarding
Ref. [5], a fermion mass generated by this approach is
roughly given by mf ∼ ðΛHC=MSfÞ2vEW, where MS is the
mass of the hyperscalar Sf corresponding to the SM-
fermion mass mf. Therefore, the top mass arises from
the Yukawa coupling with the lightest hyperscalar, requir-
ing a mass which is only a few orders of magnitude larger
than the compositeness scale. Thus, these models can
maximally alleviate the SM naturalness problem by a
few orders of magnitude. However, this naturalness prob-
lem can be further alleviated by pushing the compositeness
scale beyond the TeV scope, allowing larger MSf without
suppressing the top mass, but this procedure induces a new
unnatural hierarchy between the compositeness and EW
scale. In this paper, we thus suggest a novel mechanism
where this new hierarchy can be technically natural
explained by softly breaking a global Z2 symmetry of
the new strong interactions. Moreover, implementation of
this mechanism in models with ETC-type and PC oper-
ators, even without a walking phase, can enable a much
larger ΛHC in Eq. (1) in a technically natural way, resulting
in suppression of the FCNCs and easier construction of a
UV complete theory.
Finally, we consider the PCH approach [6,7,15] gen-

erating the fermion masses in terms of fundamental
Yukawa interactions of the forms ΨΨΦ and f̄fH with
H ∈ Φ, whereΦ is an “elementary” scalar multiplet. In this
framework, the Higgs doublet is a mixture of a composite
doublet and the elementary SUð2ÞL doublet H. Via the
Yukawa interactions of the form ΨΨΦ, the VEV from the
vacuum misalignment in the composite sector can be
transferred to the neutral CP-even component of the
elementary doublet H, providing fermion masses via
SM-like Yukawa couplings of the form f̄fH. However,
the renormalization group (RG) running analysis per-
formed in Ref. [16] shows that these models suffer from
a low vacuum instability scale. Supposing stability of the
vacuum in these models up to a minimum of the compos-
iteness scale, the mass parameter of the scalar multiplet Φ
can only be pushed to values of a few orders of magnitude
larger than the SM one. Therefore, these models can only
provide a weak alleviation of the SM naturalness problem.
Similarly, for this model type, the SM naturalness problem
can be alleviated by a large compositeness scale based on
the novel mechanism presented here.
Meanwhile, we have learned that a large compositeness

scale can alleviate the issues of the various fermion mass
approaches, which can be technically natural due to a novel
mechanism. Realization of this novel mechanism can be
achieved in models based on vacuum misalignment with an
associated Z2 symmetry, providing a minimum of one

MARTIN ROSENLYST PHYS. REV. D 106, 013002 (2022)

013002-2



Higgs doublet that is odd under the Z2 symmetry. By
vacuum aligning in the direction of the neutral CP-even
component of this doublet with a small angle θ resulting in
a large compositeness scale, the globalZ2 symmetry is very
weakly broken. According to ’t Hooft’s naturalness prin-
ciple [1], this small angle is technically natural due to the
fact that the Z2 symmetry is restored for a vanishing angle.
Although this is technically natural, then it is important to
note that no dynamical rationale for the smallness of the
vacuum misalignment angle θ is offered. In this paper, the
Higgs boson will arise as a pseudo-Nambu-Goldstone
boson (PNGB) from a spontaneously broken global sym-
metry. The geneology of Higgs bosons as PNGBs includes
“composite Higgs” (CH) bosons [17], PCH bosons
[6,7,15,16], “little Higgs” bosons [18,19], “holographic
extra dimensions” [20,21], and “twin Higgs” bosons [22].
This dynamics may also be realized in “elementary
Goldstone Higgs models” [23] containing only elementary
scalars. In such a model, we need to add at least 26 real
scalars1 beyond the SM compared to only six Weyl
fermions strongly interacting under a new gauge group
in the following model example. Furthermore, there are
fewer parameters in the model example presented here. We
leave the study of this class of models to future work. For
concreteness, throughout this work, we consider this
mechanism in the (P)CH framework, where the small
vacuum misalignment angle results in a compositeness
scale up to the Planck scale, leading to potentially a
complete alleviation of the SM naturalness problem,
suppression of FCNCs, and stabilization of the vacuum.
The paper is organized as follows: In Sec. II, we show

the road to UV complete (P)CH models assisted by the
novel mechanism. In Sec. III, we demonstrate this mecha-
nism in a concrete UV complete PCH model, predicting the
Higgs boson as a partially composite particle. In Sec. IV,
we study the vacuum stability of this concrete model. In
Sec. V, we search the parameter space of this model by
gravitational waves from a confinement-induced phase
transition. In Sec. VI, we investigate how neutrino masses
may be loop induced in this model. Finally, in Sec. VIII, we
give our conclusions.

II. THE ROAD TO UV COMPLETE
(P)CH MODELS

We presently focus on CHmodels with vacuummisalign-
ment based on an underlying gauge description of hyper-
fermions. Different chiral symmetry breaking patterns in

these CHmodels are discussed in Refs. [24,25], and we note
the following minimal cosets with a Higgs candidate and
custodial symmetry: SU(4)/Sp(4) [26], SUð5Þ=SOð5Þ [27],
SUð6Þ=Spð6Þ [28], SUð6Þ=SOð6Þ [29], and SUð4Þ ×
SUð4Þ=SUð4Þ [30]. A Z2 symmetry is present in the three
latter cases [28,29,31]. For concreteness, we consider, there-
fore, the minimal composite Higgs model with one Z2-odd
composite Higgs doublet, which is the model example with
the coset SUð6Þ=Spð6Þ [28] consisting of two SUð2ÞL
doublets and two singlets of Weyl hyperfermions. With this
setup, it is technically natural to have a small misalignment in
the direction of the neutral CP-even component of the Z2-
odd composite Higgs doublet by balancing precisely the
contributions to theHiggs potential from the top loops, gauge
loops, and the explicit masses of the hyperfermions. By
assuming that the compositeness scale is set to the Planck
scaleΛHC ∼ 4πf ¼ mPlanck, the vacuummisalignment angle
is θ ≈ 2.5 × 10−16 according to the expression of the EW
VEV vEW ¼ fsθ, where f is the GB decay constant of the
composite sector. So far, this model example completely
ameliorates the SM naturalness problem. However, we need
to specify a UV complete theory responsible for generating
the SM-fermion masses without introducing new problems.
In this paper, we employ the PCH fermion mass

generation approach [6,7,15,16] to generate the SM-fer-
mion masses. We leave the specifics of possible UV
complete theories with the other fermion mass generation
approaches for future work. Instead of adding effective
operators with ETC and PC or several hypercolored scalars
with FPC approaches, we consider the simplest UV
completion of this SUð6Þ=Spð6Þ CH model, where we
keep the SUð2ÞL elementary Higgs doublet H in the SM.
Therefore, we only need to add six extra Weyl fermions
strongly interacting under a new strong gauge group GHC,
which may be the minimal SUð2ÞHC gauge group. Different
from the SM, we assume that H is odd under the Z2

symmetry of the composite sector, leading to that the Higgs
boson arises as a mixture between the Z2-odd composite
PNGB from the spontaneously global symmetry breaking
SUð6Þ → Spð6Þ and the elementary weak doublet H.
Furthermore, via new Yukawa interactions between the
strongly interacting hyperfermions and H, the VEV gen-
erated by the vacuum misalignment in the composite sector
can be transferred to the neutral CP-even component of H,
leading to a VEV v of it. Based on that, the SM fermions
can achieve their masses via ordinary Yukawa couplings to
H. On the other hand, the EW gauge bosons obtain masses
from both the VEVof the elementary Higgs doublet and the
vacuum misalignment in the composite sector such that the
EW scale is set by

v2EW ¼ v2 þ f2 sin2 θ; ð3Þ

where θ (π=2 ≤ θ ≤ π) parametrizes the vacuum misalign-
ment. At sin θ ¼ 0 (θ ¼ π), the EW and Z2 symmetries are

1There exist 14 PNGBs in the SUð6Þ=Spð6Þ coset (Πi with
i ¼ 1;…; 14), which is the minimal coset where the mechanism
presented here can be realized. Regarding the scalar matrix in
Eq. (14) in Ref. [23], we need the scalars σ, Θ, Πi, and Π̃i (i.e., 30
scalars in total) to realize the mechanism in an elementary
Goldstone Higgs model, where four of them will go to the
Higgs doublet.

TECHNICALLY NATURAL HIGGS BOSON FROM PLANCK SCALE PHYS. REV. D 106, 013002 (2022)

013002-3



unbroken, while at sin θ ¼ 1 (θ ¼ π=2) the condensate is
purely SUð2ÞL and the Z2 symmetry is broken (this limit is
commonly referred to as bosonic technicolor proposed and
explored in Refs. [32–36]). This concrete PCH model
example is thus technically natural even though the vacuum
misalignment angle θ is very close to π since the Z2

symmetry is restored for θ ¼ π. The following section
considers this concrete UV complete model in detail.

III. A CONCRETE PARTIALLY
COMPOSITE HIGGS MODEL

In the following, we focus on the concrete SUð6Þ=Spð6Þ
model [28] explored in Refs. [37–41] with one elementary
Z2-odd Higgs doublet H as a template for this mechanism.
We assume four Weyl fermions are arranged in two SUð2ÞL
doublets Ψ1 ≡ ðψ1;ψ2ÞT and Ψ2 ≡ ðψ5;ψ6ÞT , and two in
SUð2ÞL singlets ψ3;4 with hypercharges ∓1=2. We have
listed in Table I the representations of the gauge groups and
parity under the Z2 symmetry of the fermions and the
elementary weak doublet in the model.

A. The condensate and PNGBs

By assuming the Weyl hyperfermions are a fundamental
representation of the new strongly interacting gauge group
GHC ¼ SUð2ÞHC or Spð2NÞHC, which is the pseudo-real
representation, we can then construct an SU(6) flavor
multiplet by arranging the six Weyl hyperfermions into
an SU(6) vectorΨ≡ ðψ1;ψ2;ψ3;ψ4;ψ5;ψ6ÞT. This results
in the chiral symmetry breaking SUð6Þ → Spð6Þ when the
hyperfermions confine. The hyperfermions develop a non-
trivial and antisymmetric vacuum condensate [26]

hΨI
α;aΨJ

β;biϵαβϵab ∼ EIJ
CH; ð4Þ

where α, β are spinor indices, a, b are HC indices, and I, J
are flavor indices. We will suppress the contractions of
these indices for simplicity. The vacuum of the composite
sector giving rise to the VEV of the neutral CP-even
component Φ0

odd of the Z2-odd composite doublet, by
misalignment, can be written as [26]

ECH ¼

0
B@

þiσ2 0 0

0 −iσ2cθ −12sθ
0 þ12sθ þiσ2cθ

1
CA; ð5Þ

where σ2 is the second Pauli matrix, and from now on we
use the definitions sx ≡ sin x, cx ≡ cos x, and tx ≡ tan x.
The chiral symmetry breaking SUð6Þ → Spð6Þ results in

14 PNGBs, πa with a ¼ 1;…; 14, and thus, 14 SU(6)
broken generators Xa correspond to the vacuum ECH. The
Goldstone bosons around the CH vacuum ECH are para-
metrized as

ΣðxÞ ¼ exp

�
2

ffiffiffi
2

p
i

f
πaðxÞXa

�
ECH ð6Þ

with the decay constant f of them. This model preserves a
Z2 symmetry generated by an SU(6) matrix, which is

P ¼ Diagð1; 1; 1; 1;−1;−1Þ; ð7Þ

where the Z2-odd fields of the model are the composite
PNGBs:

Φ0
odd; ðΦ0

oddÞ�; Φ�
odd; Δ0; Δ�; φ0: ð8Þ

We have listed in Table II the quantum numbers for the
EW unbroken vacuum (sθ ¼ 0) and Z2 parity of the
PNGBs divided into the groupings: the Z2-even PNGBs
in the minimal G0=H0 ¼ SUð4Þ=Spð4Þ CH subset [26],
and the additional Z2-odd and -even PNGBs in the rest of
the SUð6Þ=Spð6Þ subset. The neutral components of the
composite weak doublets Φeven;odd are as follows:

Φ0
even ≡ ϕR − iϕIffiffiffi

2
p ; Φ0

odd ≡ h − iπ3ffiffiffi
2

p ; ð9Þ

while the elementary Z2-odd doublet is written as

H ¼ 1ffiffiffi
2

p
�

σh − iπ3h
−ðπ2h þ iπ1hÞ

�
: ð10Þ

B. The chiral Lagrangian and the effective potential

With this field content and vacuum of this specific PCH
model, the underlying Lagrangian describing the new

TABLE I. The hyperfermions in the SU(6)/Sp(6) template
model and the elementary Higgs doublet H labeled with their
representations of GHC × SUð3ÞC × SUð2ÞL × Uð1ÞY and parity
under the Z2 symmetry.

GHC SUð3ÞC SUð2ÞL Uð1ÞY Z2

Ψ1 ≡ ðψ1;ψ2ÞT □ 1 □ 0 þ1

ψ3 □ 1 1 −1=2 þ1
ψ4 □ 1 1 þ1=2 þ1

Ψ2 ≡ ðψ5;ψ6ÞT □ 1 □ 0 −1

H 1 1 □ þ1=2 −1

TABLE II. The PNGBs in the SU(6)/Sp(6) template model
in the EW unbroken vacuum (sθ ¼ 0) labeled with their
ðSUð2ÞÞL;Uð1ÞYÞZ2

quantum numbers.

G0=H0 Z2-odd PNGBs Z2-even PNGBs

Φeven ¼ ð2; 1=2Þþ Φodd ¼ ð2; 1=2Þ− η ¼ ð1; 0Þþ
η0 ¼ ð1; 0Þþ Δ ¼ ð3; 0Þ−

φ0 ¼ ð1; 0Þ−
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strong sector and the elementary doublet can be written
as [16]

LPCH¼Ψ†iγμDμΨþDμH†DμH

−m2
HH

†H−λHðH†HÞ2−
�
1

2
ΨTMΨ

þyUHαðΨTPαΨÞþyDH̃αðΨTP̃αΨÞþH:c:

�
ð11Þ

with H̃ ≡ ϵH�. We have introduced the spurions

2P1
ij ¼ δi5δj3 − δi3δj5; 2P2

ij ¼ δi6δj3 − δi3δj6;

2P̃1
ij ¼ δi5δj4 − δi4δj5; 2P̃2

ij ¼ δi6δj4 − δi4δj6 ð12Þ

for the Yukawa interactions yU;D, and the vectorlike masses
for the new hyperfermions via the matrix

M ¼

0
B@

m1iσ2 0 0

0 m2iσ2 0

0 0 −m3iσ2

1
CA: ð13Þ

Note that for m1 ¼ m2 ¼ m3, the mass matrix is propor-
tional to the EW-preserving vacuum in Eq. (6) with θ ¼ π
(cθ ¼ −1): This is not by chance, as it is indeed the
hyperfermion masses that determine the signs in the
vacuum structure [42].
By demanding the left- and right-handed SM quarks

and leptons transform as qL;i ≡ ðuL;i; dL;iÞT → qL;i,
lL;i ≡ ðνL;i; eL;iÞT → lL;i, uR;i → −uR;i, dR;i → −dR;i, and
eR;i → −eR;i under the Z2 symmetry, the elementary
Z2-odd scalar doublet H couples to the SM fermions like
the Higgs doublet in the SM with the Yukawa interactions
preserving the Z2 symmetry:

LY ¼ −yijt q̄L;iHuR;j − yijb q̄L;iH̃dR;j

− yije l̄L;iH̃eR;j þ H:c: ð14Þ

Below the condensation scale ΛHC ∼ 4πf, Eq. (11)
yields the following leading-order effective potential:

V0
eff ¼ m2

HH
†H þ λHðH†HÞ2

− 4πf3Z

�
1

2
Tr½MΣ� − yUHαTr½PαΣ�

− yDH̃αTr½P̃αΣ� þ H:c:

�
; ð15Þ

where Z is a nonperturbative Oð1Þ constant that can be
suggested by lattice simulations [e.g., Z ≈ 1.5 in Ref. [43]
for the SU(2) gauge theory with two Dirac (four Weyl)
hyperfermions]. To next-to-leading order, the EW gauge
interactions contribute to the effective potential given by

V1−loop
gauge ¼ Cgf4

�X3
i¼1

g2LTr½Ti
LΣTiT

L Σ†�

þ g2YTr½T3
RΣT3T

R Σ†�
�

¼ −Cgf4
�
3g2L þ g2Y

2
c2θ þ…

�
; ð16Þ

where Cg is an Oð1Þ form factor that can be computed on
the lattice, and the gauged generators embedded in the
SUð2ÞL ⊗ SUð2ÞR subgroup of the global symmetry group
SU(6) are identified by the left and right generators

Ti
L ¼

0
B@

σi 0 0

0 0 0

0 0 σi

1
CA; Ti

R ¼

0
B@

0 0 0

0 −σTi 0

0 0 0

1
CA ð17Þ

with i ¼ 1, 2, 3 and σi as the Pauli matrices. This effective
potential is at the one-loop level, and accordingly, the
contribution is subleading comparable to the vectorlike
mass terms. However, we will include this contribution in
the following numerical calculations because these terms
are essential for generating the small neutrino masses in this
model, as discussed in Sec. VI. Thus, to the leading order,
the effective potential of Eq. (15) as a function of the
misalignment angle θ and the elementary field σh in
Eq. (10) reads

Veff ¼
1

2
m2

Hσ
2
h þ

1

4
λHσ

4
h

þ 8πf3Z

�
m23cθ −

yUDffiffiffi
2

p σhsθ

�
; ð18Þ

where m23 ≡m2 þm3 and yUD ≡ yU þ yD. By assuming
hσhi ¼ v in Eq. (10), the vacuum conditions then read

0 ¼ ∂Veff

∂σh

����
σh¼v

¼ −4
ffiffiffi
2

p
πZyUDf3sθ þm2

λv;

0 ¼ ∂Veff

∂θ

����
σh¼v

¼ 8πZf3
�
m23sθ þ

yUDffiffiffi
2

p vcθ

�
; ð19Þ

where m2
λ ≡m2

H þ λHv2. The first condition visualizes that
the VEV generated by the vacuum misalignment in the
composite sector fsθ can be transferred via the Yukawa
interactions yU;D to the neutral CP-even component of H,
leading to a VEV v of σh. These vacuum conditions yield
the parameter expressions

m23 ¼ −
cθm2

λt
2
β

8πZf
; yUD ¼ tβm2

λ

4
ffiffiffi
2

p
πZf2

ð20Þ

with tβ ≡ v=ðfsθÞ. Unlike the Higgs mechanism in the SM,
the squared mass parameter m2

H of the elementary Higgs
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doublet in Eq. (15) does not need to change the sign to
trigger the EWSB.
According to the Higgs potential in Eq. (15), the neutral

CP-even scalar mass matrix in the basis ðσh; hÞ can be
written as

M2
Higgs ¼ m2

λ

�
1þ δ −cθtβ
−cθtβ t2β

�
; ð21Þ

where δ≡ 2λHv2=m2
λ . The mass eigenstates are given in

terms of the interaction eigenstates by

h1 ¼ cασh − sαh; h2 ¼ sασh þ cαh ð22Þ

with

t2α ¼
2tβcθ

1 − t2β þ δ
: ð23Þ

The corresponding masses of these eigenstates are

m2
h1;2

¼ m2
λ

2
½1þ t2β þ δ� ð2cθtβs2α

þ ð1 − t2β þ δÞc2αÞ�: ð24Þ

The lightest of these eigenstates will be identified with the
125-GeV SM Higgs boson. For 1þ δ < t2β and in the
following, this is the h1 state.
This model features seven parameters relevant to our

study: m1, m23, yUD, mH, λH, sθ, f, and tβ, and four
constraint equations including the EW scale in Eq. (3), the
two vacuum conditions in Eq. (19), and the Higgs mass in
Eq. (24). From now on, we setm1 ¼ 0 for simplicity. Thus,
we can assume that mH, f, and tβ are free parameters.
Furthermore, the SM naturalness problem is almost com-
pletely alleviated by fixing ΛHC ∼ 4πf ≡mPlanck and
mH ≡ f ≈ 1018 GeV, which requires a small vacuum mis-
alignment of sθ ¼ 1 × 10−16…5 × 10−18 for tβ ¼ 2…50.
According to ’t Hooft’s naturalness principle [1], such a
small misalignment is technically natural due to the
restoration of the global Z2 symmetry when sθ ¼ 0.
From now on, the only free parameter is tβ.

IV. RG ANALYSIS AND VACUUM STABILITY

As concluded in Ref. [16], PCH models may suffer from
a low vacuum instability scale, which is the energy scale
below the Planck scale where the quartic coupling, e.g., λH
in Eq. (11), runs to negative values. Such an instability
originates from the fact that the top Yukawa coupling of the
elementary interaction eigenstate σh is enhanced compared
to the SM Higgs boson [44] by

yt ¼ ySMt =sβ; ð25Þ

where yt and ySMt are the enhanced and SM top Yukawa
couplings, respectively.
In the following, we numerically calculate the RG

running of the quartic coupling λH in Eq. (11).
Moreover, in this RG analysis, we assume that the top
Yukawa and the EW gauge couplings run as in the SM
below the compositeness scale, since all values of the
couplings are SM-like after the condensation, and we
neglect the effects on the quartic coupling running during
the confinement. We will, therefore, use the SM RG
equations up to three loops in Ref. [45]. We fix the initial
values of the SM gauge couplings at μZ ¼ mZ, and the
value of the SM top Yukawa from ySMt ðmtÞ as in Ref. [46].
We assume further that no composite states other than the
Higgs state affect the running of λH due to the fact that all of
these states are integrated out below f ≈ 1 × 1018 GeV,
because their masses are between f and ∼ftβ for small t−2β .
For example, expanding in s2θ and t−2β , the mass eigenstate
h2 in Eq. (22) has the mass mh2 ≃ f½tβ þ 1=ð2tβÞ�.
By requiring stability of the vacuum up to the compos-

iteness scale, an upper bound on themass parameter is found
in Ref. [16] to be roughly m2

H ≲ ð100s−1θ GeVÞ2. In our
scenario, where the mass parameter is close to the Planck
scale, it is impossible to avoid a small vacuum instability
scale without decreasing sθ to a small value. Fortunately, a
small value of sθ is technically natural in this model.
Therefore, we can avoid a critical small instability scale,
even if mH ¼ f ≈ 1 × 1018 GeV, requiring that sθ ≲ 1 ×
10−16 (tβ ≳ 2). This is illustrated in Fig. 1, where different
RG evolutions of the quartic coupling λH for various tβ are
plotted by varying the RG scale, μ. The black dashed curve
represents theRGevolution of the SMquartic coupling, λSM.

FIG. 1. RG evolution of the quartic coupling λH up to three loops
as a function of the RG scale μ for various tβ ¼ 4.2, 5.0, 10, 50,
where Cg ¼ 1.0 and mH ¼ f ≈ 1 × 1018 GeV. The dashed black
line represents theRGevolution of the SMquartic coupling λSM. In
all of these RG calculations, we have used the best measured
values of the different masses and couplings. For example,
mh ¼ 125.25� 0.17 GeV and mt ¼ 172.76� 0.30 GeV [47].
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The figure shows that the vacuum instability scale increases
for larger tβ. According to the figure, the estimate of the
upper bound of mH in Ref. [16] is slightly inaccurate for
large compositeness scales in this model; for example, we
need that tβ ≳ 50 (sθ ≲ 5 × 10−18) to obtain a stable vacuum
up to the Planck scale when mH ¼ f ≈ 1 × 1018 GeV.
However, an intriguing outcome of the Higgs discovery

has been the finding that the certain Higgs mass leads to a
vacuum lying very close to the boundary between the
stability and metastability regions [45]. Although the SM
quartic coupling runs to negative values at ∼1010 GeV as
shown by the dashed curve in Fig. 1, the SM vacuum may
be metastable and thus not unstable. The same is true of the
vacuum in this model. In Fig. 4 in Ref. [45], this near
criticality of the Higgs boson is investigated and depicted
in a phase diagram in terms of the SM quartic Higgs
coupling λSM and top Yukawa coupling ySMt normalized at
the Planck scale. A similar stability phase diagram for this
model is shown here in Fig. 2 in terms of tβ and λH
renormalized at the Planck scale, where the green, yellow,
and red regions represent, respectively, a stable, metastable,
and unstable vacuum. For the entire phase diagram, the top
Yukawa coupling at the Planck scale is in the range
ytðmPlanckÞ ¼ 0.40…0.53, giving rise to a metastability
constraint of the quartic coupling of λHðmPlanckÞ ≳
−0.046 [45] and stability constraint λHðmPlanckÞ≳ 0.
In Fig. 2, the red (blue) curves show the stability state of

the vacuum for Cg ¼ 1.0 (Cg ¼ 5.0) with 3σ band of the
top mass mt ¼ 172.76� 0.30 GeV, where Cg is the Oð1Þ
form factor of the gauge loop potential contributions in
Eq. (16). For Cg ¼ 1.0, the vacuum may be minimum
metastable down to tβ ≈ 4.1 (tβ ≈ 3.9 in the 3σ band of the

top mass), while there may be no instability constraint of tβ
for Cg ¼ 5.0. However, there are no solutions for the Higgs
mass condition for tβ < 2.1. Thus, the vacuum with the
values tβ ¼ 4.2 and Cg ¼ 1.0 lies close to the boundary
between metastability and instability, even though the
quartic coupling runs to negative values already at
∼107 GeV, as shown by the blue curve in Fig. 1. For
large tβ, the subleading contributions from the EW gauge
interactions in Eq. (16) are neglectable in the effective
potential shown by the fact that the red (Cg ¼ 1.0) and blue
(Cg ¼ 5.0) curves merge in Fig. 2 for tβ ≳ 10. Finally, for
tβ ≳ 13.5, the vacuum may be stable for the lower part of
the 3σ band of the top mass.
In conclusion, if we permit the vacuum to be metastable

like in the SM, it allows lower values of tβ. As we will see
in Sec. VI, smaller values of tβ are necessary for this model
to generate viable neutrino masses and mixing. Before
considering the neutrino physics of this model, we will
consider how the parameter space can be searched by
gravitational waves from a confinement-induced phase
transition.

V. CONSTRAINTS FROM
GRAVITATIONAL WAVES

This theory undergoes a phase transition, where the new
strong dynamics confines at about the temperature T� ≈ f.
This phase transition may generate gravitational waves
(GWs) [48]. During a first-order phase transition, GWs can
be generated by bubble collisions [49,50], stirred acoustic
waves [51,52], and magnetohydrodynamic turbulence in
the supercooling plasma [53,54]. The total power spectrum
of the GWs consists of these three components, which can
be written as

h2ΩðνÞ ¼ h2ΩenvðνÞ þ h2ΩswðνÞ þ h2ΩturbðνÞ; ð26Þ

where ν denotes the frequency of the GWs, while
h2ΩenvðνÞ, h2ΩswðνÞ, and h2ΩturbðνÞ are the power spectra
of the GWs, respectively, from bubble collisions in the
envelope approximation (found in Ref. [49]), acoustic
waves (in Ref. [51]), and Kolmogorov-type turbulence
(in Refs. [53,54]). The full expressions of these spectra are
given in Ref. [55]. The GW spectrum from first-order phase
transitions is generally characterized by two essential
parameters αðT�Þ and βðT�Þ=H� evaluated at the temper-
ature during the phase transition, T� ≈ f. The parameter α
is the ratio of the vacuum energy density and radiation
energy density, while β=H� is the nucleation rate divided
with the Hubble rate during the phase transition, which
measures the time duration of the phase transition.
In Fig. 3, the present (upper) and future (lower panel)

exclusions in the parameter space of α and β=H� are
depicted for various compositeness scales ΛHC ¼ mPlanck

(blue), 1017 GeV (red), and 1015 GeV (green regions) set

FIG. 2. The phase diagram of the vacuum stability in terms of tβ
and the quartic coupling renormalized at the Planck scale
λHðmPlanckÞ. Depending on these parameters, the vacuum is
either stable, metastable, or unstable. The red (blue) lines show
the stability state of the vacuum for Cg ¼ 1.0 (Cg ¼ 5.0) in the 3σ
band of the top mass mt ¼ 171.86…173.66 GeV [47] from the
dashed to dotted lines, while for the solid lines, the top mass is at
its expectation value of mt ¼ 172.76 GeV [47].
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by the constraints from Refs. [56,57] on h2Ω in Eq. (26)
(the full expression of h2Ω is given in Ref. [55]). In
Ref. [56], the first experimental upper limits on the
presence of stochastic GWs are in a frequency band above
1 THz set by an experimental setup of graviton-to-photon
conversion in a constant magnetic field. Those constraints
exclude GWs in the frequency bands from ð2.7 − 14Þ ×
1014 Hz and ð5 − 12Þ × 1018 Hz down to amplitudes
h2Ω ≈ 6 × 10−26 and h2Ω ≈ 5 × 10−28 at 95% confidence
level, respectively. Furthermore, according to Ref. [57],
GHz GWs can be probed by a graviton-magnon detector

which measures the resonance fluorescence of magnons.
The sensitivity of this detector reaches amplitudes at
h2Ω ∼ 10−19 and h2Ω ∼ 10−21 with the frequencies 14
and 8.2 GHz, respectively. However, that detector sets
typically weaker constraints of this model than the THz
detectors in Ref. [56] due to their weaker sensitivities and
the fact that the peak frequencies of the GWs produced by
this model are larger relative to the GHz ballpark. The peak
frequency of the GWs for ΛHC ¼ mPlanck is approximately
given by νpeak ≈ 3 × 1011ðβ=H�Þ Hz and is, therefore,
typically larger relative to the GHz range.
In the following, we will make an analysis of the

parameter space of α and β=H� in this model leading
to successful strong first-order EW phase transitions
(SFOEWPTs). A similar analysis is made in Ref. [58],
where the CH coset SOð6Þ=SOð5Þ ∼ SUð4Þ=Spð4Þ is con-
sidered. At finite temperature, the effective Lagrangian of
the composite PNGBs h and η in Sec. III B receives thermal
corrections and vacuum structure changes. To the leading
T2 terms, the finite temperature effective potential in terms
of h and η is given by [59]

VTðh; ηÞ ¼
μ2h þ chT2

2
h2 þ λh

4
h4 þ μ2η þ cηT2

2
η2

þ λη
4
η4 þ λhη

2
h2η2; ð27Þ

where

ch ¼
3g2L þ g2Y

16
þ λh

2
þ λhη

12
; cη ¼

λη
4
þ λhη

3
:

The coefficients μ2h;μ and λh;η;hη are determined by the
vectorlike masses of the hyperfermions in Eq. (13), the
gauge interactions in Eq. (16), and the mass mixing
between h and σh in Eq. (21).
The necessary condition for SFOEWPT is the existence

of two degenerate vacua at some critical temperature Tc.
Here, the red points in Fig. 3 fulfill the conditions for a
“two-step” phase transition2 in which the VEVs of the
composite PNGBs h and η (hhi; hηi) changed as ð0; 0Þ →
ð0; vηÞ → ðvh; 0Þ with vh ¼ fsθ when the Universe was
cooled down from the temperature T ≫ mh to T ¼ 0.
Therefore, there should exist two degenerate vacua at some
critical temperature [58]

FIG. 3. The present (upper panel) and future (lower panel)
exclusions are depicted in the parameter space of α and β=H� for
various compositeness scales ΛHC ¼ mPlanck (blue), 1017 GeV
(red), and 1015 GeV (green shaded region) set by the GW
experiments in Refs. [56,57]. The red points give successful
SFOEWPTs.

2There exists another possible SFOEWPT mechanism called
the “one-step” SFOEWPT, in which a potential barrier is induced
only along the h direction, and the η never achieves a VEV [59].
However, in this case, we need to include the thermal corrections
depending linearly on T which leads to gauge-dependent critical
temperature and VEV Tc and vc [60]. Thus, we will not consider
this scenario here.
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T2
c ¼

μ2h
ffiffiffiffi
λη

p
− μ2η

ffiffiffiffiffi
λh

p

cη
ffiffiffiffiffi
λh

p
− ch

ffiffiffiffi
λη

p : ð28Þ

The condition of two degenerate vacua for VTðh; ηÞ in
Eq. (27) is [58]

cη
ch

<
μ2η
μ2h

<

ffiffiffiffi
λη

p
ffiffiffiffiffi
λh

p <
λhη
λh

: ð29Þ

Note that degenerate vacua are necessary but not adequate
for a SFOEWPT. To achieve a SFOEWPT, the critical
condition

S3ðTnÞ
Tn

∼ 4 ln

�
ξmPlanck

Tn

�
∼ 140 ð30Þ

should be satisfied at some nucleation temperature Tn,
which can be checked by calculating the bubble nucleation
rate per volume in the early Universe

Γ
V
≈ T4

�
S3
2πT

�
3=2

e−S3ðTÞ=T: ð31Þ

Here, S3 is the classical action of the Oð3Þ symmetric
bounce solution [61] and ξ ≈ 0.03.
Numerically, we use the CosmoTransitions package [62] to

estimate the parameters α and β=H� that provide degen-
erate vacua and fulfill the condition in Eq. (30), leading to
SFOEWPTs. These parameter sets are represented by
the red points in Fig. 3. Thus, regarding the figure for
ΛHC ¼ mPlanck, there is an upper limit of the parameter α ≲
3 × 10−4 and lower limit of β=H� ≳ 1 × 105, which may be
improved to α≲ 8 × 10−6 and β=H� ≳ 4 × 106 by the
proposed future experiments in Ref. [56]. Overall, it opens
up the possibility of probing this model with GWs by
improving the sensitivities in the GW experiments in the
frequency band above 1 THz.

VI. LOOP-INDUCED NEUTRINO MASSES

Another mysterious missing piece in our understanding
of the Universe is that the neutrinos have masses that are
several orders of magnitude smaller than those of the
charged fermions. The simplest solution to this puzzle is
the seesaw mechanism [63–65], which requires a typical
new scale Λseesaw ≈ 1012 GeV. In this section, we explore
the possibility of realizing a one-loop radiative seesaw
mechanism in this partially composite multi-Higgs scheme
by considering the studies in Ref. [41]. However, the
neutral component of a Z2-even doublet, not of a
Z2-odd as in Ref. [66], runs in the loop as in Fig. 4.

A. The Lagrangian and scalar potential terms
in the neutrino sector

To incorporate this mechanism, we need to add a new
Z2-even elementary weak doublet with hypercharge þ1=2,

Hν ¼
1ffiffiffi
2

p
�

σR − iσI
−ðπ2ν þ iπ1νÞ

�
; ð32Þ

and three right-handed neutrino SM singlets NR;i with
i ¼ 1, 2, 3 transforming even under the global Z2

symmetry.
Thus, new fundamental Yukawa couplings with the

neutrino fields can be written as

LY ⊃ −hijl̄L;iHνNR;j þ H:c: ð33Þ

Furthermore, the new elementary Z2-even doublet Hν is
allowed to be coupled to the composite Higgs sector by
adding new fundamental Yukawa couplings between Hν

and the Z2-even hyperfermions to Eq. (11):

LPCH ⊃ −y1Hν;αðΨTPα
νΨÞ

− y2H̃ν;αðΨTP̃α
νΨÞ þ H:c:; ð34Þ

where we introduce the spurions

2P1
ν;ij ¼ δi1δj3 − δi3δj1; 2P2

ν;ij ¼ δi2δj3 − δi3δj2;

2P̃1
ν;ij ¼ δi1δj4 − δi4δj1; 2P̃2

ν;ij ¼ δi2δj4 − δi4δj2: ð35Þ

In the following, we assume y1 ¼ y2 for simplicity. Below
the condensation scale ΛHC ∼ 4πf, Eq. (34) yields the
following contributions to the effective potential in
Eq. (15):

V0
eff ⊃ 4πf3Zνðy1Hν;αTr½Pα

νΣ�
þ y2H̃ν;αTr½P̃α

νΣ� þ H:c:Þ; ð36Þ

where Zν is a nonperturbativeOð1Þ constant. From now on,
we assume that Zν ≡ Z ≈ 1.5 for simplicity.

FIG. 4. One-loop radiative Majorana neutrino masses in this
model similar to the scotogenic model proposed in Ref. [66].
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Finally, we add all the allowed terms including the new
doublet to the underlying Lagrangian in Eq. (11) that
conserves all the symmetries, which are given by

LPCH ⊃ DμH
†
νDμHν −m2

Hν
H†

νHν

− λHν
ðH†

νHνÞ2 − λ1H†HH†
νHν

− λ2H†HνH
†
νH − ðλ3ðH†HνÞ2 þ H:c:Þ: ð37Þ

In the following, we assume mHν
≡mH ¼ f to avoid

naturalness problems and λ1;2;3 ¼ 1 for simplicity, which
has an insignificant influence on the RG running of λH
since the components ofHν have largeOðfÞmasses and are
“integrated out.”Note that the above potential contributions
from the neutrino sector do not change the masses of the
mass eigenstates h1;2 in Eq. (24), where h1 is still identified
with the 125-GeV SM Higgs boson. Furthermore, the new
elementary doublet has no influence on the vacuum
structure discussed in Sec. III.

B. The masses and mixing of the neutrinos

The mixing mass matrices M2
R and M2

I in the bases
ðσR;ϕRÞ and ðσI;ϕIÞ, respectively, are generated by the
potential of the neutral components of the elementary and
composite Z2-even Higgs doublets in Eqs. (9) and (32),
which are given by

M2
R ¼ M̃2 þ

�
2λ3v2 0

0 1
2
Cgð3g2L þ g2YÞf2cθ

�
;

M2
I ¼ M̃2 þ

�−2λ3v2 0

0 1
2
Cgð8g2L þ ðg2Y − 5g2LÞcθÞf2

�

ð38Þ

with

M̃2 ≡
�m2

Hν
þ 1

2
ðλ1 þ λ2Þv2 −4

ffiffiffi
2

p
πZy12f2cθ=2

−4
ffiffiffi
2

p
πZy12f2cθ=2 8πZfm1 þ 1

2
m2

λt
2
β

�
;

where y12 ≡ y1 þ y2. Therefore, a mass splitting is gen-
erated between the masses mR;I of the mass eigenstates
σ̃R;I consisting mostly of the neutral components σR;I in
Eq. (32), respectively.
Assuming that the right-handed neutrinos NR;i are not

much heavier than the neutral components of the new
Z2-even doublet, small Majorana masses of the left-handed
neutrinos are generated by the loop diagram shown in
Fig. 4, analogous to the one in the traditional scotogenic
model [66]. The loop diagram results in the mass expres-
sion [66]

mij
ν ¼

X3
k¼1

hikhjk

ð4πÞ2 Mk

�
m2

R

m2
R −M2

k

ln

�
m2

R

M2
k

�

−
m2

I

m2
I −M2

k

ln

�
m2

I

M2
k

��
≡X3

k¼1

hikhjkΞν;k; ð39Þ

whereMi denotes the masses of the right-handed neutrinos,
NR;i. To obtain nonzero neutrino masses, we need a mass
splitting between the masses mR;I of the mass eigenstates
σ̃R;I , respectively, given by Eq. (38).
By ignoring the gauge loop potential contributions in

Eq. (38), i.e., gL;Y ¼ 0, the mass splitting between the mass
eigenstates σ̃R;I will only depend on the λ3v2 term, which is
negligible relative to their masses since mR;I ∼ f ≫ v. In
this scenario, either the neutrino Yukawa couplings hij in
Eq. (33) or the quartic coupling λ3 in Eq. (37) needs to be
nonperturbatively large (hij; λ3 > 4π) to achieve large
enough neutrino masses. When the gauge interactions
are turned on, a mass splitting will be generated in the
order of f between the composite states ϕR;I , resulting in a
more significant mass splitting of σ̃R;I via the Yukawa
couplings y1;2 in Eq. (34). As shown in the following, this
mass splitting may be enough to generate large enough
neutrino masses with perturbative couplings. In this model,
the neutrino masses are thus dynamically loop induced by
the composite dynamics via the EW gauge and Yukawa
interactions.
Before we present the numerical calculations, we need to

define the neutrino mass matrix in Eq. (39), which can be
diagonalized as

mDiag
ν ¼ UT

PMNSmνUPMNS ¼ Diagðmν1 ; mν2 ; mν3Þ; ð40Þ

where mνi with i ¼ 1, 2, 3 are the left-handed neutrino
masses. The matrix UPMNS ¼ UUm is the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix, where Um ¼
Diagð1; eiϕ1=2; eiϕ2=2Þ encoding the Majorana phases and
the matrix U is parametrized as

0
B@

c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23− s12s23s13eiδ s23c13
s12s23−c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13

1
CA

with the mixing angles sij ≡ sin θij; cij ≡ cos θij, and the
Dirac phase δ. In this paper, we assume that the Majorana
and Dirac phases are vanishing (ϕ1;2 ¼ 0 and δ ¼ 0), but it
is possible to add them without significant changes of our
conclusions.

C. Numerical results

In the following, we fit to the best-fit experimental values
for the mass-squared differences (Δmij ≡m2

νi −m2
νj) and

mixing angles (sij ≡ sin θij), which are given in Ref. [67]
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for both normal hierarchy (NH) of the neutrinos, i.e.,
mν1 < mν2 < mν3 , and inverted hierarchy (IH), i.e., mν3 <
mν1 < mν2 . Finally, we also include the upper bound on the
sum of the neutrino masses coming from cosmology. The
most reliable bound is from the Planck Collaboration [68],

X
i

mνi ≲ 0.23 eV: ð41Þ

In the following calculations, we have chosen the NH
of the neutrinos, where mν1 ¼ 0.0010 eV, leading to
mν2 ¼ 0.0087 eV, mν3 ¼ 0.050 eV, and therefore, the
bound in Eq. (41) is fulfilled. If we choose IH or another
value of mν1 , the following conclusions will not change
significantly. Furthermore, we assume that the right-handed
neutrino masses are Mi=2¼mH¼mHν

¼f≈1×1018GeV
and the vectorlike mass of the hyperfermion doublet Ψ1 is
m1 ¼ m2;3=2, because those values give rise to the most
favorable results.
In Fig. 5, for ΛHC ∼ 4πf ¼ mPlanck, we have plotted

Ξν ≡ Σ3
i¼1Ξν;i [defined in Eq. (39)] as function of tβ for

various Yukawa couplings y1;2 and for Cg ¼ 1.0, 2.5, 4.0,
5.0. The black solid line represents the case with neutrino
Yukawa couplings hij of order unity resulting in viable
neutrino masses and mixing in Eq. (40), while the black
dashed line represents the case with the largest perturbative
value of hij, i.e., below this line maxðjhijjÞ > 4π. Note that
the red and green lines stop below tβ ≈ 3.9 and tβ ≈ 3.7,
respectively, because the vacuum is unstable below these
values with the top mass in its 3σ band, for example, shown
for Cg ¼ 1.0 (the red lines) in Fig. 2.
AssumingCg ¼ 1.0, y1;2 ¼ 10, and tβ ¼ 3.9, there exists

one positive, real solution of the neutrino Yukawa coupling

constants with maximal number of zeroes by using
Eq. (39):

hij ¼

0
B@

2.53 3.69 0.62

0 7.43 9.17

0 0 9.99

1
CA: ð42Þ

Considering the upper limit of the 3σ band of the top mass
forCg ¼ 1.0 (the dotted red line) in Fig. 2, it is required that
tβ ≳ 4.6 to obtain a metastable vacuum. These values of tβ
may be too large to provide perturbative Yukawa couplings,
hij; y1;2 < 4π, since the dashed red line (for Cg ¼ 1.0 and
y1;2 ¼ 4π) in Fig. 5 is below the dashed black curve (i.e.,
maxðjhijjÞ > 4π) for tβ ≳ 4.7. Therefore, if Cg is calculated
by lattice simulations to be below 1.0, a more accurate
measurement of the top mass may probe this theory.
The Yukawa couplings hij; y1;2 ∼Oð1Þ by assuming that

Cg ¼ 4.0, y1;2 ¼ 5.0 and tβ ¼ 3.2. Thus, there exists one
positive, real solution of the neutrino Yukawa coupling
constants with maximal number of zeroes:

hij ¼

0
B@

1.19 1.71 0.32

0 3.65 4.36

0 0 4.82

1
CA: ð43Þ

Therefore, if the Yukawa couplings hij; y1;2 are of order
unity, we need that Cg ≳ 4 to obtain heavy enough
neutrinos, where smaller Yukawa couplings require larger
Cg. This theory can thus be probed by calculating Cg by
lattice simulations. In addition, there is a spectrum of
solutions for 1.0 < Cg < 4.0, whereOð1Þ < hij; y1;2 < 10.
There is also the possibility that the compositeness scale

is smaller than the Planck scale, for example, ΛHC ∼ 4πf ¼
1017 GeV with Mi=2 ¼ mH ¼ mHν

¼ f ≈ 8 × 1015 GeV.
Assuming that Cg ¼ 1.0, y1;2 ¼ 2.5, and tβ ¼ 4.2, there
exists one positive, real solution of the neutrino Yukawa
coupling constants with maximal number of zeroes:

hij ¼

0
B@

1.15 1.66 0.31

0 3.54 4.23

0 0 4.68

1
CA: ð44Þ

With this compositeness scale, many solutions exist like
this, where all the Yukawa couplings hij; y1;2 ∼Oð1Þ.
However, we suppose in these calculations that the vacuum
is metastable by assuming that the running of λH aboveΛHC
does not result in an unstable vacuum. We have relegated
the detailed study of the stability for the scenarios with
ΛHC < mPlanck to future work.
Note for ΛHC ∼mPlanck, all the dimensionful fundamen-

tal parameters of this theory are approximate of the order of
f ≈ 1 × 1018 GeV (close to the reduced Planck scale,

FIG. 5. Ξν ≡ Σ3
i¼1Ξν;i defined in Eq. (39) for varying tβ for

various Yukawa couplings y1;2 and for Cg ¼ 1.0, 2.5, 4.0, 5.0,
where ΛHC ∼ 4πf ¼ mPlanck. The black solid (or dashed) line
represents the case with neutrino Yukawa couplings hij of order
unity [or with the largest perturbative value of hij, i.e.,
maxðjhijjÞ ¼ 4π], resulting in viable neutrino masses and mixing
in Eq. (40).
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m̄Planck ≡mPlanck=
ffiffiffiffiffiffi
8π

p
≈ 2.5f): mH ¼ mHν

¼ Mi=2 ¼ f
and 6m1 ¼ 3m2;3 ≈ f. Furthermore, the reason for the
choice of loop-induced neutrino masses instead of masses
generated by a standard seesaw mechanism is the fact that
the partially composite nature of the scalars appearing in
the loop plays a crucial role in predicting a near-degenerate
spectrum, which yields a large suppression of the loop-
induced neutrino masses. Because of this large suppression,
the right-handed neutrino masses up to the order of
f ≈ 1 × 1018 GeV can induce large enough neutrino
masses. At the same time, a composite realization of the
standard seesaw mechanism only requires right-handed
neutrino masses, which are Mi ≲Oð1015Þ GeV [69,70].
Therefore, the one-loop-induced neutrino masses allow
right-handed neutrino masses of the order of f ≈
1 × 1018 GeV like the other dimensionful fundamental
parameters of this theory.

VII. FUTURE WORK

A future perspective of this model may be to extend it to
dynamically generate the explicit masses of the fermions,
like in the PCH model proposed in Ref. [15]. In such a
model, the elementary scalar doublets H and Hν are
extended to a complete two-index antisymmetric SU(6)
representation, allowing for the Yukawa interactions of
the elementary scalars and the hyperfermions to remain
SU(6) symmetric. In such a model, the vectorlike masses
m1;2;3 and the right-handed neutrino masses Mi may be
generated via dynamically induced VEVs in the order of f
of the EW-singlet components of the new elementary scalar
multiplet.
Finally, in this scenario with a compositeness scale close

to the Planck scale, an interesting question arises about the
global symmetries that determine the novel mechanism in
this model. There are general expectations that all global
symmetries are explicitly broken by gravitational effects
[71], supported by theoretical calculations indicating
explicit breaking of global symmetries by sources such
as black holes [72] or wormholes [73]. However, there is so
far no clear understanding of what the actual sources,
mechanisms, or magnitude of the explicit breaking of
global symmetries by gravity might be. For example, in
many theories which are asymptotically safe, there are
some indications that global symmetries might be pre-
served [74–79]. Furthermore, if there are violations of the
global symmetries in this model their magnitude may be
constrained by the cosmic birefringence measurements
studied in Ref. [80]. The studies of such violations in this
model are left for future work.

VIII. CONCLUSIONS

This paper has presented a novel mechanism that may
assist in UV completing (partially) composite Higgs
models. With this mechanism, the compositeness scale

of these models can be pushed up to the Planck scale in a
technically natural manner, resulting in a complete remedy
of the SM naturalness problem. For concreteness, we have
demonstrated it in a minimal partially composite two-Higgs
scheme with the composite coset SUð6Þ=Spð6Þ featuring a
Z2-odd and -even partially composite Higgs doublet as
PNGBs. In this concrete model example, the Z2-odd scalar
doublet triggers both the EWSB and the mass generation of
the charged SM fermions based on vacuum misalignment
with a small angle (sin θ ≲ 10−16), leading to softly break-
ing the Z2 symmetry of the composite dynamics.
According to the ’t Hooft naturalness principle [1], this
limit (sin θ → 0) is technically natural as it reveals the
restoration of the global Z2 symmetry. Furthermore, a
natural near degeneracy of the neutral components of the
Z2-even scalar doublet features small loop-induced neu-
trino masses, where the composite dynamics generates this
nondegeneracy via the EW gauge and Yukawa interactions.
A vacuum stability analysis of this concrete partially

composite Higgs model results in a lower bound on the
parameter tβ that provides either a metastable or stable
vacuum. This lower bound depends on the nonperturbative
coefficient of the EW gauge loop potential contributions Cg

and the top mass. For example, when Cg ¼ 1.0, the vacuum
may be minimum metastable down to tβ ≈ 3.9 in the 3σ
band of the top mass. Moreover, assuming that all the
Yukawa couplings are perturbative (hij; y1;2 < 4π), the
neutrino sector of this theory may be probed by lattice
calculations of Cg or a more accurate measurement of the
top mass. Furthermore, the parameter space of this concrete
model can already be searched by gravitational waves from
a confinement-induced phase transition, where future
gravitational wave experiments at frequencies above the
THz ballpark can further improve this search.
Finally, for this model example, all the dimensionful

fundamental parameters are approximately in the order of
f ≈ 1 × 1018 GeV: for example, 6m1 ¼ 3m2;3 ≈Mi=2 ¼
mH ¼ mHν

¼ f. Thus, a future perspective of this model
may be to extend it to dynamically generate the vectorlike
masses of the hyperfermions and the right-handed neu-
trino masses. In such a model, we propose an SU(6)
completion of the elementary scalar sector similar to the
SU(4) completion in the SUð4Þ=Spð4Þ partially composite
Higgs model presented in Ref. [15]. However, we have left
a detailed study of this extension for future work.
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