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We present a systematic quantum algorithm, which integrates both the hadronic state preparation and the
evaluation of real-time light-front correlators, to study parton distribution functions (PDFs). As a proof of
concept, we demonstrate the first direct simulation of the PDFs in the 1þ 1 dimensional Nambu-Jona-
Lasinio model. We show the results obtained by exact diagonalization and by quantum computation using
classical hardware. The agreement between these two distinct methods and the qualitative consistency with
QCD PDFs validate the proposed quantum algorithm. Our work suggests the encouraging prospects of
calculating QCD PDFs on current and near-term quantum devices. The presented quantum algorithm is
expected to have many applications in high energy particle and nuclear physics.
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I. INTRODUCTION

Identifying the fundamental partonic structure of
hadrons has remained one of the main goals in both high
energy particle and nuclear physics since the pioneering
deep-inelastic scattering experiments at SLAC in the late
1960s [1,2]. Such partonic structure is encoded in the
universal parton distribution functions (PDFs), which
represent the probability density to find a parton in a
hadron with specified momentum fraction x and resolution

scale μ. Besides characterizing the hadronic parton struc-
ture, accurate determination of the PDFs is mandatory for
making predictions for hard scattering processes within the
Standard Model and for providing the necessary bench-
mark information in the search for new physics beyond the
Standard Model.
PDFs are nonperturbative quantities. They cannot be

obtained from perturbative QCD calculations. Thanks to
the QCD factorization theorems [3], PDFs can be
extracted through global analysis of the experimental
data. Extensive efforts have been devoted to this method;
see, for instance, CTEQ [4], MMHT [5], NNPDF [6],
AMBP [7], HERAPDF [8], and JAM [9,10]. On the other
hand, since PDFs are defined as real-time correlators of
quark and gluon fields, their direct evaluations in
Euclidean lattice QCD have encountered intrinsic diffi-
culties for a long time. To circumvent this problem, there
have been several proposals to obtain PDFs out of
quantities that can be calculated directly by lattice
simulations [11–26]. However, a direct calculation of
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the PDFs by evaluating the real-time light-cone
correlators is still inaccessible by foreseeable classical
computations.
Inspired by the great promise of quantum computers [27]

and the remarkable success in various related fields [28],
particularly in using the natural capability of quantum
computation to simulate real-time evolution in quantum
field theories, there has been a rapidly growing wave of
interest in implementing quantum computing methodolo-
gies to particle and nuclear physics in recent years (see
reviews [29,30]). The idea is to simulate hadron physics
with well-controllable quantum devices by generating
quantum states describing hadrons and evaluating physical
properties through measurements on the hadronic states. A
few pioneering attempts toward the calculation of PDFs on
a quantum computer have been explored, such as the
proposal of computing hadronic tensors [31], quantum
simulations of the space-time Wilson loops [32], the hybrid
approach incorporating quantum computing as a subroutine
[33], as well as global analyses of the world data with
quantum machine learning [34]. Still, a comprehensive and
unified framework for investigating PDFs on a quantum
computer using the fundamental lattice theory approach is
lacking, which calls for a systematic treatment, with
concrete quantum algorithms as well as analyses of
scalability.
In this paper, we work out a systematic quantum

computational approach for evaluating the PDFs.
Specifically, we develop a framework of the variational
quantum eigensolver for faithful preparation of hadronic
states of given quantum numbers, with the advantage of
efficient parametrization and almost trap-free optimization.
As a conceptual proof of our algorithm, we realize, for the
first time, a practical quantum simulation of the meson
PDFs. For the purpose of illustration, we present the
formulation in the 1þ 1 dimensional Nambu-Jona-
Lasinio (NJL) model [35,36], also known as the Gross-
Neveu (GN) model [37], which captures many fundamental
features of QCD and provides a unified picture of
the vacuum, mesons, and nucleons [38]. We show in
detail how to prepare the hadronic bound states effici-
ently on a quantum computer and how the real-time
parton correlators in coordinate space can be evaluated
directly.

II. PARTON DISTRIBUTION FUNCTIONS AND
THE NJL MODEL

In order to illustrate the calculation of PDFs using
quantum computing, we take the hadron PDFs in the
1þ 1 dimensional NJL model as a concrete example to
introduce our quantum algorithm. The Lagrangian for the
NJL model is given by

L ¼ ψ̄αðiγμ∂μ −mαÞψα þ gðψ̄αψαÞ2; ð1Þ
where g is the strong coupling constant and mα is the quark
mass, with α the flavor index. In the hadron rest frame, the
quark PDFs can be written as

fq=hðxÞ ¼
Z

dz
4π

e−ixMhz

× hhjeiHtψ̄ð0;−zÞe−iHtγþψð0; 0Þjhi; ð2Þ

where we have written the quark field ψ̄ðznμÞ with
the light-front coordinate znμ ¼ zð1;−1Þ as ψ̄ðznμÞ ¼
eiHzψ̄ð0;−zÞe−iHz with H the Hamiltonian of the NJL
model, and we set t ¼ z in Eq. (2). Here Mh is the mass of
the hadron h. Throughout this work, the hadron state in the
h rest frame will be denoted by jhi.
One of the major difficulties to directly compute the

PDFs by classical lattice simulations is rooted in the
evaluation of the real-time lightlike correlators in
Eq. (2). In this work, we will manifest how the time-
dependent correlators can be computed on a quantum
computer in polynomial time.
For later evaluations of Eq. (2) on a quantum computer,

we discretize the space withN=2 lattice sites for each flavor
α and put the quark fields on the lattice using the staggered
fermion approach,

ψαðxÞ ¼
�
ψα;1ðxÞ
ψα;2ðxÞ

�
≡

�
ϕα;2n

ϕα;2nþ1

�
; ð3Þ

with 0 ≤ n ≤ N
2
− 1, where we used ϕ, instead of ψ , to

denote the discretized up and down components of
the Dirac spinor on the lattice, and we denoted and ordered
the flavor indices α; β;… as 1; 2;…. We further apply the
Jordan-Wigner transformation [39] to rewrite the fermionic
fields in terms of the Pauli matrices that can be operated on
quantum computers,

ϕα;n ¼
Yα−1
β¼1

σ̃3
β;N

2

σ̃3α;nσ
þ
α;n ≡ Ξ3

α;nσ
þ
α;n; ð4Þ

where we used the raising and lowering operators σ�α;n ¼
1
2
ðσ1α;n � iσ2α;nÞ and introduced the string operator σ̃3α;n ≡Q
i<n σ

3
α;i to simplify the notations. Here σjα;i is the jth

component of the Pauli matrix on the lattice site i for flavor
α. Throughout the work, we always impose the periodic
boundary condition on the lattice sites for each quark flavor
α. The PDFs are then found to be

fqα=h ¼
X
z

1

4π
e−ixMhzDðzÞ; ð5Þ
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where the PDFs in position space are

DðzÞ ¼
X1
i;j¼0

hhjeiHzϕ†
α;−2zþie

−iHzϕα;jjhi: ð6Þ

Now we are ready to elaborate on the quantum algorithm
we propose for the direct PDF evaluation.

III. QUANTUM ALGORITHMS

The quantum algorithm we propose for calculating the
PDFs consists of two parts: (1) prepare the hadronic
state using the quantum-number-resolving variational
quantum eigensolver (VQE); (2) calculate the dynamical
light-front correlation function in Eq. (2) or, equiva-
lently, Eq. (6).

A. Hadronic state preparation

Simulating hadronic states for a generic quantum
field system on a quantum computer typically involves
preparing excited states with specified quantum numbers.
For this purpose, we develop a framework of the
quantum-number-resolving VQE. The quantum circuit
for hadronic state preparation is illustrated on the left-hand
side of the dashed line shown in Fig. 1 and involves
two steps.
First of all, we construct trial hadronic states for the kth

excited state with a set of quantum numbers l as

jψ lkðθÞi ¼ UðθÞjψ lkiref ; ð7Þ

where jψ lkiref is an input reference state and UðθÞ encodes
a set of symmetry-preserving unitary operators with
parameters θ.
The input states jψ liref with discrete quantum numbers—

such as the charge, the baryon number, and the spin—can
be realized as computational bases specified by those
quantum numbers. In addition, to preserve the spatial
symmetries, the input state of a given momentum will
be represented by a superposition of the computational
bases, and its preparation is similar to those of the Dicke
states [40]. Specifically for the PDFs, zero momentum is
chosen for the trial state.
The symmetry-preserving unitary evolution UðθÞ is

constructed using the quantum alternating operator ansatz
(QAOA [41], also related to the Hamiltonian variational
ansatz [42]). To retain the representation power yet preserve
the quantum numbers for the ansatz, the Hamiltonian is
divided as H ¼ H1 þH2 þ � � � þHn with n ≥ 2, where
every Hi inherits the symmetries of H and ½Hi;Hiþ1� ≠ 0.

The UðθÞ then consists of multiple layers, with each layer
constructed by alternately evolving Hj with parametrized
time duration θij,

UðθÞ≡Yp
i¼1

Yn
j¼1

expðiθijHjÞ: ð8Þ

Here p is the number of layers, and trial states with
larger p and n represent the objective hadronic state more
faithfully. By construction, the operator UðθÞ will evolve
the initial state jψ lkiref into jψ lkðθÞi due to the non-
commutativity of two consecutive evolutions expðiθijHjÞ
and expðiθij−1Hj−1Þ, while preserving the quantum
numbers l.
The second step is the optimization for hadronic states,

which can be realized by minimizing the cost function
constructed out of a weighted combination of energy
expectations [43],

ElðθÞ ¼
Xk
i¼1

wlihψ liðθÞjHjψ liðθÞi; ð9Þ

for k excited states with the same l to determine the
optimized parameter set θ�. Here we require
wl1 > wl2 > � � � > wlk. The kth excited hadron state jhi
is then prepared as jhi ¼ Uðθ�Þjψ lkiref .
Returning to the specific 1þ 1D NJL model we are

discussing, the mapping onto a quantum computer has been
carried out in the previous section. The Hamiltonian is
found to take the form

H ¼ H1 þH2 þH3 þH4; ð10Þ

where

FIG. 1. Quantum circuit for the calculation of PDFs. On the
left-hand side of the dashed line is the circuit for hadronic state
preparation, while the right-hand side is for the correlation
function.
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H1 ¼
X
α

XN2−1
n¼even

1

4
ðσ1α;nσ2α;nþ1 − σ2α;nσ

1
α;nþ1Þ;

H2 ¼
X
α

XN2−1
n¼even

g
2
σ3α;nσ

3
α;nþ1 þ

X
α;β

Hint;αβ;

H3 ¼ H1ðn ¼ even → n ¼ oddÞ þ 1

4

X
α

σ̃3
α;N

2

ðσ2
α;N

2
−1σ

1
α;0 − σ1

α;N
2
−1σ

2
α;0Þ;

H4 ¼
X
α

XN2−1
n¼0

mα

2
ð−1ÞnðI − σ3α;nÞ −

g
2
ðI − σ3α;nÞ; ð11Þ

where the second line of H3 comes from the periodic
boundary condition, and the interaction between different
quark flavors α and β is given by

Hint;αβ ¼ −
g
2

XN2−1
n¼even

σ3α;nσ
3
β;n þ σ3α;nþ1σ

3
β;nþ1

− σ3α;nþ1σ
3
β;n − σ3α;nσ

3
β;nþ1: ð12Þ

Here, H2 and H4 are diagonal. It is also straightforward
to check that Hi satisfies the condition ½Hi;Hiþ1� ≠ 0 and
meanwhile inherits the symmetries of H, following
from ½Qi;Hi� ¼ 0 and ½T;Hi� ¼ 0 for i ¼ 1;…; 4.
Note that T is the even-lattice translation operator, acting
as T−1σinT ¼ σinþ2, and Qi include the flavors and the
electromagnetic charge. It is noted that the massmα and the
coupling constant g can be absorbed into the parameter
set θ.
To prepare the input reference states for QAOA, we

follow the strategy introduced before. For instance, to
construct a zero-charge hadronic state with the lowest
mass out of the 1-flavor NJL model (the 1st excitation
state with respect to the vacuum Ω), the input states can be
chosen as

jψΩ;1iref ¼ j010101…01i;

jψΩ;2iref ¼
1ffiffiffiffiffiffiffiffiffi
N=2

p ðj1001;…; 01i þ j0110;…; 01i

þ � � � þ j0101;…; 10iÞ; ð13Þ

from which it immediately follows that QjψΩ;1iref ¼
QjψΩ;2iref , where Q ¼ eq

2

P
nðI − σ3nÞ is the electromag-

netic charge operator.
Then we apply the QAOA to evolve the reference states

to the objective vacuum and the hadronic state by mini-
mizing the cost function EΩðθÞ. Within EΩðθÞ, we can
choose, for instance, wΩ;1 ¼ 1 and wΩ;2 ¼ 0.5. For the
cases with more flavors, the hadronic states can be prepared
in a similar way.

B. Dynamical correlation function

With the hadronic state at hand, to obtain the PDFs, we
implement the quantum circuit illustrated on the right-hand
side of the dashed line in Fig. 1, following the standard
technique in Ref. [44], to evaluate the 2-point dynamical
correlation function,

SmnðtÞ ¼ hhjeiHtΞ3
mσ

i
me−iHtΞ3

nσ
j
njhi; ð14Þ

with iðjÞ ¼ 1, 2. The DðzÞ in Eq. (6) can then be written as
a sum of such correlation functions (see Supplemental
Material [45]).
The quantum algorithm encodes the information of the

dynamical correlation function into an ancillary qubit
which controls and probes the system of the simulated
hadron. More specifically, one inserts an evolution e−iHt

between two Ξ3
nσ

j
n and Ξ3

mσ
i
m operations controlled by the

ancilla and then measures the ancilla on the σ1 (σ2) basis to
get the real (imaginary) part of the correlation function.
Assuming that the probability of getting j0i out of the
ancilla is pmnðtÞ for a given m and n in the circuit, both the
real and the imaginary parts of the correlation function can
be found immediately through [44]

SmnðtÞ ¼ pmnðtÞ −
1

2
; ð15Þ

hence finishing the calculation of the PDFs. Here we also
calculate the vacuum propagator by replacing jhi with the
vacuum jΩi in Eq. (14), and we follow [46,47] to remove
the disconnected contributions.
We now estimate the time complexity of our quantum

approach. The depth of the parametric quantum circuit for
preparing the hadron state with the QAOA ansatz is
expected to be OðNÞ [42]. Since optimization with such
ansatz is believed to be almost trapped-free and quick to
converge [42], we could estimate the complexity of the
state preparation as OðNÞ. Extracting the PDFs involves a
series of measurements of the dynamical correlation
function SmnðtÞ at t ¼ 1; 2;…; N=2, with each t ¼ n taking
a cost of Oðn2=εÞ under a desired precision ε. The cost
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mostly comes from decomposing the real-time evolution
eiHt with the Trotter formula [48]. From the above analysis,
the total time complexity for calculating the PDFs
is OðN3=εÞ.
The polynomial scaling with the number of qubits—and,

more notably, the ability to attain real-time light-cone
evolution—clearly shows a quantum advantage of calcu-
lating hadron PDFs on a quantum computer. Although
justified only with a 1þ 1D quantum system, the quantum
advantage could still hold for generic quantum systems in
higher space-time dimensions and with gauge fields, if one
can map the non-Abelian gauge field onto qubits in an
efficient way [49–51]. Remarkably, even with the presence
of a Wilson line in the correlator of Eq. (2) due to the gauge
field, PDFs can still be efficiently evaluated on a quantum
computer (see Supplemental Material [45]).

IV. RESULTS

Considering the current limitations of using real quan-
tum devices, we present results using a classical simulation
of the quantum circuit in Fig. 1. The simulation is
performed on a desktop workstation with 16 cores, using
the open source packages QuSpin [52] and projectQ [53].
For the time being, we use N ¼ 12 or 18 qubits and set
a ¼ 1 for the lattice spacing, which is sufficient to
demonstrate the feasibility of the proposed quantum
algorithm. In reality, the lattice spacing a and quark mass
m will be fixed by the values of the coupling constant g and
relevant physical quantities such as hadron masses.
To verify the simulation, we first measure the mass of the

lowest-lying ud-like hadron Mh ¼ hhjHjhi with respect to
the vacuum energy hΩjHjΩi, in the NJL model with 2
flavors. We compare the result Mh;QC with Mh;NUM, where
the subscripts QC and NUM stand for the results obtained
by quantum computing and exact diagonalization (ED),
respectively. For simplicity, we set ma ¼ 0.2 for both
flavors. The comparison is shown in Table I. The
differences between these two approaches are at the percent
level, thus justifying the setups. It is also interesting to note
that for small quark mass, the dominant contribution to the
hadron mass comes from the interactions rather than the
quark masses. This is consistent with the picture that
QCD dynamics generates the majority of the hadron mass
[54–58]. We also test the results with a heavier quark mass
ma ¼ 0.8 in the 1-flavor model. In that case the hadron
mass is dominated by the quark masses 2m from the hadron
valence components. This is consistent with the expectation

on the similarity with the mass configuration of a heavy
quarkonium.
Now we present the quark PDF of the lowest-lying zero-

charge hadron in the 1-flavor NJL model, which mimics the
quark PDFs for π0. Considering the reliability of the results
and tolerable computing time, we use N ¼ 18 and fix the
quark mass ma ¼ 0.8. We show distributions in both
position space DðzÞ and momentum space fqðxÞ.
In Fig. 2, we plot the imaginary and real parts of DðzÞ.

We show results for both g ¼ 0.6 and g ¼ 1.0. In the plot,
the discrete open markers are from the direct quantum
computations. The real part shown in Fig. 2 is compatible
with zero, implying that fqðxÞ ¼ −fqð−xÞ. Since fq̄ðxÞ ¼
−fqð−xÞ holds after subtraction of the disconnected part
[46], we have fqðxÞ ¼ fq̄ðxÞ, which is consistent with our
expectation for one-flavor PDFs. To obtain the PDF fqðxÞ,
a continuous Fourier transformation of DðzÞ will be
performed. For this purpose, we interpolate the discrete
results, as shown by the lines in Fig. 2.
The results for the PDF are given in Fig. 3. We show

fqðxÞ from both the quantum computations (in open
markers) and the ED to the NJL model (in solid lines).

TABLE I. Calculated hadron mass as a function of g with
N ¼ 12.

g 0.2 0.4 0.6 0.8 1.0

Mh;QCa 1.002 1.810 2.674 3.534 4.352
Mh;NUMa 1.001 1.801 2.659 3.509 4.342

FIG. 2. Real (dashed lines) and imaginary parts (solid lines) of
the quark field correlation function in position space. The discrete
points are the lattice data, and the lines are from interpolations.

FIG. 3. Quark PDF from quantum computing (open markers)
and ED (solid lines). The error bars/bands arise from the
estimated uncertainties due to different interpolation methods.
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A perfect agreement between these two distinct approaches
is observed. In Fig. 3, the error bars/bands illustrate the
estimated uncertainties due to different ways of interpola-
tions in DðzÞ. The nonvanishing but suppressed contribu-
tions in the nonphysical region x > 1 are partly due to the
finite volume effect, which is also commonly seen in lattice
calculations (see, for instance, Ref. [59]). It is expected to
be further suppressed when more lattice sites and hence a
larger volume are used. Here we note that the renormaliza-
tion and calibration of input parameters, such as the lattice
spacing a and the quark mass m, for the NJL model are not
yet considered in this initial exploration, whose focus is the
practicability of a generic quantum algorithm for PDF
evaluations. A discussion of the renormalization procedure
and specific tuning of input parameters to physical quan-
tities for the NJL model and QCD will be left for future
publications. Nevertheless, we observe the expected peak
around x ¼ 0.5, and the shapes shown in Fig. 3 are in
qualitative agreement with the calculated fqðxÞ in two-
dimensional QCD [47] and the extracted pion PDFs from
the JAM Collaboration [60].

V. SUMMARY

In this work, we presented the first direct simulation of
the hadron partonic structure on a quantum computer. To
realize such a calculation, we proposed a systematic
quantum algorithm for preparing hadronic states using
the quantum-number-resolving VQE, and we designed
the quantum circuit to perform the real-time evolution
of the lightlike correlators. As a proof of concept, we
demonstrated the viability of the quantum algorithm by
calculating the PDF in the 1þ 1 dimensional NJL model.
Our simulation results using only 18 qubits agree with the

ED to the discretized NJL model. Our results manifest the
quantum advantage over the classical Euclidean lattice
methodology in resolving the intrinsic difficulties of
simulating real-time dynamics. Our exploratory study
suggests the possible future capability of studying realistic
hadron structures on current and/or near-term quantum
computers. Lastly, we point out that the proposed quantum
computing framework for preparing the hadronic states and
measuring the dynamical correlation functions is generally
applicable. Its extension to many applications in high
energy particle and nuclear physics is expected, such as
calculations of scattering processes and parton showers
[61–63], the proton spin configurations, the 3D structure of
a nucleon, as well as the fundamental jet transport proper-
ties [64] and the associated dynamics [65,66] of quark-
gluon plasma.
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