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In a gauge theory, the gauge invariant Hilbert space is unchanged by the coupling to arbitrary local
operators. In the presence of Wilson loops, though, the physical Hilbert space must be enlarged by adding
test electric charges along the loop. I discuss how at nonzero temperature Polyakov loops are naturally
related to the propagator of a test charge. ’t Hooft loops represent the propagation of a test magnetic charge,
and so do not alter the physical Hilbert space.
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I. INTRODUCTION

Since the seminal work of Wegner, Wilson, and Creutz,
simulations of lattice gauge theories using Monte Carlo
methods on classical computers has given us invaluable
information about quantum chromodynamics (QCD). For
the phase diagram at a nonzero temperature T and quark
chemical potential μ, at μ ¼ 0 the order parameter for chiral
symmetry exhibits crossover behavior at a temperature
of Tχ ≈ 156� 1.5 MeV [1–4]. These methods have been
extended to quark chemical potentials less than the temper-
ature, μ ≤ Tχ [2,3,5–8].
This leaves many quantities of direct experimental

significance which have not yet been computed. For
example, the diffusion coefficient for a heavy quark has
been computed in the SUð3Þ=Zð3Þ gauge theory without
dynamical quarks [9,10]. The computation of other trans-
port coefficients, notably the shear and bulk viscosities with
dynamical quarks in QCD, is conceivable with much larger
classical computers [11].
Many other quantities, such as correlation functions in

real time, and the properties of cold, dense QCD, are only
possible with quantum computers. While large scale
quantum computers with logical qubits lie well in the
future, it is useful to consider the questions of principle
which are unique to a gauge theory.
A classical computer deals with the Lagrangian. If the

chemical potential vanishes, then at any temperature the
action is real, and sophisticated techniques, including those
for nearly massless quarks, have been developed. While in
principle many states contribute to the partition function,
the Metropolis algorithm automatically selects the most

important. The difficulty is the sign problem: at nonzero
chemical potential the action is no longer real, and standard
techniques fail.
In contrast, for a quantum computer it is best to deal with

the Hamiltonian. The partition function is

Z ¼
X

e−H=T−μN ; ð1Þ

where H is the Hamiltonian, N the quark number density,
and

P
is the sum over all states. Because everything is real,

there is no sign problem when μ ≠ 0. The difficulty is that
exponentially many states contribute, and even for states
near the ground state, it is not obvious how to choose the
most important. Strategies to solve this have been devel-
oped in condensed matter systems, and include the density
matrix renormalization group, matrix product states, and
projected entangled pair states [12,13].
While some generalization of these methods will be

essential in QCD, the purpose of this paper is to make an
elementary point about how the Hamiltonian form of a
gauge theory changes in the presence of Wilson loops.
For a theory without gauge fields, the most general

correlation functions are given by adding sources for
arbitrary local operators to the Lagrangian. Multiple inser-
tions of composite operators induce new counterterms to
the theory, but this is standard [14–16], and going from the
Lagrangian to the Hamiltonian formalism is direct.
With gauge fields, however, there are gauge invariant

nonlocal operators, such as the Wilson loop,

WC ¼ trP exp
�
ig
Z
C
Aμdxμ

�
: ð2Þ

Here g is the gauge coupling, Aμ is the vector potential for
the gauge field, P denotes path ordering along a closed
curve C, and the trace is over color.
My basic point is simple. Dynamical quarks contribute to

Gauss’s law at each point in space. If the quark mass is sent
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to infinity, so all that remains is one test quark propagating
along C, then Gauss’s law must include the contribution of
that test quark [17,18]. I show in this paper how the sum
over states of the test quark generates the Wilson loop,WC.
I begin with the Lagrangian formalism, where the

analysis is transparent, and use that to proceed to the
Hamiltonian form. While I consider systems which are
independent of time, with the Hamiltonian formalism it is
possible to perturb a gauge theory with a gauge-invariant,
time-dependent source, and then measure the evolution
of Wilson loops in time. This validates computing the
“holonomous” potential for the eigenvalues of the thermal
Wilson line [19–39], and using it to construct effective
theories for the deconfining [40,41] and chiral [42] phase
transitions [16,43–67]. Incidentally, it alleviates some
concerns [68–78] about holonomous potentials
A Wilson loop alters the Hilbert space because it

represents the propagation of a test electric charge. In
contrast, the ’t Hooft loop [75–77,79–84] represents the
propagation of a test magnetic charge, and so does not
modify the Hilbert space. I also show how to compute
’t Hooft loops in the Hamiltonian formalism.

II. LAGRANGIAN FORMALISM

Consider a quark of mass M as M → ∞. Then we can
neglect the spin of the quark, as spin-dependent effects are
uniformly suppressed as ∼1=M. Similarly, we can consider
either a quark, propagating forward in time, or an antiquark,
propagating backwards in time. In either case, since it is
too heavy to move, the quark (or antiquark), just sits at
some point in space [85]. The gauge invariant effective
Lagrangian is then

L ¼ ψ†D0ψ : ð3Þ

I assume that ψ lies in the fundamental representation,
where the covariant derivative D0 ¼ ∂0 − igA0. Later I
generalize to arbitrary representations.
I introduce the Wilson line, running from a point x in

space-time to y:

Lðy; xÞ ¼ P exp

�
ig
Z

y

x
AμðzÞdzμ

�
; ð4Þ

uniformly taking a straight line path between the two.
Regardless of the path, the Wilson line transforms homo-
geneously under a gauge transformation ΩðxÞ,

Lðy; xÞ → Ω†ðyÞLðy; xÞΩðxÞ: ð5Þ

Since D0Lðx⃗; t0; tÞ ¼ 0, the propagator for a test quark
sitting at a point x⃗ is proportional to Lðx⃗; t0; tÞ ¼
Lðx⃗; t0; x⃗; tÞ, using an obvious abbreviated notation.
A test meson is constructed by putting a test quark at one

point, ðx⃗; 0Þ, and tying it with a spatial Wilson line to a test

antiquark at ð0⃗; 0Þ. A rectangular Wilson loop represents
the propagation of this test meson up in time, until it is
annihilated by a test antimeson.
At nonzero temperature it is possible to construct a gauge

invariant operator for a single test quark. In most gauges the
gauge fields can be taken to be periodic in imaginary time,
Aμðx⃗; 1=TÞ ¼ þAμðx⃗; 0Þ. The Polyakov loop is the trace of
the full thermal Wilson line, which runs from τ∶ 0 → 1=T,

Pðx⃗Þ ¼ trLðx⃗; 1=T; 0Þ: ð6Þ

This is invariant under strictly periodic gauge transforma-
tions. In a gauge theory without dynamical quarks, though,
the gauge symmetry is SUðNÞ=ZðNÞ, and it is also
necessary to consider global ZðNÞ transformations.
These form the center of the gauge group, ωj ¼ e2πij=N1,
j ¼ 1…N, where the ωj commute with all elements of the
group. Then more general gauge transformations are
possible, which are periodic only up to a factor of ωj,

Ωðx⃗; 1=TÞ ¼ ωjΩðx⃗; 0Þ: ð7Þ

Since the ωj commute with all group elements, the gauge
fields remain strictly periodic. The Polyakov loop, though,
transforms linearly,

Pðx⃗Þ → ωjPðx⃗Þ: ð8Þ

The spatial average of the vacuum expectation value,R
d3xhPðx⃗Þi, is an order parameter for the spontaneous

breaking of a global, one-form [86] ZðNÞ symmetry
[40,41]. Without dynamical quarks, this is an exact
symmetry in the confined phase, which is spontaneously
broken in the deconfining phase. With dynamical quarks
the Polaykov loop is still a gauge invariant operator, but the
global ZðNÞ symmetry is lost.
The expectation value of the Polyakov loop is

hPi ¼
Z

d3x
V

Z
DAμe−SðAμÞhPðx⃗Þi ¼ ωje−F∞=T: ð9Þ

This is the path integral over the gauge field, with action
SðAμÞ, averaged over space, with volume V. Since the
Polyakov loop is proportional to the trace of the propagator
of a test quark, its expectation value is equal to an overall
phase factor, ωj, which in the deconfined phase, reflects
which ZðNÞ vacuum the theory lies in. The remainder is
related to the free energy of a test quark, F∞ [68–77],
which is then infinite in the confined phase. The complete
set of Polyakov loops for a SUðNÞ=ZðNÞ gauge theory are
trLj, j ¼ 1…ðN − 1Þ, and are equivalent to the N − 1
eigenvalues of the thermal Wilson line. The holonomous
potential for the eigenvalues first arises at one loop order,
and has been computed to two loop order [19–39].
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At nonzero temperature, the potential between a test
quark and antiquark is given by the two point function of
Polyakov loops,

e−V∞ðx⃗−y⃗Þ=T ¼ hP†ðy⃗ÞPðx⃗Þi − jhPij2: ð10Þ

Another gauge invariant quantity is the thermal Wilson
loop,

WT ¼ trLðx⃗; 1=T; 0ÞLðy⃗; x⃗; 1=TÞLðy⃗; 0; 1=TÞLðx⃗; y⃗; 0Þ:
ð11Þ

Because of the spatial Wilson lines from x⃗ to y⃗ at τ ¼ 0
and 1=T, contributions which do not appear in V∞ðx⃗Þ
enter [87].

III. HAMILTONIAN FORMALISM

It is necessary to transform to a A0 ¼ 0 gauge. I ignore
technicalities, such as fixing the residual degrees of free-
dom for the Ai fields [17,88–90], as these do not affect my
analysis. Under a gauge transformation,

Aμðx⃗; τÞ →
1

−ig
Ω†ðx⃗; τÞDμΩðx⃗; τÞ: ð12Þ

The gauge transformation which implements A0 ¼ 0 gauge
is just Ωðx⃗; τÞ ¼ Lðx⃗; τ; 0Þ. Since in general Ωðx⃗; 1=TÞ ≠
Ωðx⃗; 0Þ, when A0ðx⃗; τÞ ¼ 0 the Aiðx⃗; τÞ are no longer
periodic in τ.
In the Hamiltonian formalism, the basic variables are

the spatial gauge fields, A⃗, whose conjugate momenta are
the color electric fields, E⃗ ¼ ∂0A⃗. For a quark field ψ the
conjugate momentum is ψ̄ [17,88–90]. The Hamiltonian
density is

Hðx⃗Þ ¼ trðE⃗2ðx⃗Þ þ B⃗2ðx⃗ÞÞ; ð13Þ

as the test quark only enters into the Lagrangian as ψ̄∂0ψ , it
drops out of the Hamiltonian.
To ensure the conservation of color electric charge,

however, it is still necessary to impose Gauss’s law. For
this it is convenient to introduce an auxiliary field, χðx⃗Þ:

HGaussðx⃗Þ ¼ i trðχðx⃗ÞðD⃗ · E⃗ðx⃗Þ − gQðx⃗ÞÞÞ; ð14Þ

where Qaðx⃗Þ ¼ ψ†ðx⃗Þtaψðx⃗Þ is the color charge of the test
quark and the ta are the generators in the fundamental
representation, a ¼ 1…ðN2 − 1Þ. Since only particles
without spin enter in the effective Lagrangian, it is not
necessary to bother with Dirac matrices. The color charge
Q transforms homogeneously in the adjoint representation,
Qðx⃗Þ → Ω†ðx⃗ÞQðx⃗ÞΩðx⃗Þ, as does the constraint field χðx⃗Þ
[91]. For a Polyakov loop, the color chargeQðx⃗Þ is a single

δ function in x⃗; for a Wilson loop, there are two δ functions,
and so on for more loops.
As discussed by Gervais and Sakita [17], states for test

quarks must be included in the partition function. To
understand how they contribute, I ask:
How does the exponential of a trace become the trace of

an exponential?
That is, how does the test chargeQ in Eq. (14) transform

into the Wilson and Polyakov loops of Eqs. (2) and (6)?
The answer is an exercise in the character for a

representation of a Lie group [92–95]. This was used
originally by Susskind [41,96], and is related to an analysis
by Greiner and Müller [94].
A representation R of the SUðNÞ group is characterized

by a Young tableaux, which are N − 1 integers,
n1; n2…nN−1, where n1 ≥ n2… ≥ nN−1 [92–95]. For the
case of SUð2Þ, there is only one row, where n1 equals the
spin, n1 ¼ j ¼ 0; 1; 2….
The representations which contribute to the states of the

electric field are denoted as jRðx⃗Þi, and that for the test
quark as jR̃ðx⃗Þi. While the test quark lies in a fixed
representation at a few points in space, all representations
contribute to the state space of the electric field at each
point in space. For the example of SUð2Þ, all jðx⃗Þ
contribute to the electric field at each x⃗, while only a
single j̃ðx⃗Þ contributes to that of the test quark, at the point
where the Polyakov loop lies.
The expectation value of the Polyakov loop is given by

hPðy⃗Þi ¼ gXZ
Dχðx⃗Þ exp

�
−
Z

d3xH0ðx⃗Þ=T
�
;

H0ðx⃗Þ ¼ Hðx⃗Þ þ i trχðx⃗ÞD⃗ · E⃗ðx⃗Þ þHQðx⃗Þ;
HQðx⃗Þ ¼ −i trχðx⃗ÞQðx⃗Þ: ð15Þ

The sum over states, fP, includes those for the gauge field,
the A⃗ðx⃗Þ and E⃗ðx⃗Þ, and the states for the test quarks, ψðx⃗Þ
and ψ̄ðx⃗Þ. It is also necessary to include a path integral
for the constraint field, χðx⃗Þ. Dynamical quarks can be
included directly.
I note that it is meaningful to compute the expectation

value of a single Polyakov loop in a non-Abelian gauge
theory, as the color charge is always screened. At low
temperature this happens either because of confinement
(without dynamical quarks), or the pair production of
mesons (with dynamical quarks). At high temperature,
there is always Debye screening [97]. Typical of a system
with the spontaneous breaking of a global symmetry, the
expectation value of the Polyakov loop is only well defined
after introducing an appropriate [99] external source for the
corresponding field, and then tuning that source to zero.
It is easy to perform the sum over states for the Polyakov

loop in Eq. (15), as the only quantum number carried by
the test quark is that for color electric charge. Since
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the color charge transforms homogeneously under gauge
transformations, I can assume that it is a diagonal matrix.
Then if the quark and antiquark have color 1, Qðx⃗Þa ¼
ta11δ

3ðx⃗ − y⃗Þ, where y⃗ is the position of the loop, and
contributes to Pðx⃗Þ as ∼ expðigχata11Þδ3ðx⃗ − y⃗Þ. If the quark
and antiquark have color 2, then the contribution to Pðx⃗Þ is
∼ expðigχata22Þδ3ðx⃗ − y⃗Þ, and so on.
Thus the trace over states of the test quark is just a trace

over color,

hPðy⃗Þi ¼
XZ

Dχðx⃗Þe−
R

H0=T tr eigχðy⃗Þ: ð16Þ

Having summed over the states for the test quark and
antiquark, the remaining sum,

P
, is only for the A⃗ and E⃗,

along with the path integral over the constraint field, χðx⃗Þ.
From this derivation, it is apparent that χðx⃗Þ corresponds

to the timelike component of the gauge potential in the
Lagrangian formalism, A0ðx⃗Þ [17,88–90]. The transforma-
tion from A0 ¼ 0 gauge in the Lagrangian formalism is
given by identifying the gauge transformation Ωðx⃗; 1=TÞ ¼
Lðx⃗; ; 1=T; 0Þ with expðigχðx⃗ÞÞ. After averaging over the
spatial volume, this agrees with Eq. (9).
For the thermal Wilson loop of Eq. (11), it is necessary

to add states for both the test quark at x⃗, and the test
antiquark, at y⃗. The character representation once again
gives a product of exponentials, connected by spatial
Wilson lines,

WT ¼ tr eigχðx⃗ÞLðy⃗; x⃗Þe−igχðy⃗ÞLðx⃗; y⃗Þ: ð17Þ

The generalization to higher representations of the test
quark is direct, while the generator is given by a bird track
diagram, Eq. (4.35) of Cvitanovic [93]. The sum over all
color states is given by summing over all of the legs of the
bird track.
In the Lagrangian formalism, the holonomous potential

for the eigenvalues of the thermal Wilson line is computed
by expanding about a constant, background field A0 ≠ 0
[19–39]. In the Hamiltonian formalism, nontrivial holon-
omy is related to eigχðx⃗Þ, which enters as an imaginary
chemical potential for the color charge.
In the gauge theory without dynamical quarks, the

holonomous potential manifestly exhibits the global ZðNÞ
degeneracy for the SUðNÞ=ZðNÞ theory. With dynamical
quarks, however, depending upon the representation of the
quarks and the color, it is possible to have metastable states
with negative pressure [68–71,74]. This occurs because
the zero of the potential for nontrivial holonomy has an
absolute significance, as the pressure with a vanishing
holonomy. However, while a bubble of such a metastable
state can have negative pressure, it only lasts as long as it
takes the surface of the bubble to collapse upon itself,
decaying through cavitation [100,101].

IV. ’t HOOFT LOOPS

Wilson loops represent the propagation of test electric
charge. ’t Hooft first constructed a dual order parameter
to the Wilson loop, which represents the propagation of
a test magnetic charge [79,80]. The Wilson and ’t Hooft
loops satisfy a commutation law, which in vacuum excludes
the simultaneous confinement of electric and magnetic
charges. The commutation law follows by considering the
Wilson loop as the propagator for a test electric charge: as a
tiny Wilson loop encircles a ’t Hooft loop, by definition the
phase of a test charge (in the fundamental representation)
changes by e2πi=N.
At nonzero temperature in the SUðNÞ=ZðNÞ gauge

theory, due to the global ZðNÞ symmetry there are N
degenerate vacua in the deconfined phase. At high temper-
ature, it is possible to consider a box which is long in one
spatial direction, and to compute the interface tension
between a ZðNÞ vacuum at one end of the box, and a
different ZðNÞ vacuum at the other. This interface tension
can be computed semiclassically [21–23] from the holon-
omous potential [24–39]. Korthals-Altes, Kovner, and
Stephanov showed that the interface tension is equivalent
to an area law for the spatial ’t Hooft loop [75,76].
Numerical simulations on the lattice have measured how
the ’t Hooft loop changes with temperature [77,81,82]. See
also Refs. [83,84].
In the Hamiltonian form, a domain wall can be con-

structed by using a constant χ field, corresponding to
constant A0 in the Lagrangian formalism. The simplest
model to study is the Abelian theory in 1þ 1 dimensions,
where the object analogous to a domain wall in higher
dimensions is a soliton. Since gauge fields have no physical
degrees of freedom in two spacetime dimensions, it is
necessary to add dynamical fermions. Adding massless
fields gives the Schwinger model, but this theory behaves
contrary to naive expectation, as even fractional test
charges are screened by dynamical fields with integral
charge [102–104].
If the dynamical fields are massive, though, then

dynamical fermions with integral charge do not screen
fractional test charges [102–104]. Smilga first noted the
existence of thermal solitons in the massive Schwinger
model [71]. In the Euclidean Lagrangian, one takes a
background, classical field Acl

0 ¼ 2πTq=e, where e is the
Abelian coupling constant; in the Hamiltonian form, one
takes a similar background for the constraint field, χ. As q
is a periodic variable, a thermal soliton interpolates from
q ¼ 0 at x ¼ −∞ to q ¼ 1 at x ¼ þ∞. At high temper-
ature, T ≫ m, the potential for q generated at one loop
order is ∼T2 times a periodic function of q, Eq. (3.9) of
Ref. [71]. At low temperature, the potential is Boltzmann
suppressed, ∼e−m=T , and vanishes smoothly as T → 0.
I suggest that such solitons are stable. At T ≠ 0 imagi-

nary time is topologically equivalent to a torus, S1. As q is a
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periodic variable, then, mappings from space onto q are
determined by the first homotopy group, π1ðS1Þ ¼ Z,
which is the set of the integers.
Smilga and others argued that thermal solitons are

unphysical [71–74], I suggest that they represent new,
collective excitations at T ≠ 0, which evaporate smoothly
as T → 0. This can be studied numerically at nonzero
temperature in real time, using either tensor networks on
a classical computer [105–108], or even with the noisy
intermediate-scale quantum computers which are available
at present. This is similar to studying the screening of
background electric fields at nonzero θ [109–118].
There are many other problems which can be addressed

with the formalism developed here. In particular, deep
inelastic scattering is usually described by the propagation
of timelike Wilson lines [18]. My approach can be adapted
to the light front directly [107,108,119], especially using
quantum computers [120–122].
Lastly, if thermal solitons are stable in 1þ 1 dimensions,

presumably thermal domain walls exist in 3þ 1 dimen-
sions. In the early Universe, they can arise from theUð1Þ of
electromagnetism, when regions which are causally dis-
connected from one another first come in contact. They

persist until the thermal potential for the domain wall of the
lightest electrically charged particle, which is the electron,
is Boltzmann suppressed. As this temperature is presum-
ably below that for nucleosynthesis, and as domain walls
dominate the energy density of the universe, such thermal
Uð1Þ domain walls could be of cosmological consequence.

ACKNOWLEDGMENTS

This work was inspired by a talk which Tom Cohen gave
virtually at the Yukawa Institute for Theoretical Physics,
during a workshop on the “QCD phase diagram and lattice
QCD,” YITP-W-21-09. I thank him, M. Creutz, A. Florio,
L. Glozman, C. Korthals-Altes, S. Mukherjee, P. Petreczky,
O. Philipsen, E. Poppitz, A. Smilga, and I. Zahed for
discussions. This research was supported by the U.S.
Department of Energy under Contract No. DE-
SC0012704. I was also led to consider this problem
because of the support of the U.S. Department of
Energy, Office of Science, National Quantum
Information Science Research Centers, Co-design Center
for Quantum Advantage (C2QA) under Contract No. DE-
SC0012704.

[1] A. Bazavov et al. (HotQCD Collaboration), Chiral cross-
over in QCD at zero and non-zero chemical potentials,
Phys. Lett. B 795, 15 (2019).

[2] Szabolcs Borsanyi, Zoltan Fodor, Jana N. Guenther, Ruben
Kara, Sandor D. Katz, Paolo Parotto, Attila Pasztor,
Claudia Ratti, and Kalman K. Szabo, QCD Crossover at
Finite Chemical Potential from Lattice Simulations, Phys.
Rev. Lett. 125, 052001 (2020).

[3] Jana N. Guenther, An overview of the QCD phase diagram
at finite T and μ, in Proceedings of the 38th International
Symposium on Lattice Field Theory (2022), arXiv:
2201.02072.

[4] This accuracy should not obscure the fact that the cross-
over in QCD is rather broad, over tens of MeV; the lattice
precisely measures the maximum of a slowly varying
function [3].

[5] A. Bazavov et al., Skewness, kurtosis, and the fifth and
sixth order cumulants of net baryon-number distributions
from lattice QCD confront high-statistics STAR data,
Phys. Rev. D 101, 074502 (2020).

[6] D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch,
Swagato Mukherjee, P. Petreczky, C. Schmidt, and
P. Scior (HotQCD Collaboration), Second order cumu-
lants of conserved charge fluctuations revisited: Vanish-
ing chemical potentials, Phys. Rev. D 104, 074512
(2021).

[7] S. Borsányi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz,
P. Parotto, A. Pásztor, C. Ratti, and K. K. Szabó, Lattice

QCD Equation of State at Finite Chemical Potential from
an Alternative Expansion Scheme, Phys. Rev. Lett. 126,
232001 (2021).

[8] Claudia Ratti and Rene Bellwied, The Deconfinement
Transition of QCD: Theory Meets Experiment, Lecture
Notes in Physics (Springer Nature, Switzerland, 2021),
Vol. 981.

[9] Nora Brambilla, Viljami Leino, Peter Petreczky, and
Antonio Vairo, Lattice QCD constraints on the heavy
quark diffusion coefficient, Phys. Rev. D 102, 074503
(2020).

[10] Luis Altenkort, Alexander M. Eller, Olaf Kaczmarek,
Lukas Mazur, Guy D. Moore, and Hai-Tao Shu, Heavy
quark momentum diffusion from the lattice using gradient
flow, Phys. Rev. D 103, 014511 (2021).

[11] S. Mukherjee (private communication).
[12] J. Ignacio Cirac, David Perez-Garcia, Norbert Schuch, and

Frank Verstraete, Matrix product states and projected
entangled pair states: Concepts, symmetries, theorems,
Rev. Mod. Phys. 93, 045003 (2021).

[13] Tom Shachar and Erez Zohar, Approximating relativistic
quantum field theories with continuous tensor networks,
Phys. Rev. D 105, 045016 (2022).

[14] Jean Zinn-Justin, Quantum field theory and critical phe-
nomena, Int. Ser. Monogr. Phys. 113, 1 (2002).

[15] V. Skokov, B. Friman, E. Nakano, K. Redlich, and B. J.
Schaefer, Vacuum fluctuations and the thermodynamics of
chiral models, Phys. Rev. D 82, 034029 (2010).

WILSON LOOPS IN THE HAMILTONIAN FORMALISM PHYS. REV. D 105, L111501 (2022)

L111501-5

https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1103/PhysRevLett.125.052001
https://doi.org/10.1103/PhysRevLett.125.052001
https://arXiv.org/abs/2201.02072
https://arXiv.org/abs/2201.02072
https://doi.org/10.1103/PhysRevD.101.074502
https://doi.org/10.1103/PhysRevD.104.074512
https://doi.org/10.1103/PhysRevD.104.074512
https://doi.org/10.1103/PhysRevLett.126.232001
https://doi.org/10.1103/PhysRevLett.126.232001
https://doi.org/10.1103/PhysRevD.102.074503
https://doi.org/10.1103/PhysRevD.102.074503
https://doi.org/10.1103/PhysRevD.103.014511
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/PhysRevD.105.045016
https://doi.org/10.1093/acprof:oso/9780198509233.001.0001
https://doi.org/10.1103/PhysRevD.82.034029


[16] Robert D. Pisarski and Vladimir V. Skokov, Chiral matrix
model of the semi-QGP in QCD, Phys. Rev. D 94, 034015
(2016).

[17] Jean-Loup Gervais and B. Sakita, Gauge degrees of
freedom, external charges, quark confinement criterion
in A0 ¼ 0 canonical formalism, Phys. Rev. D 18, 453
(1978).

[18] M. G. Echevarria, I. L. Egusquiza, E. Rico, and G.
Schnell, Quantum simulation of light-front parton cor-
relators, Phys. Rev. D 104, 014512 (2021), propose a
way of measuring Wilson loops using a quantum algo-
rithm, but they do not discuss the need to enlarge the
physical Hilbert space.

[19] David J. Gross, Robert D. Pisarski, and Laurence G. Yaffe,
QCD and instantons at finite temperature, Rev. Mod. Phys.
53, 43 (1981).

[20] Nathan Weiss, The effective potential for the order param-
eter of gauge theories at finite temperature, Phys. Rev. D
24, 475 (1981).

[21] Tanmoy Bhattacharya, Andreas Gocksch, Chris Korthals
Altes, and Robert D. Pisarski, Interface Tension in an
SU(N) Gauge Theory at High Temperature, Phys. Rev.
Lett. 66, 998 (1991).

[22] V. M. Belyaev, Order parameter and effective potential,
Phys. Lett. B 254, 153 (1991).

[23] Tanmoy Bhattacharya, Andreas Gocksch, Chris Korthals
Altes, and Robert D. Pisarski, Z(N) interface tension
in a hot SU(N) gauge theory, Nucl. Phys. B383, 497
(1992).

[24] Andreas Gocksch and Robert D. Pisarski, Partition func-
tion for the eigenvalues of the Wilson line, Nucl. Phys.
B402, 657 (1993).

[25] C. P. Korthals Altes, Constrained effective potential in hot
QCD, Nucl. Phys. B420, 637 (1994).

[26] Chris P. Korthals Altes, Ki-Myeong Lee, and Robert D.
Pisarski, Phase of the Wilson Line at High Temperature
in the Standard Model, Phys. Rev. Lett. 73, 1754
(1994).

[27] C. Korthals Altes, A. Michels, Misha A. Stephanov, and
M. Teper, Domain walls and perturbation theory in high
temperature gauge theory: SU(2) in (2þ 1)-dimensions,
Phys. Rev. D 55, 1047 (1997).

[28] C. P. Korthals Altes, Robert D. Pisarski, and Annamaria
Sinkovics, The potential for the phase of the Wilson line at
nonzero quark density, Phys. Rev. D 61, 056007 (2000).

[29] P. Giovannangeli and C. P. Korthals Altes, ’t Hooft and
Wilson loop ratios in the QCD plasma, Nucl. Phys. B608,
203 (2001).

[30] P. Giovannangeli and C. P. Korthals Altes, Spatial ’t Hooft
loop to cubic order in hot QCD, Nucl. Phys. B721, 1
(2005).

[31] P. Giovannangeli and C. P. Korthals Altes, Spatial ’t Hooft
loop to cubic order in hot QCD II, Nucl. Phys. B721, 25
(2005).

[32] Adrian Dumitru, Yun Guo, and Chris P. Korthals Altes,
Two-loop perturbative corrections to the thermal effective
potential in gluodynamics, Phys. Rev. D 89, 016009
(2014).

[33] Yun Guo, Matrix models for deconfinement and their
perturbative corrections, J. High Energy Phys. 11 (2014) 111.

[34] Hiromichi Nishimura, Robert D. Pisarski, and Vladimir V.
Skokov, Finite-temperature phase transitions of third and
higher order in gauge theories at large N, Phys. Rev. D 97,
036014 (2018).

[35] Yun Guo and Qianqian Du, Two-loop perturbative correc-
tions to the constrained effective potential in thermal QCD,
J. High Energy Phys. 05 (2019) 042.

[36] Christiaan P. Korthals Altes, Hiromichi Nishimura, Robert
D. Pisarski, and Vladimir V. Skokov, Conundrum for the
free energy of a holonomous gluonic plasma at cubic order,
Phys. Lett. B 803, 135336 (2020).

[37] Chris P. Korthals Altes, Hiromichi Nishimura, Robert D.
Pisarski, and Vladimir V. Skokov, Free energy of a
holonomous plasma, Phys. Rev. D 101, 094025 (2020).

[38] Yoshimasa Hidaka and Robert D. Pisarski, Effective
models of a semi-quark-gluon plasma, Phys. Rev. D
104, 074036 (2021).

[39] Yun Guo and Zhenpeng Kuang, Resummed gluon propa-
gator and Debye screening effect in a holonomous plasma,
Phys. Rev. D 104, 014015 (2021).

[40] Alexander M. Polyakov, Thermal properties of gauge
fields and quark liberation, Phys. Lett. 72B, 477 (1978).

[41] Leonard Susskind, Lattice models of quark confinement at
high temperature, Phys. Rev. D 20, 2610 (1979).

[42] Robert D. Pisarski and Frank Wilczek, Remarks on the
chiral phase transition in chromodynamics, Phys. Rev. D
29, 338 (1984).

[43] Robert D. Pisarski, Quark gluon plasma as a condensate of
SU(3) Wilson lines, Phys. Rev. D 62, 111501 (2000).

[44] Adrian Dumitru and Robert D. Pisarski, Event-by-event
fluctuations from decay of a Polyakov loop condensate,
Phys. Lett. B 504, 282 (2001).

[45] Adrian Dumitru and Robert D. Pisarski, Degrees of free-
dom and the deconfining phase transition, Phys. Lett. B
525, 95 (2002).

[46] Adrian Dumitru, Yoshitaka Hatta, Jonathan Lenaghan,
Kostas Orginos, and Robert D. Pisarski, Deconfining
phase transition as a matrix model of renormalized Poly-
akov loops, Phys. Rev. D 70, 034511 (2004).

[47] Adrian Dumitru, Jonathan Lenaghan, and Robert D.
Pisarski, Deconfinement in matrix models about the
Gross-Witten point, Phys. Rev. D 71, 074004 (2005).

[48] Adrian Dumitru, Robert D. Pisarski, and Detlef Zschie-
sche, Dense quarks, and the fermion sign problem, in a SU
(N) matrix model, Phys. Rev. D 72, 065008 (2005).

[49] Michaela Oswald and Robert D. Pisarski, Beta-functions
for a SU(2) matrix model in 2þ epsilon dimensions, Phys.
Rev. D 74, 045029 (2006).

[50] Robert D. Pisarski, Effective theory of Wilson lines and
deconfinement, Phys. Rev. D 74, 121703 (2006).

[51] Yoshimasa Hidaka and Robert D. Pisarski, Suppression of
the shear viscosity in a “semi” quark gluon plasma, Phys.
Rev. D 78, 071501 (2008).

[52] Yoshimasa Hidaka and Robert D. Pisarski, Hard thermal
loops, to quadratic order, in the background of a spatial
’t Hooft loop, Phys. Rev. D 80, 036004 (2009); 102,
059902(E) (2020).

[53] Yoshimasa Hidaka and Robert D. Pisarski, Zero point
energy of renormalized Wilson loops, Phys. Rev. D 80,
074504 (2009).

ROBERT D. PISARSKI PHYS. REV. D 105, L111501 (2022)

L111501-6

https://doi.org/10.1103/PhysRevD.94.034015
https://doi.org/10.1103/PhysRevD.94.034015
https://doi.org/10.1103/PhysRevD.18.453
https://doi.org/10.1103/PhysRevD.18.453
https://doi.org/10.1103/PhysRevD.104.014512
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/PhysRevD.24.475
https://doi.org/10.1103/PhysRevD.24.475
https://doi.org/10.1103/PhysRevLett.66.998
https://doi.org/10.1103/PhysRevLett.66.998
https://doi.org/10.1016/0370-2693(91)90412-J
https://doi.org/10.1016/0550-3213(92)90086-Q
https://doi.org/10.1016/0550-3213(92)90086-Q
https://doi.org/10.1016/0550-3213(93)90123-7
https://doi.org/10.1016/0550-3213(93)90123-7
https://doi.org/10.1016/0550-3213(94)90081-7
https://doi.org/10.1103/PhysRevLett.73.1754
https://doi.org/10.1103/PhysRevLett.73.1754
https://doi.org/10.1103/PhysRevD.55.1047
https://doi.org/10.1103/PhysRevD.61.056007
https://doi.org/10.1016/S0550-3213(01)00229-2
https://doi.org/10.1016/S0550-3213(01)00229-2
https://doi.org/10.1016/j.nuclphysb.2005.05.010
https://doi.org/10.1016/j.nuclphysb.2005.05.010
https://doi.org/10.1016/j.nuclphysb.2005.03.024
https://doi.org/10.1016/j.nuclphysb.2005.03.024
https://doi.org/10.1103/PhysRevD.89.016009
https://doi.org/10.1103/PhysRevD.89.016009
https://doi.org/10.1007/JHEP11(2014)111
https://doi.org/10.1103/PhysRevD.97.036014
https://doi.org/10.1103/PhysRevD.97.036014
https://doi.org/10.1007/JHEP05(2019)042
https://doi.org/10.1016/j.physletb.2020.135336
https://doi.org/10.1103/PhysRevD.101.094025
https://doi.org/10.1103/PhysRevD.104.074036
https://doi.org/10.1103/PhysRevD.104.074036
https://doi.org/10.1103/PhysRevD.104.014015
https://doi.org/10.1016/0370-2693(78)90737-2
https://doi.org/10.1103/PhysRevD.20.2610
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1103/PhysRevD.62.111501
https://doi.org/10.1016/S0370-2693(01)00286-6
https://doi.org/10.1016/S0370-2693(01)01424-1
https://doi.org/10.1016/S0370-2693(01)01424-1
https://doi.org/10.1103/PhysRevD.70.034511
https://doi.org/10.1103/PhysRevD.71.074004
https://doi.org/10.1103/PhysRevD.72.065008
https://doi.org/10.1103/PhysRevD.74.045029
https://doi.org/10.1103/PhysRevD.74.045029
https://doi.org/10.1103/PhysRevD.74.121703
https://doi.org/10.1103/PhysRevD.78.071501
https://doi.org/10.1103/PhysRevD.78.071501
https://doi.org/10.1103/PhysRevD.80.036004
https://doi.org/10.1103/PhysRevD.102.059902
https://doi.org/10.1103/PhysRevD.102.059902
https://doi.org/10.1103/PhysRevD.80.074504
https://doi.org/10.1103/PhysRevD.80.074504


[54] Yoshimasa Hidaka and Robert D. Pisarski, Small shear
viscosity in the semi quark gluon plasma, Phys. Rev. D 81,
076002 (2010).

[55] Adrian Dumitru, Yun Guo, Yoshimasa Hidaka, Christiaan
P. Korthals Altes, and Robert D. Pisarski, How wide is the
transition to deconfinement?, Phys. Rev. D 83, 034022
(2011).

[56] Adrian Dumitru, Yun Guo, Yoshimasa Hidaka, Christiaan
P. Korthals Altes, and Robert D. Pisarski, Effective matrix
model for deconfinement in pure gauge theories, Phys.
Rev. D 86, 105017 (2012).

[57] Kouji Kashiwa, Robert D. Pisarski, and Vladimir V. Skokov,
Critical endpoint for deconfinement in matrix and other
effective models, Phys. Rev. D 85, 114029 (2012).

[58] Robert D. Pisarski and Vladimir V. Skokov, Gross-Witten-
Wadia transition in a matrix model of deconfinement,
Phys. Rev. D 86, 081701 (2012).

[59] Kouji Kashiwa and Robert D. Pisarski, Roberge-Weiss
transition and ’t Hooft loops, Phys. Rev. D 87, 096009
(2013).

[60] Shu Lin, Robert D. Pisarski, and Vladimir V. Skokov, Zero
interface tension at the deconfining phase transition for a
matrix model of a SUð∞Þ gauge theory, Phys. Rev. D 87,
105002 (2013).

[61] Pedro Bicudo, Robert D. Pisarski, and Elina Seel, Matrix
model for deconfinement in a SU(2) gauge theory in 2þ 1

dimensions, Phys. Rev. D 88, 034007 (2013).
[62] Dominik Smith, Adrian Dumitru, Robert Pisarski, and

Lorenz von Smekal, Effective potential for SU(2) Poly-
akov loops and Wilson loop eigenvalues, Phys. Rev. D 88,
054020 (2013).

[63] Shu Lin, Robert D. Pisarski, and Vladimir V. Skokov,
Collisional energy loss above the critical temperature in
QCD, Phys. Lett. B 730, 236 (2014).

[64] Pedro Bicudo, Robert D. Pisarski, and Elina Seel, Matrix
model for deconfinement in a SU(Nc) gauge theory in
2þ 1 dimensions, Phys. Rev. D 89, 085020 (2014).

[65] Charles Gale, Yoshimasa Hidaka, Sangyong Jeon, Shu
Lin, Jean-François Paquet, Robert D. Pisarski, Daisuke
Satow, Vladimir V. Skokov, and Gojko Vujanovic, Pro-
duction and Elliptic Flow of Dileptons and Photons in a
Matrix Model of the Quark-Gluon Plasma, Phys. Rev. Lett.
114, 072301 (2015).

[66] Yoshimasa Hidaka, Shu Lin, Robert D. Pisarski, and
Daisuke Satow, Dilepton and photon production in the
presence of a nontrivial Polyakov loop, J. High Energy
Phys. 10 (2015) 005.

[67] Robert D. Pisarski and Vladimir V. Skokov, How tetra-
quarks can generate a second chiral phase transition, Phys.
Rev. D 94, 054008 (2016).

[68] V. M. Belyaev, Ian I. Kogan, G. W. Semenoff, and Nathan
Weiss, Z(N) domains in gauge theories with fermions at
high temperature, Phys. Lett. B 277, 331 (1992).

[69] Wei Chen, Mikhail I. Dobroliubov, and Gordon W.
Semenoff, Z(N) phases in hot gauge theories, Phys.
Rev. D 46, R1223 (1992).

[70] Ian I. Kogan, Hot gauge theories and Z(N) phases, Phys.
Rev. D 49, 6799 (1994).

[71] Andrei V. Smilga, Are Z(N) bubbles really there?, Ann.
Phys. (N.Y.) 234, 1 (1994).

[72] T. H. Hansson, Holger Bech Nielsen, and I. Zahed, QED
with unequal charges: A study of spontaneous Zn sym-
metry breaking, Nucl. Phys. B451, 162 (1995); B456,
757(E) (1995).

[73] Joe E. Kiskis, Absence of physical walls in hot gauge
theories, arXiv:hep-lat/9510029.

[74] Andrei V. Smilga, Physics of thermal QCD, Phys. Rep.
291, 1 (1997).

[75] C. Korthals-Altes, A. Kovner, and Misha A. Stephanov,
Spatial ’t Hooft loop, hot QCD and Z(N) domain walls,
Phys. Lett. B 469, 205 (1999).

[76] C. Korthals-Altes and A. Kovner, Magnetic Z(N) sym-
metry in hot QCD and the spatial Wilson loop, Phys. Rev.
D 62, 096008 (2000).

[77] Philippe de Forcrand, Massimo D’Elia, and Michele Pepe,
A Study of the ’t Hooft Loop in SU(2) Yang-Mills Theory,
Phys. Rev. Lett. 86, 1438 (2001).

[78] Thomas D. Cohen, Pure gauge theories and spatial
periodicity, arXiv:2202.08745.

[79] Gerard ’t Hooft, A property of electric and magnetic flux in
nonabelian gauge theories, Nucl. Phys. B153, 141 (1979).

[80] G. ’t Hooft, Confinement and topology in nonabelian
gauge theories, Acta Phys. Austriaca Suppl. 22, 531
(1980).

[81] Philippe de Forcrand and Lorenz von Smekal, ’t Hooft
loops, electric flux sectors and confinement in SU(2) Yang-
Mills theory, Phys. Rev. D 66, 011504 (2002).

[82] Philippe de Forcrand and David Noth, Precision lattice
calculation of SU(2) ’t Hooft loops, Phys. Rev. D 72,
114501 (2005).

[83] H. Reinhardt, On ’t Hooft’s loop operator, Phys. Lett. B
557, 317 (2003).

[84] H. Reinhardt and D. Epple, The ’t Hooft loop in the
Hamiltonian approach to Yang-Mills theory in Coulomb
gauge, Phys. Rev. D 76, 065015 (2007).

[85] Boosting to a moving frame gives a test quark moving at
constant velocity.

[86] Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and
Brian Willett, Generalized global symmetries, J. High
Energy Phys. 02 (2015) 172.

[87] M. Laine, O. Philipsen, P. Romatschke, and M. Tassler,
Real-time static potential in hot QCD, J. High Energy
Phys. 03 (2007) 054.

[88] J. Goldstone and R. Jackiw, Unconstrained temporal gauge
for Yang-Mills theory, Phys. Lett. 74B, 81 (1978).

[89] R. Jackiw, Introduction to the Yang-Mills quantum theory,
Rev. Mod. Phys. 52, 661 (1980).

[90] N. H. Christ and T. D. Lee, Operator ordering and Feyn-
man rules in gauge theories, Phys. Rev. D 22, 939 (1980).

[91] On the lattice, χ lives on sites, not links.
[92] Howard Georgi, Lie Algebras In Particle Physics: From

Isospin To Unified Theories (Taylor & Francis, Boca
Raton, 2000).

[93] Predrag Cvitanovic, Group Theory: Birdtracks, Lie’s and
Exceptional Groups (Princeton University Press, Prince-
ton, 2008).

[94] Walter Greiner and Berndt Muller, Quantum Mechanics:
Symmetries (Springer, Berlin, 2013) in Example (10.3) of
Sec. (10.15), the partition function in the presence of a
chemical potential for color is computed. There the sum

WILSON LOOPS IN THE HAMILTONIAN FORMALISM PHYS. REV. D 105, L111501 (2022)

L111501-7

https://doi.org/10.1103/PhysRevD.81.076002
https://doi.org/10.1103/PhysRevD.81.076002
https://doi.org/10.1103/PhysRevD.83.034022
https://doi.org/10.1103/PhysRevD.83.034022
https://doi.org/10.1103/PhysRevD.86.105017
https://doi.org/10.1103/PhysRevD.86.105017
https://doi.org/10.1103/PhysRevD.85.114029
https://doi.org/10.1103/PhysRevD.86.081701
https://doi.org/10.1103/PhysRevD.87.096009
https://doi.org/10.1103/PhysRevD.87.096009
https://doi.org/10.1103/PhysRevD.87.105002
https://doi.org/10.1103/PhysRevD.87.105002
https://doi.org/10.1103/PhysRevD.88.034007
https://doi.org/10.1103/PhysRevD.88.054020
https://doi.org/10.1103/PhysRevD.88.054020
https://doi.org/10.1016/j.physletb.2014.01.043
https://doi.org/10.1103/PhysRevD.89.085020
https://doi.org/10.1103/PhysRevLett.114.072301
https://doi.org/10.1103/PhysRevLett.114.072301
https://doi.org/10.1007/JHEP10(2015)005
https://doi.org/10.1007/JHEP10(2015)005
https://doi.org/10.1103/PhysRevD.94.054008
https://doi.org/10.1103/PhysRevD.94.054008
https://doi.org/10.1016/0370-2693(92)90754-R
https://doi.org/10.1103/PhysRevD.46.R1223
https://doi.org/10.1103/PhysRevD.46.R1223
https://doi.org/10.1103/PhysRevD.49.6799
https://doi.org/10.1103/PhysRevD.49.6799
https://doi.org/10.1006/aphy.1994.1073
https://doi.org/10.1006/aphy.1994.1073
https://doi.org/10.1016/0550-3213(95)00360-5
https://doi.org/10.1016/0550-3213(95)90035-7
https://doi.org/10.1016/0550-3213(95)90035-7
https://arXiv.org/abs/hep-lat/9510029
https://doi.org/10.1016/S0370-1573(97)00014-8
https://doi.org/10.1016/S0370-1573(97)00014-8
https://doi.org/10.1016/S0370-2693(99)01242-3
https://doi.org/10.1103/PhysRevD.62.096008
https://doi.org/10.1103/PhysRevD.62.096008
https://doi.org/10.1103/PhysRevLett.86.1438
https://arXiv.org/abs/2202.08745
https://doi.org/10.1016/0550-3213(79)90595-9
https://doi.org/10.1103/PhysRevD.66.011504
https://doi.org/10.1103/PhysRevD.72.114501
https://doi.org/10.1103/PhysRevD.72.114501
https://doi.org/10.1016/S0370-2693(03)00199-0
https://doi.org/10.1016/S0370-2693(03)00199-0
https://doi.org/10.1103/PhysRevD.76.065015
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1088/1126-6708/2007/03/054
https://doi.org/10.1088/1126-6708/2007/03/054
https://doi.org/10.1016/0370-2693(78)90065-5
https://doi.org/10.1103/RevModPhys.52.661
https://doi.org/10.1103/PhysRevD.22.939


over the representation of the test charge, and the asso-
ciated character, arises directly.

[95] Brian C. Hall, Lie Groups, Lie Algebras, and Representa-
tions. An Elementary Introduction (Springer, Switzerland,
2015).

[96] In Eq. (60) of Ref. [41], the sum is over the representations
of the electric field, to give the character of χ, as in
Eq. (16). The product of characters which arise for the
two point function of Polyakov loops, Eq. (68), is given
without comment. I show that this is due to the sum over
states of the test charge.

[97] The Abelian theory is different, as while there is Debye
screening at high temperature, there is no screening at low
temperature. Further, in a finite box the presence of a test
charge is inconsistent with periodic boundary conditions
[98], and so open boundary conditions must be used. In the
unscreened phase of the Abelian theory it is still possible to
measure the potential between a test charge and anticharge,
V∞ðx⃗Þ.

[98] E. Hilf and L. Polley, Note on the continuum thermal
Wilson loop with space periodic boundary conditions,
Phys. Lett. 131B, 412 (1983).

[99] The appropriate sources for Polyakov loops must involve a
sum over an infinite number of loops. This is because the
matrix for any representation of SUðNÞ is traceless, so for a
single loop the term linear in Aμ vanishes at small Aμ. This
holds for a sum over any finite number of loops, but fails if
the sum is infinite. An appropriate source is that for which
an infinitesimal source generates an expectation value
which is also infinitesimal. For details, see Refs. [36–38].

[100] Krishna Rajagopal and Nilesh Tripuraneni, Bulk viscosity
and cavitation in boost-invariant hydrodynamic expansion,
J. High Energy Phys. 03 (2010) 018.

[101] C. E. Brennan, Cavitation and Bubble Dynamics
(Cambridge University Press, Cambridge, England, 2013).

[102] Sidney R. Coleman, R. Jackiw, and Leonard Susskind,
Charge shielding and quark confinement in the massive
Schwinger model, Ann. Phys. (N.Y.) 93, 267 (1975).

[103] David J. Gross, Igor R. Klebanov, Andrei V. Matytsin,
and Andrei V. Smilga, Screening versus confinement in
(1þ 1)-dimensions, Nucl. Phys. B461, 109 (1996).

[104] Ross Dempsey, Igor R. Klebanov, and Silviu S. Pufu,
Exact symmetries and threshold states in two-dimensional
models for QCD, J. High Energy Phys. 10 (2021) 096.

[105] M. C. Bañuls, M. B. Hastings, F. Verstraete, and J. I. Cirac,
Matrix Product States for Dynamical Simulation of Infinite
Chains, Phys. Rev. Lett. 102, 240603 (2009).

[106] Mari Carmen Banuls, Michal P. Heller, Karl Jansen,
Johannes Knaute, and Viktor Svensson, From spin chains
to real-time thermal field theory using tensor networks,
Phys. Rev. Research 2, 033301 (2020).

[107] Alessio Lerose, Michael Sonner, and Dmitry A. Abanin,
Overcoming the entanglement barrier in quantum many-
body dynamics via space-time duality, arXiv:2201.04150.
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