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Based on the potential nonrelativistic QCD formalism, we compute the nonrelativistic QCD long-distance
matrix elements (LDMEs) for inclusive production of S-wave heavy quarkonia. This greatly reduces the
number of nonperturbative unknowns and brings in a substantial enhancement in the predictive power of the
nonrelativistic QCD factorization formalism. We obtain improved determinations of the LDMEs and find
cross sections and polarizations of J=ψ , ψð2SÞ, and excited ϒ states that agree well with LHC data. Our
results may have important implications in pinning down the heavy quarkonium production mechanism.
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Production of heavy quarkonia in high energy collisions
provide a unique opportunity to probe the interplay
between perturbative and nonperturbative aspects of
QCD, as well as the hot and dense phase of QCD [1–4].
Especially, inclusive production rates of S-wave heavy
quarkonia such as J=ψ , ψð2SÞ, and ϒ have been studied
extensively in collider experiments such as the RHIC,
Tevatron, B factories, HERA, and the LHC, and will
continue to be an important subject in future colliders
including the Electron-Ion Collider.
Phenomenological studies of heavy quarkonium produc-

tion have mostly been carried out in the context of non-
relativistic effective field theories, which make use of the
hierarchy of energy scalesm ≫ mv ≫ mv2 associated with
a heavy quarkonium state. Here,m is the heavy quark mass,
and v is the velocity of a heavy quark in the heavy
quarkonium rest frame. Nonrelativistic QCD (NRQCD)
follows from integrating out the scale of the heavy quark
mass m [5,6]. NRQCD provides a factorization formalism
that describes the inclusive cross section of a heavy
quarkonium in terms of sums of products of perturbatively
calculable short-distance coefficients (SDCs) and

nonperturbative long-distance matrix elements (LDMEs).
The LDMEs have known scalings in v, so that in practice
the factorization formula is truncated at a desired accuracy
in v. NRQCD factorization for inclusive production is
expected to be accurate up to relative order m2=p2

T in the
expansion in powers of m2=p2

T , where pT is the transverse
momentum of the quarkonium produced in the collision
[6–10]. Hence, large-pT cross sections of heavy quarkonia
are described by the NRQCD factorization formalism in
terms of a limited number of LDMEs, which depend only
on the nonperturbative nature of the heavy quarkonium
state but are process independent.
For decades a huge effort has been put into computing

the SDCs and determining the LDMEs. As it has not been
known how to compute the LDMEs from first principles,
the determinations of the LDMEs have mostly relied on
measured cross section data. This approach has led to
inconsistent sets of LDMEs that give contradicting pre-
dictions, depending on the choice of data and the organi-
zation of the QCD perturbation series [11–21]. Also the
signs of the LDMEs can differ between different determi-
nations. As none of the existing determinations are able to
give a comprehensive description of important observables,
it is fair to say that the production mechanism of heavy
quarkonium still remains elusive [22].
Recently, a formalism for computing the production

LDMEs has been developed in Refs. [23,24] based on
the effective field theory potential NRQCD (pNRQCD),
which is obtained by integrating out the scale of order mv
[25–27]. The pNRQCD formalism provides expressions for
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the LDMEs in terms of quarkonium wave functions at the
origin, which can be computed by solving the Schrödinger
equation, and gluonic correlators, which are universal
quantities that do not depend on the specific heavy
quarkonium state and can in principle be computed in
lattice QCD. This results in a reduction of the number
of nonperturbative unknowns which greatly enhances the
predictive power of NRQCD factorization. The pNRQCD
formalism has been successfully applied to the production
of P-wave heavy quarkonia, and the phenomenological
results agree well with available measurements at the LHC
[23,24]. It has been anticipated that the application of the
pNRQCD formalism to production of S-wave heavy
quarkonia may help scrutinize the LDMEs and the appli-
cability of the NRQCD factorization formalism.
In this work we compute, for the first time, the NRQCD

LDMEs for production of S-wave heavy quarkonia in the
pNRQCD formalism. We work in the strongly coupled
regime, v≳ ΛQCD=m, which we assume to be appropriate
for J=ψ, ψð2SÞ, and excited ϒ states. Based on the results
for the LDMEs that we obtain, we compute production
rates of S-wave quarkonia at the LHC and compare them
with data.
The inclusive cross section of a spin-1 S-wave heavy

quarkonium V is given in the NRQCD factorization
formalism at relative order v4 accuracy by

σVþX ¼ σ̂3S½1�
1

hOVð3S½1�1 Þi þ σ̂3S½8�
1

hOVð3S½8�1 Þi

þ σ̂1S½8�
0

hOVð1S½8�0 Þi þ σ̂3P½8�
J
hOVð3P½8�

0 Þi: ð1Þ

Here, the σ̂N are the SDCs, which correspond to the
production rate of a heavy quark Q and antiquark Q̄ in
the color and angular momentum state N. The SDC σ̂3P½8�

J

includes contributions from J ¼ 0, 1, and 2. We use
spectroscopic notation for the angular momentum state
of the QQ̄, while the superscripts [1] and [8] denote the
color state of the QQ̄: color singlet (CS) and color octet
(CO), respectively. The LDMEs are defined by [6–9]

hOVð3S½1�1 Þi ¼ hΩjχ†σiψPVðP¼0Þψ†σiχjΩi; ð2aÞ

hOVð3S½8�1 Þi ¼ hΩjχ†σiTaψΦ†ab
l PVðP¼0ÞΦbc

l ψ†σiTcχjΩi;
ð2bÞ

hOVð1S½8�0 Þi ¼ hΩjχ†TaψΦ†ab
l PVðP¼0ÞΦbc

l ψ†TcχjΩi; ð2cÞ

hOVð3P½8�
0 Þi ¼ 1

3
hΩjχ†

�
−
i
2
D
↔
· σ

�
TaψΦ†ab

l PVðP¼0Þ

×Φbc
l ψ†

�
−
i
2
D
↔
· σ

�
TcχjΩi; ð2dÞ

where jΩi is the QCD vacuum, Ta are SU(3) generators, σi

are Pauli matrices, and ψ and χ are Pauli spinors that
annihilate and create a heavy quark and antiquark, respec-

tively. The covariant derivative D
↔

is defined by

χ†D
↔
ψ ¼ χ†Dψ − ðDχÞ†ψ , with D ¼ ∇ − igA, and A is

the gluon field. The operator PQðPÞ projects onto a state
consisting of a quarkonium Q with momentum P. The
path-ordered Wilson line along the spacetime direction l,
defined by Φl ¼ P exp½−ig R∞

0 dλl · AadjðlλÞ�, where Aadj

is the gluon field in the adjoint representation, ensures the
gauge invariance of the CO LDMEs [7–9]. The direction l
is arbitrary.
In existing studies of S-wave heavy quarkonium pro-

duction, the CO LDMEs are determined by comparing
Eq. (1) to cross section data. One major difficulty in this
approach is that in existing studies based on hadroproduc-
tion, only certain linear combinations of the CO LDMEs
are strongly constrained, while individual LDMEs are often
poorly determined.
Now we compute the LDMEs in Eqs. (2) in pNRQCD

using the formalism developed in Refs. [23,24]. We work at
leading nonvanishing order in the quantum-mechanical
perturbation theory (QMPT), where we expand in powers
of v2 and ΛQCD=m.

For the CS LDME hOVð3S½1�1 Þi, we obtain at leading
order in QMPT

hOVð3S½1�1 Þi ¼ 2Nc ×
3jRð0Þ

V ð0Þj2
4π

; ð3Þ

where Rð0Þ
V ðrÞ is the radial wave function of the quarko-

nium V at leading order in v. This reproduces the
result obtained in the vacuum-saturation approximation
in Ref. [6].
The expressions for the CO LDMEs are given by

hOVð3S½8�1 Þi ¼ 1

2Ncm2

3jRð0Þ
V ð0Þj2
4π

E10;10; ð4aÞ

hOVð1S½8�0 Þi ¼ 1

6Ncm2

3jRð0Þ
V ð0Þj2
4π

c2FB00; ð4bÞ

hOVð3P½8�
0 Þi ¼ 1

18Nc

3jRð0Þ
V ð0Þj2
4π

E00; ð4cÞ

where cF is given in Refs. [28–30] in the MS scheme at the
scale Λ by cF ¼ 1þ αs

2π ½CF þ CAð1þ logΛ=mÞ� þOðα2sÞ,
with CF ¼ ðN2

c − 1Þ=ð2NcÞ and CA ¼ Nc; E10;10, B00, and
E00 are gluonic correlators of dimension 2 defined by
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E10;10 ¼
����ddac

Z
∞

0

dt1t1

Z
∞

t1

dt2gEb;iðt2Þ

×Φbc
0 ðt1; t2ÞgEa;iðt1ÞΦdf

0 ð0; t1ÞΦef
l jΩi

����
2

; ð5aÞ

B00 ¼
����
Z

∞

0

dtgBa;iðtÞΦac
0 ð0; tÞΦbc

l jΩi
����
2

; ð5bÞ

E00 ¼
����
Z

∞

0

dtgEa;iðtÞΦac
0 ð0; tÞΦbc

l jΩi
����
2

; ð5cÞ

where dabc ¼ 2 trðfTa; TbgTcÞ, Ea;iðtÞ, and Ba;iðtÞ are
chromoelectric and chromomagnetic field components,
respectively, computed at the time t and space coor-
dinate 0, and Φ0ðt; t0Þ ¼ P exp½−ig R t0

t dτAadj
0 ðτ; 0Þ� is a

Schwinger line. The chromoelectric and chromomagnetic
fields in the expressions for E10;10 and B00 come from theD2

and σ · gB terms in the NRQCD Lagrangian, respectively,

while the chromoelectric fields in E00 come from theD
↔
in the

definition of hOVð3P½8�
0 Þi. Note that the correlatorsE10;10,B00,

andE00 are purely gluonic quantities that do not dependon the
heavy quark flavor. The expressions in Eqs. (4) are accurate
up to corrections of relative order v2 and 1=N2

c [23,24].
We find the one-loop evolution equation for E10;10

given by

d
d logΛ

E10;10 ¼ E00 ×
2αs
3π

N2
c − 4

Nc
þOðα2sÞ: ð6Þ

This reproduces the known scale dependence of

hOVð3S½8�1 Þi, which cancels the explicit logΛ that appears
in σ̂3P½8�

J
[6,31]. The correlator B00 also depends on the scale

in a way that c2FB00 is scale independent at one-loop level.
We note that our results in Eqs. (4) arevalid in dimensional

regularization (DR), because in computing the LDMEs we
have discarded scaleless power divergences which vanish in
DR [24,32]. Since the correlators in Eqs. (5) contain power
UV divergences which are automatically subtracted in DR,
they may not be positive definite, even though they are
defined as norms of states that are obtained by applying
gluonic operators on the QCD vacuum.

The three correlators in Eqs. (5) and jRð0Þ
V ð0Þj completely

fix all LDMEs that appear in Eq. (1). Since lattice
determinations of the correlators are not available yet,
we determine the correlators by comparing Eq. (1) to
measured cross section data at the LHC. We employ the
measured data for prompt J=ψ and ψð2SÞ production rates
in Refs. [33,34] and inclusive ϒð2SÞ and ϒð3SÞ cross
sections in Ref. [35]. We use pT cuts to prevent factori-
zation-breaking effects at small pT from affecting the fit. In
order to explore the dependence on the pT cut, we consider
two regions pT=ð2mÞ > 5 and pT=ð2mÞ > 3.

In computing the cross sections from Eqs. (1) and (4), we

use the values jRð0Þ
J=ψð0Þj2 ¼ 0.825 GeV3, jRð0Þ

ψð2SÞð0Þj2 ¼
0.492 GeV3, jRð0Þ

ϒð2SÞð0Þj2 ¼ 3.46 GeV3, and jRð0Þ
ϒð3SÞð0Þj2 ¼

2.67 GeV3, which we obtain by comparing the measured
leptonic decay rates in Ref. [36] with the pNRQCD
expressions at leading order in v and at next-to-leading
order (NLO) in αs [37]. We compute the SDCs in Eq. (1) at
NLO in αs by using the FDCHQHP package [38]. We use
m ¼ 1.5 GeV for charm and 4.75 GeV for bottom, and set
Λ ¼ m for the MS scale of the NRQCD LDMEs. We
consider the runnings of the correlators by using the
renormalization-group improved formulas at one loop;
the effect of the running of B00 is numerically small, while
the running of E10;10 depends on the value of E00. We
consider feeddowns from P-wave quarkonia by using the
measurements in Refs. [39,40], and take into account
the decays of ψð2SÞ into J=ψ and ϒð3SÞ into ϒð2SÞ using
the measured branching ratios in Ref. [41]. We take the
uncertainties in the theoretical expressions for the charmo-
nium and bottomonium cross sections to be 30% and 10%
of the central values, respectively, which account for
uncalculated corrections of higher orders in v2. We neglect
uncertainties from corrections of order 1=N2

c and variations
of scales because they are small compared to the uncer-
tainties that we consider.
The pNRQCD results for the LDMEs imply that the ratio

of the large-pT direct production rates of ψð2SÞ and J=ψ is

simply given by jRð0Þ
ψð2SÞð0Þj2=jRð0Þ

J=ψð0Þj2, up to corrections of
order v2, independently of the values of the correlators. If we
take into account the feeddown contributions from decays of
χc andψð2SÞ into J=ψ , we obtain ðBψð2SÞ→μþμ− × σψð2SÞþXÞ=
ðBJ=ψ→μþμ− × σJ=ψþXÞ ≈ 0.04, which agrees well with the
measured values in Ref. [33] at large pT . Similarly, the ratio
of the large-pT direct production rates ofϒð3SÞ andϒð2SÞ is
given by jRð0Þ

ϒð3SÞð0Þj2=jRð0Þ
ϒð2SÞð0Þj2, up to corrections of order

v2. If we take into account the feeddowns from decays
of χbð3PÞ into ϒð3SÞ, as well as χbð3PÞ, χbð2PÞ, and
ϒð3SÞ into ϒð2SÞ, we obtain ðBϒð3SÞ→μþμ− × σϒð3SÞþXÞ=
ðBϒð2SÞ→μþμ− × σϒð2SÞþXÞ ≈ 0.8, which is in fair agreement
with measurements in Ref. [35].
The values of the correlators that are determined from

our fits are listed in Table I. The results from the two pT
regions are consistent within uncertainties. The qualities of

TABLE I. Fit results for the correlators E10;10, c2FB00, and E00

for the two pT regions in the MS scheme at the scale
Λ ¼ 1.5 GeV. The SDC cF is computed for the charm quark
mass m ¼ 1.5 GeV.

pT region E10;10 (GeV2) c2FB00 (GeV2) E00 (GeV2)

pT=ð2mÞ > 5 0.860� 0.277 −2.25� 7.06 13.4� 4.6
pT=ð2mÞ > 3 1.17� 0.13 −9.79� 3.08 18.5� 2.1
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the fits are good; we obtain χ2min=d:o:f: ¼ 6.30=41 and
14.0=71 for pT=ð2mÞ > 5 and pT=ð2mÞ > 3, respectively.
As a representative example, we show the numerical results
for the J=ψ CO LDMEs in Table II. The uncertainties
shown in Table I are correlated; the correlation matrix of the
uncertainties in E10;10, c2FB00, and E00 for each pT region is
given by

CpT
2m>5

¼

0
B@

0.0766 −1.75 1.27

−1.75 49.8 −28.5
1.27 −28.5 21.3

1
CA GeV4; ð7aÞ

CpT
2m>3

¼

0
B@

0.0160 −0.348 0.267

−0.348 9.49 −5.62
0.267 −5.62 4.48

1
CA GeV4: ð7bÞ

When computing observables, we take into account these
correlations in order to reduce the theoretical uncertainties.
We note that the eigenvectors of the correlation matrix are
almost independent of the pT cut.
Our fits strongly constrain the value of E00 to be positive.

This happens because, the ratios of the charmonium and
bottomonium cross sections at comparable values of pT=m

depend mainly on the ratios of jRð0Þ
V ð0Þj2, the quark mass,

and the running of the correlators. Since the running of
E10;10 depends on E00, the pNRQCD analysis determines
rather precisely E00, and eventually the CO LDME

hOVð3P½8�
0 Þi as well. This distinguishes the pNRQCD

analysis from other existing approaches. A positive E00

implies that the value of E10;10 at the scale Λ ¼ m is larger
for bottomonium than for charmonium. We expect that the
sign of E00 will not change because of corrections of higher
orders in αs, as radiative corrections shall affect the
charmonium and bottomonium SDCs in a similar way.
In Fig. 1 we show our results for the prompt production

rates of J=ψ and ψð2SÞ, and inclusive cross sections of
ϒð2SÞ and ϒð3SÞ at the LHC center of mass energy

ffiffiffi
s

p ¼
7 TeV compared with CMS and ATLAS measurements
from Refs. [33–35], which are used in our fits. The
theoretical uncertainties are determined so that they encom-
pass the uncertainties in the correlators in the two pT
regions. The pNRQCD results for the cross sections are in
fair agreement with measurements at large pT . In Fig. 1 we
also show, as dotted outlined bands, the pNRQCD results
where the production rates for each quarkonium state are

obtained by excluding that quarkonium data from the fit.
In all cases, the results are consistent with the fits from
all available data.
We note that the bulk of the cross section comes from the

remnant of the cancellation between the 3P½8�
J and 3S½8�1

channels (σ̂3P½8�
J
is negative at largepT , while σ̂3S½8�

1

is positive);

moreover, the contribution from the 1S½8�0 channel is small.
We have tested the stability of our results against the large
cancellations between channels by imposing an upper pT
cut, and found that it has negligible effects to our fits.
An important observable that lets us put the CO con-

tributions to the test is the polarization of the quarkonium at

TABLE II. Numerical results for the J=ψ CO LDMEs in units
of 10−2 GeV3. The uncertainties come from the correlators E10;10,
c2FB00, and E00.

pT region hOJ=ψ ð3S½8�1 Þi hOJ=ψ ð1S½8�0 Þi hOJ=ψ ð3P½8�
0 Þi=m2

pT=ð2mÞ > 5 1.25� 0.40 −1.10� 3.43 2.18� 0.75
pT=ð2mÞ > 3 1.70� 0.18 −4.76� 1.50 3.00� 0.34

FIG. 1. The pT -differential cross sections for J=ψ, ψð2SÞ,
ϒð2SÞ, and ϒð3SÞ at the LHC center of mass energy

ffiffiffi
s

p ¼
7 TeV compared with the CMS and ATLAS measurements
[33–35]. Here, B is the dilepton branching ratio. For each
quarkonium state, the dotted outlined bands are pNRQCD results
obtained by excluding that quarkonium data from the fit.
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large pT . We consider the polarization parameter λθ in the
helicity frame, which takes values þ1, 0, and −1 when the
quarkonium is transverse, unpolarized, and longitudinal,
respectively [42–44]. The pNRQCD expressions for the
CO LDMEs in Eqs. (4) imply that the polarization of
directly produced quarkonium is independent of the radial
excitation, up to corrections of higher orders in v2.

Although the 3S½8�1 and 3P½8�
J channels are strongly trans-

verse, the large cancellation between the two channels
result in smaller values of λθ. Because E00 is positive, we
expect that ϒ is more transverse than J=ψ or ψð2SÞ at
comparable values of pT=m, due to the running of E10;10

which makes it take a greater value at the scale of the
bottom quark mass compared to the charmonium case.
These expectations are supported by the pNRQCD results
for λθ in the helicity frame shown in Fig. 2, which also
agree with CMS measurements [45,46].

Other observables that provide tests of the CO LDMEs
include production rates of J=ψ at ep and lepton
colliders, and production of ηc. As have been pointed
out in Refs. [47,48], many LDME determinations
based on hadroproduction data are known to overestimate
these cross sections compared to the measurements in

Refs. [49–52]. A small or negative value of hOJ=ψð1S½8�0 Þi,
similar to what we obtain from our result for c2FB00,
can reduce the size of these cross sections compared
to existing hadroproduction-based approaches in
Refs. [14,16,20,53], diminishing in this way the tension
with measurements [54].
The pNRQCD calculation of the NRQCD LDMEs of

S-wave heavy quarkonia that we have presented in this paper
provides expressions for the color-singlet and color-octet
LDMEs in terms of quarkonium wave functions and uni-
versal gluonic correlators. This brings in a reduction of the
number of nonperturbative unknowns and significantly
enhances the predictive power of the factorization formalism
for inclusive production of heavyquarkonia. The universality
of the gluonic correlators lets us determine the LDMEs from
charmonium and bottomonium data, which leads to strong
constraints on the LDMEs. Especially, the P-wave CO
LDMEs are strongly constrained, which may bemore robust
against radiative corrections compared to existing determi-
nations. The pNRQCD results for the inclusive cross sections
of J=ψ , ψð2SÞ, and excited ϒ states and their polarizations
at the LHC are shown in Figs. 1 and 2. They agree with
measurements at the LHC. More measurements of produc-
tion rates of excited ϒ states at large pT will help further
reduce theoretical uncertainties. The pNRQCD calculation
of the NRQCD LDMEs for production of S-wave heavy
quarkonia presented in this paper may be important in
resolving the longstanding puzzle of the heavy quarkonium
production mechanism.

We thank Peter Vander Griend for his careful reading of
the manuscript. The work of N. B. is supported by the DFG
(Deutsche Forschungsgemeinschaft, German Research
Foundation) Grant No. BR 4058/2-2. N. B., H. S. C., and
A. V. acknowledge support from the DFG cluster of
excellence “ORIGINS” under Germany’s Excellence
Strategy—EXC-2094–390783311. The work of A. V. and
X.-P.W. is funded by the DFG Project-ID 196253076—
TRR 110.

[1] N. Brambilla et al. (Quarkonium Working Group), Report
Nos. CERN-2005-005, CERN-2005-005, CERN, Geneva,
2005.

[2] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).

[3] G. T. Bodwin, E. Braaten, E. Eichten, S. L. Olsen, T. K.
Pedlar, and J. Russ, in Community Summer Study 2013:
Snowmass on the Mississippi (2013), arXiv:1307.7425.

[4] N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014).

FIG. 2. The polarization parameter λθ in the helicity frame for
direct J=ψ ,ψð2SÞ, andϒ compared toCMSmeasurements [45,46].

PRODUCTION AND POLARIZATION OF S-WAVE QUARKONIA … PHYS. REV. D 105, L111503 (2022)

L111503-5

https://doi.org/10.1140/epjc/s10052-010-1534-9
https://arXiv.org/abs/1307.7425
https://doi.org/10.1140/epjc/s10052-014-2981-5


[5] W. E. Caswell andG. P. Lepage, Phys. Lett.167B, 437 (1986).
[6] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D

51, 1125 (1995); 55, 5853(E) (1997).
[7] G. C. Nayak, J.-W. Qiu, and G. F. Sterman, Phys. Lett. B

613, 45 (2005).
[8] G. C. Nayak, J.-W. Qiu, and G. F. Sterman, Phys. Rev. D 72,

114012 (2005).
[9] G. C. Nayak, J.-W. Qiu, and G. F. Sterman, Phys. Rev. D 74,

074007 (2006).
[10] Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu, and G. Sterman, Phys.

Rev. D 90, 034006 (2014).
[11] Y.-Q. Ma, K. Wang, and K.-T. Chao, Phys. Rev. D 84,

114001 (2011).
[12] M. Butenschoen and B. A. Kniehl, Phys. Rev. Lett. 106,

022003 (2011).
[13] Y.-Q. Ma, K. Wang, and K.-T. Chao, Phys. Rev. Lett. 106,

042002 (2011).
[14] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang, and Y.-J.

Zhang, Phys. Rev. Lett. 108, 242004 (2012).
[15] M. Butenschoen and B. A. Kniehl, Phys. Rev. Lett. 108,

172002 (2012).
[16] B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang, Phys.

Rev. Lett. 110, 042002 (2013).
[17] M. Butenschoen and B. A. Kniehl, Phys. Rev. D 84, 051501

(2011).
[18] M. Butenschoen and B. A. Kniehl, Phys. Rev. Lett. 104,

072001 (2010).
[19] M. Butenschoen and B. A. Kniehl, Phys. Rev. Lett. 107,

232001 (2011).
[20] G. T. Bodwin, H. S. Chung, U.-R. Kim, and J. Lee, Phys.

Rev. Lett. 113, 022001 (2014).
[21] G. T. Bodwin, K.-T. Chao, H. S. Chung, U.-R. Kim, J. Lee,

and Y.-Q. Ma, Phys. Rev. D 93, 034041 (2016).
[22] H. S. Chung, Proc. Sci., Confinement2018 (2018) 007.
[23] N. Brambilla, H. S. Chung, and A. Vairo, Phys. Rev. Lett.

126, 082003 (2021).
[24] N. Brambilla, H. S. Chung, and A. Vairo, J. High Energy

Phys. 09 (2021) 032.
[25] A. Pineda and J. Soto, Nucl. Phys. B, Proc. Suppl. 64, 428

(1998).
[26] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Nucl. Phys.

B566, 275 (2000).
[27] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Rev. Mod.

Phys. 77, 1423 (2005).
[28] E. Eichten and B. R. Hill, Phys. Lett. B 243, 427 (1990).
[29] A. Czarnecki and A. G. Grozin, Phys. Lett. B 405, 142

(1997); 650, 447(E) (2007).
[30] A. G. Grozin, P. Marquard, J. H. Piclum, and M.

Steinhauser, Nucl. Phys. B789, 277 (2008).

[31] G. T. Bodwin, U.-R. Kim, and J. Lee, J. High Energy Phys.
11 (2012) 020.

[32] N. Brambilla, D. Eiras, A. Pineda, J. Soto, and A. Vairo,
Phys. Rev. D 67, 034018 (2003).

[33] S. Chatrchyan et al. (CMS Collaboration), J. High Energy
Phys. 02 (2012) 011.

[34] V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett.
114, 191802 (2015).

[35] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 87,
052004 (2013).

[36] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 85,
112008 (2012).

[37] N. Brambilla, H. S. Chung, D. Müller, and A. Vairo, J. High
Energy Phys. 04 (2020) 095.

[38] L.-P. Wan and J.-X. Wang, Comput. Phys. Commun. 185,
2939 (2014).

[39] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys.
07 (2014) 154.

[40] R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 74,
3092 (2014).

[41] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[42] M. Beneke and M. Krämer, Phys. Rev. D 55, R5269
(1997).

[43] M. Beneke, M. Krämer, and M. Vanttinen, Phys. Rev. D 57,
4258 (1998).

[44] P. Faccioli, C. Lourenço, J. a. Seixas, and H. K. Wöhri, Eur.
Phys. J. C 69, 657 (2010).

[45] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett.
110, 081802 (2013).

[46] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
727, 381 (2013).

[47] M. Butenschoen and B. A. Kniehl, Mod. Phys. Lett. A 28,
1350027 (2013).

[48] M. Butenschoen, Z.-G. He, and B. A. Kniehl, Phys. Rev.
Lett. 114, 092004 (2015).

[49] R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 75, 311
(2015).

[50] C. Adloff et al. (H1 Collaboration), Eur. Phys. J. C 25, 25
(2002).

[51] P. Pakhlov et al. (Belle Collaboration), Phys. Rev. D 79,
071101 (2009).

[52] F. D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 68,
401 (2010).

[53] G. T. Bodwin, H. S. Chung, U.-R. Kim, and J. Lee, Phys.
Rev. D 92, 074042 (2015).

[54] N. Brambilla, H. S. Chung, X.-P. Wang, and A. Vairo,
TUM-EFT 170/22 (to be published).

BRAMBILLA, CHUNG, VAIRO, and WANG PHYS. REV. D 105, L111503 (2022)

L111503-6

https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.55.5853
https://doi.org/10.1016/j.physletb.2005.03.031
https://doi.org/10.1016/j.physletb.2005.03.031
https://doi.org/10.1103/PhysRevD.72.114012
https://doi.org/10.1103/PhysRevD.72.114012
https://doi.org/10.1103/PhysRevD.74.074007
https://doi.org/10.1103/PhysRevD.74.074007
https://doi.org/10.1103/PhysRevD.90.034006
https://doi.org/10.1103/PhysRevD.90.034006
https://doi.org/10.1103/PhysRevD.84.114001
https://doi.org/10.1103/PhysRevD.84.114001
https://doi.org/10.1103/PhysRevLett.106.022003
https://doi.org/10.1103/PhysRevLett.106.022003
https://doi.org/10.1103/PhysRevLett.106.042002
https://doi.org/10.1103/PhysRevLett.106.042002
https://doi.org/10.1103/PhysRevLett.108.242004
https://doi.org/10.1103/PhysRevLett.108.172002
https://doi.org/10.1103/PhysRevLett.108.172002
https://doi.org/10.1103/PhysRevLett.110.042002
https://doi.org/10.1103/PhysRevLett.110.042002
https://doi.org/10.1103/PhysRevD.84.051501
https://doi.org/10.1103/PhysRevD.84.051501
https://doi.org/10.1103/PhysRevLett.104.072001
https://doi.org/10.1103/PhysRevLett.104.072001
https://doi.org/10.1103/PhysRevLett.107.232001
https://doi.org/10.1103/PhysRevLett.107.232001
https://doi.org/10.1103/PhysRevLett.113.022001
https://doi.org/10.1103/PhysRevLett.113.022001
https://doi.org/10.1103/PhysRevD.93.034041
https://doi.org/10.22323/1.336.0007
https://doi.org/10.1103/PhysRevLett.126.082003
https://doi.org/10.1103/PhysRevLett.126.082003
https://doi.org/10.1007/JHEP09(2021)032
https://doi.org/10.1007/JHEP09(2021)032
https://doi.org/10.1016/S0920-5632(97)01102-X
https://doi.org/10.1016/S0920-5632(97)01102-X
https://doi.org/10.1016/S0550-3213(99)00693-8
https://doi.org/10.1016/S0550-3213(99)00693-8
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1016/0370-2693(90)91408-4
https://doi.org/10.1016/S0370-2693(97)00587-X
https://doi.org/10.1016/S0370-2693(97)00587-X
https://doi.org/10.1016/j.physletb.2007.05.016
https://doi.org/10.1016/j.nuclphysb.2007.08.012
https://doi.org/10.1007/JHEP11(2012)020
https://doi.org/10.1007/JHEP11(2012)020
https://doi.org/10.1103/PhysRevD.67.034018
https://doi.org/10.1007/JHEP02(2012)011
https://doi.org/10.1007/JHEP02(2012)011
https://doi.org/10.1103/PhysRevLett.114.191802
https://doi.org/10.1103/PhysRevLett.114.191802
https://doi.org/10.1103/PhysRevD.87.052004
https://doi.org/10.1103/PhysRevD.87.052004
https://doi.org/10.1103/PhysRevD.85.112008
https://doi.org/10.1103/PhysRevD.85.112008
https://doi.org/10.1007/JHEP04(2020)095
https://doi.org/10.1007/JHEP04(2020)095
https://doi.org/10.1016/j.cpc.2014.06.022
https://doi.org/10.1016/j.cpc.2014.06.022
https://doi.org/10.1007/JHEP07(2014)154
https://doi.org/10.1007/JHEP07(2014)154
https://doi.org/10.1140/epjc/s10052-014-3092-z
https://doi.org/10.1140/epjc/s10052-014-3092-z
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.55.R5269
https://doi.org/10.1103/PhysRevD.55.R5269
https://doi.org/10.1103/PhysRevD.57.4258
https://doi.org/10.1103/PhysRevD.57.4258
https://doi.org/10.1140/epjc/s10052-010-1420-5
https://doi.org/10.1140/epjc/s10052-010-1420-5
https://doi.org/10.1103/PhysRevLett.110.081802
https://doi.org/10.1103/PhysRevLett.110.081802
https://doi.org/10.1016/j.physletb.2013.10.055
https://doi.org/10.1016/j.physletb.2013.10.055
https://doi.org/10.1142/S0217732313500272
https://doi.org/10.1142/S0217732313500272
https://doi.org/10.1103/PhysRevLett.114.092004
https://doi.org/10.1103/PhysRevLett.114.092004
https://doi.org/10.1140/epjc/s10052-015-3502-x
https://doi.org/10.1140/epjc/s10052-015-3502-x
https://doi.org/10.1007/s10052-002-1009-8
https://doi.org/10.1007/s10052-002-1009-8
https://doi.org/10.1103/PhysRevD.79.071101
https://doi.org/10.1103/PhysRevD.79.071101
https://doi.org/10.1140/epjc/s10052-010-1376-5
https://doi.org/10.1140/epjc/s10052-010-1376-5
https://doi.org/10.1103/PhysRevD.92.074042
https://doi.org/10.1103/PhysRevD.92.074042

