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The generalized uncertainty principle (GUP) is a phenomenological model whose purpose is to account
for a minimal length scale (e.g., Planck scale or characteristic inverse-mass scale in effective quantum
description) in quantum systems. In this paper, we study possible observational effects of GUP systems in
their decoherence domain. We first derive coherent states associated to GUP and unveil that in the
momentum representation they coincide with Tsallis probability amplitudes, whose nonextensivity
parameter q monotonically increases with the GUP deformation parameter β. Second, for β < 0 (i.e.,
q < 1), we show that, due to Bekner-Babenko inequality, the GUP is fully equivalent to information-
theoretic uncertainty relations based on Tsallis-entropy-power. Finally, we invoke the maximal entropy
principle known from estimation theory to reveal connection between the quasiclassical (decoherence)
limit of GUP-related quantum theory and nonextensive thermostatistics of Tsallis. This might provide an
exciting paradigm in a range of fields from quantum theory to analog gravity. For instance, in some
quantum gravity theories, such as conformal gravity, aforementioned quasiclassical regime has relevant
observational consequences. We discuss some of the implications.

DOI: 10.1103/PhysRevD.105.L121501

I. INTRODUCTION

There are indications from various studies such as string
theory, loop quantum gravity, quantum geometry, or doubly
special relativity theories that the uncertainty relation
between positions and momenta acquire corrections due
to gravity induced effects and should be modified accord-
ingly [1–7]. These modifications implement, in one way or
another, the minimal length scale and/or the maximum

momentum. The ensuing modified uncertainty relations are
known as the generalized uncertainty principles (GUPs). A
paradigmatic form of GUP is the quadratic GUP, namely,

δxδp ≥
ℏ
2

�
1þ β

δp2

m2
p

�
; ð1Þ

where c ¼ 1, mp ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p
≈ 2.2 × 10−8 kg is the Planck

mass, and β is a dimensionless deformation parameter. The
symbol δ denotes uncertainty of a given observable, and it
does not need to be a priori related to the standard
deviation. More like in the original Heisenberg uncertainty
relation, δ can represent Heisenberg’s “ungenauigkeiten”
(i.e., error-disturbance uncertainties caused by the back-
reaction in simultaneous measurement of x and p) or
δp ¼ hψkpkψi≡ hjpjiψ ; see, e.g., Ref. [8].
The quadratic GUP (1) has served as an incubator for a

number of important studies in quantum mechanics [9–11],
particle physics [12,13], finite-temperature quantum field
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theory [14], or cosmology [15]. In addition, the mass
parameter in (1) does not need to be necessarily mp, but it
might be identified with a characteristic mass scale in the
effective quantum description, e.g., in condensed matter
and atomic physics or in nonlinear optics [16–18].
In cases when δ represents the standard deviation

(henceforth denoted as Δ), the GUP inequality (1) can
be deduced from the deformed (Jacobi identity satisfying)
commutation relations (DCRs)

½x̂; p̂� ¼ iℏ

�
1þ β

p̂2

m2
p

�
; ½x̂; x̂� ¼ ½p̂; p̂� ¼ 0; ð2Þ

by means of the Cauchy-Schwarz or covariance inequality
[19–21], provided we focus on mirror symmetric states
where hx̂iψ ¼ hp̂iψ ¼ 0, e.g., ψ are parity eigenstates [22].
Most of the recent discussions of GUP in quantum

gravity have focused on heuristic applications in cosmol-
ogy and astrophysics (for review, see, e.g., Ref. [17]).
Comparably less attention has been devoted to the study of
GUP in a quasiclassical (decoherence) domain. It is,
however, the quasiclassical quantum regime that is perti-
nent in observational cosmology and astrophysics [23,24].
Important theoretical instruments used in quasiclassical
quantum theory are coherent states (CSs). This is because
CSs are least susceptible to the loss of quantum coherence
[25]. In a sense, CSs are the privileged states in the
transition to classical reality, as they are the only states
that remain pure in the decoherence process [26,27].
Various classes of CSs have been studied. Here, we will

discuss the Schrödinger-type minimum-uncertainty CSs
[19,28] associated with GUP. We derive precise forms of
such GUP CSs in both the momentum and position repre-
sentations [29], though our focus will be on the momentum
representation where CSs coincide with Tsallis probability
amplitudes. For β < 0, we also reformulate the GUP in
terms of one-parameter class of Tsallis entropy-power based
uncertainty relations (EPUR), which are saturated by the
GUP CSs. Since thermodynamics alongside with its various
generalizations [30–35] crucially hinges on the maximum
entropy principle (MEP) (i.e., thermodynamic entropy is the
statistical entropy evaluated at the maximal entropy distri-
bution), we are led to the conclusion that the combination of
GUP CSs with Tsallis entropy provides a natural framework
to discuss the quasiclassical regime of GUP in terms of
nonextensive thermostatistics of Tsallis (NTT) [33]. In some
quantum gravity theories, such as conformal gravity, afore-
mentioned quasiclassical regime has relevant phenomeno-
logical consequences, some of which will be discussed.

II. COHERENT STATES FOR GUP

We first summarize the steps leading to (1) from the
DCR (2). To this end, we quantify the uncertainty of an
observable Ô with respect to a density matrix ϱ via its
standard deviation. In particular, for variance, i.e., square of
the standard deviation, we have

ðΔÔÞ2ϱ ≡ TrðÔ2ϱÞ − TrðÔϱÞ2

¼
Z
R
ðλ − hÔi2ϱÞdTrðEðÔÞ

λ ϱÞ: ð3Þ

Here, EðÔÞ
λ is the projection-valued measure of Ô corre-

sponding to spectral value λ. By confining our study to the
observables x̂ and p̂, the passage from the DCR (2) to GUP
(1) is as follows: we set Ô1 ¼ x̂ − hx̂iϱ and Ô2 ¼ p̂ − hp̂iϱ
so that ðΔxÞ2ϱ ¼ hÔ2

1iϱ, ðΔpÞ2ϱ ¼ hÔ2
2iϱ and ½x̂; p̂�ϱ ¼

½Ô1; Ô2�ϱ; then, for arbitrary vector ψ ∈ Ranϱ and any
γ ∈ R, we have

0 ≤ kðÔ2 − iγÔ1Þψ jj2
¼ hψ jÔ2

2jψi þ iγhψ j½Ô1; Ô2�jψi þ γ2hψ jÔ2
1jψi; ð4Þ

and therefore

TrðÔ2
2ϱÞ þ iγTrð½Ô1; Ô2�ϱÞ þ γ2TrðÔ2

1ϱÞ ≥ 0: ð5Þ

The lhs is smallest for γ ¼ iTrð½Ô2; Ô1�ϱÞ=ð2TrðÔ2
1ϱÞÞ,

which turns (5) to

TrðÔ2
1ϱÞTrðÔ2

2ϱÞ ¼ ðΔxÞ2ϱðΔpÞ2ϱ ≥
1

4
Trði½x̂; p̂�ϱÞ2: ð6Þ

This is nothing but quantum mechanical version of the
covariance inequality [21]. Now, we can use (2) to obtain

ðΔxÞϱðΔpÞϱ ≥
ℏ
2

�
1þ β

ðΔpÞ2ϱ þ hp̂i2ϱ
m2

p

�
: ð7Þ

For mirror symmetric ϱ’s satisfying hp̂iϱ ¼ 0, inequality
(7) clearly coincides with the GUP (1), with variances in
place of generic δ’s.
To find ϱ that saturates the GUP (7), we observe from (4)

that the inequality is saturated if and only if for all ψ ∈ Ranϱ
the equation ðÔ2 − iγÔ1Þjψi ¼ 0 holds. If this equation has
for given γ, hx̂iϱ, and hp̂iϱ more than one solution, the
corresponding minimum-uncertainty ϱ is a mixture of CSs
(i.e., pure minimum-uncertainty states). It is apparent,
cf. Eq. (11), that on the class of mirror symmetric ϱ’s the
equation

ðp̂ − iγx̂Þjψi ¼ 0 ð8Þ

has only one solution for ψ ∈ L2ðRÞ so that the minimum-
uncertainty ϱ is a pure state—CS. It is convenient to seek the
solution to (8) in the momentum representation, i.e.,
jψi ↦ ψðpÞ ¼ hpjψi. In the momentum space, x̂ and p̂
satisfying DCR can be represented as in Ref. [36]. However,
by doing so, the nonsymmetric nature of x̂ would provide
inconsistent variance for the ensuingCS; cf. Eq. (19). For this
reason, we resort to another representation of x̂ and p̂
complying with (2), namely,
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p̂ψðpÞ ¼ pψðpÞ;

x̂ψðpÞ ¼ iℏ

�
d
dp

þ β

2m2
p

�
p2;

d
dp

�
þ

�
ψðpÞ; ð9Þ

with ½; �þ being an anticommutator.With this, we can cast (8)
into an equivalent form,

d
dp

ψðpÞ ¼ −
ð1þ βγℏ

m2
p
Þ

γℏð1þ β p2

m2
p
Þ
pψðpÞ; ð10Þ

which admits the generic solution

ψðpÞ ¼ N½1þ ðβp2Þ=m2
p�−

m2
p

2βγℏ−
1
2: ð11Þ

The coefficientN ensures that
R jψðpÞj2dp ¼ 1 and forβ > 0

N> ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

m2
pπ

s
Γðm2

p

βγℏ þ 1Þ
Γðm2

p

βγℏ þ 1
2
Þ

vuuut : ð12Þ

Here, ΓðxÞ is the gamma function [37].
The situation with β < 0 has been less explored in

literature than the β > 0 case, though the related GUP
has a number of important implications, e.g., in cosmology
[18,38], astrophysics [39], or DSR [6,7]. Note that for
β < 0 Eq. (11) involves noninteger powers of negative
reals, which lead to multivalued CS. Because wave func-
tions must be single valued, CS has to have bounded
support, which in turn means that p̂ must be bounded with
spectrum jσðp̂Þj ≤ mp=

ffiffiffiffiffiffijβjp
. The ensuing operator x̂

corresponding to the formal differential expression (9) is
self-adjoint [29]. The resulting CS reads

ψðpÞ ¼ N<½1 − ðjβjp2Þ=m2
p�

m2
p

2jβjγℏ−
1
2

þ ; ð13Þ
where ½z�þ ¼ maxfz; 0g with

N< ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβj
m2

pπ

s
Γð1

2
þ m2

p

jβjγℏÞ
Γð m2

p

jβjγℏÞ

vuuut : ð14Þ

In passing, we observe that as β → 0 both (11) and (13)
reduce to the usual minimum uncertainty Gaussian wave
packet (Glauber coherent state) associated with the conven-
tional Heisenberg uncertainty relation.
To find a physical meaning for γ, we note [see the

sentence after (5)] that for CS ψ

γ ¼ −ih½x̂; p̂�iψ=½2ðΔxÞ2ψ � ¼ −2ðΔpÞ2ψ=ih½x̂; p̂�iψ

¼ ðΔpÞψ
ðΔxÞψ

¼ 2ðΔpÞ2ψ
ℏ½1þ βðΔpÞ2ψ=m2

p�
; ð15Þ

where in the second and third identities we utilized the
fact that ψ saturates (7). Note also that CSs (11) satisfy
hp̂iψ ¼ hx̂iψ ¼ 0.

III. TSALLIS DISTRIBUTION

Let us now consider the following substitutions (valid for
β ≶ 0) in (11) and (13):

q ¼ βγℏ
m2

p þ βγℏ
þ 1; b ¼ 2mp

γℏ
þ 2β

mp
: ð16Þ

With this, we can rewrite (11) and (13) as

ψðpÞ ¼ N≶

�
1 − bð1 − qÞ p2

2mp

� 1
2ð1−qÞ

þ
: ð17Þ

This is nothing but the probability amplitude for the Tsallis
distribution of a free nonrelativistic particle,

qTðpjq; bÞ ¼ jψðpÞj2 ¼ 1

Z

�
1 − bð1 − qÞ p2

2mp

� 1
1−q

þ
; ð18Þ

with Z ¼ N−2
≶ being the “partition function.”

A few remarks concerning (18) are now in order. Tsallis
distribution of this type is also known as q-Gaussian
distribution and denoted as expqð−bp2=2mpÞ. In the limit
q → 1, expqð−bp2=2mpÞ → expð−bp2=2mpÞ. Note that
because of (16) q → 1 is equivalent to β → 0. In addition,
since for β > 0 the p̂ operator is unbounded, CS (17) is
normalizable only for values of 1 ≤ q < 3. For values
q < 1 (i.e., β < 0), the distribution (18) has a finite support
with jpj < ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mp=bð1 − qÞp
. Moreover, for q ≥ 5=3, the

variance of (18) is undefined (infinite), and thus the GUP
cannot even be formulated. When q < 5=3, then (see, e.g.,
Ref. [40])

ðΔpÞ2 ¼ 2mp

bð5 − 3qÞ ⇔ γ ¼ 2ðΔpÞ2
ℏ½1þ βðΔpÞ2=m2

p�
; ð19Þ

which coincides with (15) (this, in turn, justifies our choice
of the representation of x̂ and p̂ operators). Furthermore,
the mean value does not exist for q > 2, so such CS
cannot be mirror symmetric. Thus, the only physically
relevant domain of q in CS is q < 5=3, which ensures that β
is a monotonically increasing function of q and that
β > −m2

p=½3ðΔpÞ2ψ �.

IV. CONNECTION WITH ENTROPIC
UNCERTAINTY RELATIONS

The probability distribution (18) decays asymptotically
following the power law. If the variance and mean are the
only observables, power-law type distributions are incom-
patible with the conventional MEP based on the Shannon-
Gibbs entropy (SGE). Nonetheless, distribution (18) is a
maximizer of Tsallis (differential) entropy (TE) ST

2−q, where
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ST
qðF Þ ¼ kB

ð1 − qÞ
�Z

R
dpF qðpÞ − 1

�
ð20Þ

(F is a probability density function) subject to a constraint
hp̂2iψ ¼ 2mp=½bð5 − 3qÞ�; cf. Refs. [33,41–43]. kB is the
Boltzmann constant. In the limit q → 1, the TE tends to SGE
by l’Hôpital’s rule.
When dealing with GUP that is saturated by Tsallis CS, it

is convenient to employ the concept of Tsallis entropy
power (TEP) [44]. TEP MT

q of a random vector X is the
unique number that solves the equation

ST
qðXÞ ¼ ST

q

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MT

qðXÞ
q

· ZT
�
: ð21Þ

Here, ZT represents a Tsallis random vector with zero
mean and unit covariance matrix. Such a vector is distrib-
uted with respect to the Tsallis distribution that extremizes
ST
q . In the Supplemental Material [29], we use the Beckner-

Babenko theorem [44] to prove that for β < 0 the DCR (2)
implies the following one-parameter class of EPURs:

MT
q=2ðjψ j2ÞMT

1=ð2−2=qÞðjψ̃ j2Þ ≥ ℏ2=4; q ∈ ½1; 2Þ: ð22Þ
Here, ψ̃ is the position-space wave function associated with
ψ . The clear advantage of EPUR (22) over GUP (1) is in that
the rhs has an irreducible and state-independent lower bound.
Moreover, Eq. (22) is also saturated by the GUP CSs [29].
Numerical simulations based the Markovian master equa-

tions for the reduced density matrix coupled with the
predictability sieve method [25,45–47] indicate that CSs
belong among the so-called pointer states, i.e., states that are
least affected by the interaction with the environment
(external degrees of freedom). Such states belong to the
quasiclassical domain of quantum theory as they are max-
imally predictable in spite of decoherence [47,48].Amongall
pointer states in thewould-beGUP driven universe, CSs (17)
have the highest TE. Moreover, EPUR (22) indicates that TE
is at the same time a pertinent entropy functional in the GUP
context. So, when we want to discuss a statistical physics of
an ensemble of noninteracting GUP particles that are
monitored by quantum gravitational environment (bath of
gravitons), we might invoke, similarly as in conventional
statistical physics, MEP, but this time with TE in place of
SGE. The ensuing NTT [33] can be then used to probe the
quasiclassical domain of the GUP. We now illustrate poten-
tial implications of this observation with few examples.

V. PHYSICAL IMPLICATIONS

First, we consider modifications to Newton’s law that
should be expected in the quasiclassical epoch of a GUP-
based universewithβ < 0. To that end,we employVerlinde’s
idea that gravity is an entropy-driven phenomenon—
entropic gravity (EG) [49], along with the NTT [33,34].
Following Verlinde’s EG, we suppose that true

(unknown) microscopic degrees of freedom in any given
part of space are stored in discrete bits on the holographic

screen that surrounds them. A holographic screen can be
considered to be a spherically symmetric of area A ¼ 4πR2.
Outside of the screen is the emergent world, so the screen
acts as an interface between known and unknown physics.
When a test particle moves away from the screen, it feels
an effective force F satisfying Fδx ¼ TδS, where T and δS
are the temperature and the entropy change on the holo-
graphic surface, respectively, and δx is the distance of the
particle from the screen. It should be stressed that
Verlinde’s thermodynamic relation is not directly related
to the interior of the screen—it operates in the emergent
world. In NTT, the heat one-form TδS must be replaced
with [34,35] TδST

q=½1þ ðð1 − qÞ=kBÞST
q � (in our context

Sq ↦ S2−q). If L is a (dimensionless) characteristic length
scale (e.g., radius R=lp), then the Bekenstein-Hawking
entropy SBH ¼ lnWðLÞ ∝ L2, which implies that the total
number of internal configurations W behaves for L ≫ 1 as
WðLÞ ¼ ϕðLÞνL2

, where ϕ is any positive function satisfy-
ing limL→∞ lnϕ=L2 ¼ 0 and ν > 1 is some constant [50].
So, from the outside, the holographic screen has entropy

ST
2−q ¼ kB ln2−q WðLÞ ¼ kB

q − 1
½ðϕðLÞνL2Þq−1 − 1�: ð23Þ

Consequently, the entropic force follows from

Fδx ¼ TδST2−q
1þ ðq − 1Þðω3L3 þ ω2L2 þ � � �Þ þ � � � ; ð24Þ

where ω2, ω3 > 0 are intensive coefficients known from
Hills’s entropy expansion in (conventional) thermodynam-
ics of small and mesoscopic systems [51]. To comply with
Hills’s expansion, we have formally included term ω3L3

even if it is not supported by EG prescription. It will be seen
that such a term is cosmologically unfeasible in the
quasiclassical regime, so that ω3 ≈ 0.
By holographic scaling, the energy residing inside the

holographic screen is related with the on-screen degrees of
freedom via the equipartition theorem E ¼ NkBT=2, with
E ¼ M being the total mass enclosed by the surface and
N ¼ A=ðGℏÞ being the number of bits connected with the
area by the holographic principle [49].
The EG paradigm posits that the minimum possible

increase in the screen entropy (equivalent to one bit of
Shannon’s information) happens if a particle of radius of
Compton wavelength λC is added to a holographic sphere
[49,52]. This happens when a pointlike quantum particle
appears at the distance λC from the screen [53]. By setting
δx ¼ λC ¼ ℏ=m and using the nonextensive version of the
Landauer principle [54,55], which states that the erasure of
information leads to an entropy increase δSTq ¼2πkB=ð3−2qÞ
per erased bit, we derive the modified Newton’s law

FðRÞ ¼ GMm
wR2

1

1 − κ3εqR3 − κ2εqR2
; ð25Þ
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with εq ¼ 1 − q, w ¼ 1þ 2εq, and κn ¼ ωn=ln
p, n ¼ 2, 3.

Since 2εq is small (see below), we can setw ¼ 1. The ensuing
gravitational potential up to the first order in εq is

VðRÞ ¼ rs
2

�
−
1

R
þ εqκ2Rþ εqκ3

2
R2

�
; ð26Þ

where rs ¼ 2GM is the Schwarzschild radius. Equation (26)
formally coincides with the Mannheim-Kazanas external
gravitational potential of a static, spherically symmetric source
of mass M in conformal gravity (CG) [56–59]. Strictly
speaking, in CG, a given local gravitational source generates
only a gravitational potential,

VMKðRÞ ¼ −
rs
2R

þ χ

2
R: ð27Þ

The would-be term ∝ R2 corresponds to a trivial vacuum
solution of CG and hence does not couple to matter sources
[56–59]. Fitting with CG thus implies that ω3 ≈ 0. The
magnitude of the constant χ can be associated with the inverse
Hubble radius [60], i.e., χ ≃ 1=RH. One should point out that
bymeans ofVMK it has been successfully fittedmore than two
hundred galactic rotation curves (with no need for dark matter
or other exotic modification of gravity) [56–59]. Besides CG,
the spherically symmetric gravitational potential with a linear
potential also occurs, e.g., in the dilaton-reduced action of
gravity [61,62] or fðRÞ gravity [63].
To be more quantitative, let us assume that the GUP

particle in question is inflaton. In such a case, a quasi-
classical (decoherence) description is valid at the late-
inflation epoch (after the first Hubble radius crossing) and
perhaps even after its end during reheating [64,65]. In this
period, the NTT should be a pertinent framework for the
description of the “inflaton gas.” For example, by viewing
the inflaton gas as the ideal gas, NTT predicts that the
inflaton pressure should satisfy for 0 < q < 1 a polytrope
relation p ∝ ρ5=3 (ρ is energy density) [66,67]. The relation
of this type frequently appears in phenomenological studies
on late inflation [68,69]. We can fix β by matching the
linear terms in Eqs. (26) and (27). By using rs ≃ RH, κ2 ¼
π=l2

pcm−2 (the Bekenstein-Hawking value), we get εq ¼
l2
p=ðπR2

HÞ. Note that in this setting the effect of the linear
potential is comparable to that of the Newtonian potential
on length scales 1=R2 ≃ εqκ2, i.e., R ≃ lp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðπεqÞ

p ¼ RH.
By solving (16) with respect to β and employing (15),

we obtain jβj ≃m2
pl2

p=ð2πðΔpÞ2ψR2
HÞ. To estimate β, we

express the Hubble radius as RHðtÞ ¼ H−1ðtÞ ¼ aðtÞ= _aðtÞ,
where H is the Hubble parameter and the scale factor aðtÞ
can be evaluated from the Vilenkin-Ford model [70]:
aðtÞ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ðBtÞp

, with B ¼ 2
ffiffiffiffiffiffiffiffiffi
Λ=3

p
(Λ is the cosmo-

logical constant). On the other hand, from the relativistic
equipartition theorem, we have ðΔpÞ2ψ ≃ 12ðkBTÞ2;
cf. Ref. [29]. A straightforward computation gives

jβj≡ jβjðtÞ ¼ m2
pl2

pΛ

72πðkBTÞ2 tanh2ð2t
ffiffiffi
Λ
3

q
Þ
: ð28Þ

For the sake of concreteness, let us consider the late-
inflation/reheating epoch, i.e., timescale t ≃ 10−33 s. By
assuming T of the order of the reheating temperature
TR ≃ 107 ÷ 108 GeV, we obtain jβj ∼ 10−2 ÷ 1, which is
in agreement with the values predicted by string theory;
cf. e.g., Refs. [1,2]. In passing, we stress that the above
connection with the CG potential works only for β < 0, or
else in (26), we would have a wrong sign in front of the
linear potential.

VI. CONCLUSIONS

To conclude, we have derived the explicit form of
coherent states for the generalized uncertainty principle
and showed that in the momentum representation they
coincide with Tsallis probability amplitudes. Furthermore,
for β < 0, we have reformulated GUP in terms of Tsallis
entropy–based entropic uncertainty relations, and by invok-
ing the maximal entropy principle, we showed that in the
semiclassical (decoherence) limit one can establish equiv-
alence between the GUP quantum systems and nonexten-
sive thermostatistics of Tsallis. This provides a novel
framework to discuss transition between the GUP quantum
substrate and classical reality and opens a viable route for
tabletop experiments to explore possible GUP-based quan-
tum gravitational phenomena via analog gravity models.
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