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We present a formulation of the generalized uncertainty principle based on a commutator ½x̂i; p̂j�
between position and momentum operators defined in a covariant manner using normal coordinates.
We show how any such commutator can acquire corrections if the momentum space is curved. The
correction is completely determined by the extrinsic curvature of the surface p2 ¼ constant in the
momentum space, and results in noncommutativity of normal position coordinates ½x̂i; x̂j� ≠ 0. We then
provide a construction for the momentum space geometry as a suitable four dimensional extension of a
geometry conformal to the three dimensional relativistic velocity space—the Lobachevsky space—whose
curvature is determined by the dispersion relation Fðp2Þ ¼ −m2, with FðxÞ ¼ x yielding the standard
Heisenberg algebra.
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I. INTRODUCTION

The Heisenberg algebra satisfied by position and
momentum operators, x̂i and p̂j, forms the cornerstone
of quantum mechanics, and in standard treatments, this is
characterized by the commutators:

½x̂i; p̂j� ¼ iℏδij; ½p̂i; p̂j� ¼ 0; ½x̂i; x̂j� ¼ 0: ð1Þ

However, the generalization and interpretation of the above
commutators in a fully relativistic theory which is also
invariant under general coordinate transformations is not
straightforward. The key issue is already evident from the
explicit appearance of x̂i in the commutator relationships,
which spoils manifest general covariance. This issue needs
to be addressed since general covariance is also the first step
toward generalization of a theory to a curved background
space, or spacetime. Therefore, a curved space(-time)
generalization of theHeisenberg algebra requires a covariant
definition of the quantities appearing in the above relations.
This, in itself, is not difficult if one identifies the coordinates
appearing in the commutators via exponential map—the so
called normal coordinates. These coordinates, by definition,
depend on the geodesic spray from a given point P0, and
hence their characterization depends directly on the curva-
ture of the manifold. We will discuss this in Sec. II.

A second generalization of the Heisenberg algebra, that
has gained considerable interest over the past two decades
[1] is tied to what we expect from measurements at very
high energies or at very small length scales. Very general
arguments rooted in basic principles of quantum mechanics
and general relativity suggest that Planck scale might
provide a fundamental operational bound on the measure-
ment of observables such as spacetime intervals [2]. One
therefore expects the above commutators to be modified at
large momentum, with Planck scale as the characteristic
scale at which the modification occurs. This has motivated
a large amount of research exploring a modification of the
form

½x̂i; p̂j� ¼ iℏΘi
jðp̂kÞ; ð2Þ

with the most popular form of the function Θ being a
quadratic in p̂k that reduces to δij at low momentum [3].
However, although there exists several arguments based on
certain well-motivated requirements that have been used to
constrain Θi

j at least in flat spacetime (using, for instance,
translation and rotation invariance, see [4]), no such generic
constraints are available for a curved spacetime.
Our first aim in this paper will be to provide a

geometrically well motivated argument that gives a curved
spacetime generalization of the Heisenberg algebra, in
terms of quantities defined covariantly in a specific region
of spacetime, provided only that it is a geodesically convex
neighborhood of some spacetime point. Our analysis will
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also give us a hint toward a geometrical interpretation of
Θi

jðp̂kÞ, constructing which will be our next aim.
As a first step toward explicitly constructing Θi

jðp̂kÞ, we
will begin by first analyzing the geometry of the momentum
space. To do this, we will start with the well-known
expression for center-of-mass energy of a system of two
point particles with rest masses m1 and m2, and use it to
obtain a metric on the three dimensional momentum space
which turns out to be conformal to the well-known
Lobachevsky metric on the relativistic velocity space. We
then extend this metric to four dimensions by demanding
that, for particles with zero relative velocities, it gives the
(squared) difference of rest masses: ðΔmÞ2 ¼ ðm2 −m1Þ2.
Themomentum space so constructed is flat (Riemann ¼ 0)
as long as the relation p2 ¼ gabpapb ¼ −m2 holds for a
given ðpa;mÞ. This also yields Θi

jðp̂kÞ ¼ δij. For a general
dispersion relation Fðp2Þ ¼ −m2, Riemann ≠ 0 and we
show that Θi

jðp̂kÞ is now determined by the extrinsic
geometry of p2 ¼ constant surface in momentum space.
To summarize, we present in this paper a novel formu-

lation of the generalized uncertainty principle that incorpo-
rates and interconnects three key ideas: (i) covariant
characterization of x̂i appearing in the uncertainty principle,
(ii) momentum space geometry based on the relativistic
velocity space, and (iii) modified dispersion relation
Fðp2Þ ¼ −m2. For some earlier work that comments on
similar issues, see [5]. Note, however, that our formalism
involves only Lorentz invariant modifications of the
dispersion relation, incorporated via a very specific con-
struction of the four dimensional momentum space geom-
etry. Our geometrical approach is also somewhat closer in
spirit to Ref. [6]. However, the conceptual setup and
mathematical implementation here are completely different.
Conventions: Throughout the paper, Latin indices (serif/

nonserif) run from 0 to 3, and the sans-serif font represent
frame indices. Boldface quantities represent four vectors.

II. COVARIANT CHARACTERIZATIONS
OF COMMUTATORS

A. Normal coordinates

By definition, the normal coordinates are defined by
Φa ¼ −ηabeib∇iΩ where eib is an orthonormal tetrad at P0:
ea ·eb¼ηab (lorentzian) or δab (euclidean), andΩðP0;PÞ ¼
σ2ðP0;PÞ=2 is the Synge world function [7] with
σ2ðP0;PÞ ¼ �λ2; see Fig. 1. In terms of frame components
of the tangent vector, this is equivalent to assigning to P the
coordinates ΦaðPÞ ¼ λtaðP0Þ. The variations in these
coordinates are therefore given by [8]

δΦaðPÞ ¼ taðP0Þ½δλ�ta fixed þ λ½δtaðP0Þ�λ fixed: ð3Þ

We now wish to compute the variation which arises due to a
shift in the origin P0, which we characterize by a vector εk

in TP0
ðMÞ. The above expression can then be written in a

neat form by observing that the variation appearing in the
second term on the right-hand side (rhs) lies purely within
the equigeodesic surface λ ¼ constant, and is therefore
given by

½δtaðP0Þ�λ fixed ¼ Ka
bε

b; ð4Þ

whereKa
b represents the frame components of the extrinsic

curvature tensor associated with the equigeodesic surfaces,
and we have used Ka

btb ¼ 0. We can therefore write

δΦaðPÞ ¼ ðλKa
b − tatbÞεb: ð5Þ

The extrinsic curvature Ka
b of the equigeodesic surfaces is

completely determined by curvature tensor of M, and it’s
expansion in normal coordinates can be found in Appendix
of the second reference in [9].

B. The commutator

The discussion so far has been general and applies to any
manifold. For instance, it can be applied to the case whenM
represents curved spacetime, and moving to quantum
mechanics by identifying the variation of Φa ≡ xa with
the commutator of xa with the generator of this variation,
which can then be identified with the momentum operator
[10]. Alternatively, when M represents the momentum
space, the variation of Φa ≡ pa can again be identified,
quantum mechanically, with the commutator pa with the
generator of this variation, which we can then identify with
the position operator.
When M represents the spacetime manifold, the normal

coordinatesΦaðPÞ≡ xa, and the rhs of Eq. (5) suggests the
following for the commutator between xa and the operator
p̃b generating the shift of origin by εb:

FIG. 1. Normal coordinates defined in the tangent space
TP0

ðMÞ. Their variations are completely determined by the
geometry of the equigeodesic surfaces anchored at P0 (dashed
lines), with λ the length of the geodesic connecting P to P0. The
passive version of these variations correspond to shifting the base
point P0, in which case the change in normal coordinates is
determined by extrinsic geometry anchored at P.
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½xa; p̃b� ≔def iℏðλKa
b − uaubÞ; ð6Þ

where ta ¼ ua is the four velocity. In flat spacetime, it
follows from the geometry of the equigeodesic surfaces,
that λKa

b − uaub ¼ δab [9,11] and one recovers the stan-
dard Heisenberg commutators. On curved spacetimes, the
above arguments would imply that the Heisenberg com-
mutators are modified to ½xa; p̃b� ¼ iℏΘa

bðxÞ. However,
demanding that the candidate for momentum operator be
symmetric adds certain constraints, which we briefly
discuss; a very detailed analysis can be found in the
seminal papers by De Witt [12]. To begin with, it is easy
to show that the symmetric momentum operator in position
representation with respect to the integration measure, i.e.,
dnx

ffiffiffiffiffiffi−gp
, is given by

p̃syma ¼ −iℏ
�
1

2
Θm

aΓi
mi þ

1

2
Θm

a;m þ Θm
a∂m

�
: ð7Þ

The standard commutator relations

½xa; pb� ≔ iℏδab; ð8Þ

can be obtained even in curved spacetime if we define
pa ¼ ðΘ−1Þbap̃b. But the new momentum operator is no
more symmetric with respect to the integration measure. As
soon as one tries to make it symmetric, it takes the
following form

psyma ¼ −iℏ
�
∂a þ

1

2
Γi
ai

�
: ð9Þ

The point we want to emphasize is that, one does not
need to modify the commutator relations even in curved
spacetime if ‘Θ’ is a function of “x” only. As stated above,
this is consistent with known results about quantization in
curved spaces; see, for instance, [12].
Since one expects quantum gravitational effects to play

some role in modifying the conventional Heisenberg
algebra and hence the uncertainty principle, it is reasonable
to expect the deformations to occur at large momenta
(suitably identified). We will therefore now turn to the case
when M represents the momentum space, and look for the
kind of deformations that the geometry of the momentum
space can produce in the commutators. To do so, we will
now identify the normal coordinates ð−xaÞ as generating
shifts in pa [13]. To compute the computers, we need
information about the equigeodesic surface and its extrinsic
curvature in the momentum space, and for this, we need to
first characterize the geometry of the momentum space. We
will do so in such a manner that the standard dispersion
relation p2 ¼ −m2 will represent.

III. GEOMETRY OF MOMENTUM SPACE

Wewill now characterize the geometry of the momentum
space by starting with the following spacetime picture: two
particles of rest energies (masses) m1 and m2 and four
momenta pi

1 and pi
2 respectively, intersect at an spacetime

event. The energy of this system in its center-of-momentum
frame has the invariant form

E2
com ¼ −ðp1 þ p2Þ2

¼ μ21 þ μ22 − 2μ1μ2u1 · u2

¼ ðμ1 þ μ2Þ2 þ 2μ1μ2ðγrel − 1Þ; ð10Þ

where we have defined p1;2 ¼ μ1;2u1;2 (with u21;2 ¼ −1), so
that p2 ¼ −μ2 and γrel ¼ −u1 · u2 is the relative gamma
factor corresponding to the relative velocity vrel.
Note that, conventionally, μ would be identified with the

rest mass m of the particle. However, we postpone this
replacement at this stage since we will very soon be
interested in generalization μ ¼ fðmÞ which will corre-
spond to the modified dispersion relation Fðp2Þ ¼ −m2.
We will therefore keep the discussion general, but will refer
to the case fðmÞ ¼ m to provide motivation for certain
definitions and interpretation.
Consider now the quantity l2 > 0 defined by:

l2¼2μ1μ2ðγrel−1Þ
¼2μ1μ2ðcoshχ1coshχ2−sinhχ1sinhχ2cosΩ−1Þ; ð11Þ

where the second equality obtains by parameterizing ua in
terms of standard Lorentz transformations: uaðχ;ΩAÞ ¼
ðcosh χÞTa þ ðsinh χÞNa, where Ta, Na are arbitrary unit
timelike, spacelike vectors in the tangent space TP0

ðMÞ,
with TaNa ¼ 0, χ is rapidity and ΩA ¼ ðθ;ϕÞ. Note that, in
the nonrelativistic limit vrel ≪ c, and with μ1;2 ¼ m1;2, the
above expression yields

l2

2M
≈
1

2
μredv2rel;

with M ¼ m1 þm2 and μred ¼ m1m2=M (reduced mass).
This is therefore the relative kinetic energy of the system.
We will now take l2 as the measure of (squared) “three

momentum distance” between the two particles.1 Defining
ξa ¼ ðμ; χ;ΩAÞ The corresponding metric g3−mom

ab may be
obtained by

1Note that one can write l2 ¼ E2
com − ½E2

com�vrel¼0, which has a
nice physical interpretation. For a composite system, the 2nd
term on the rhs represents the “rest energy” in the center-of-
momentum frame since vrel ¼ 0. The above relation therefore has
the structure “jp⃗j2 ¼ E2 −m2” valid for a point particle.
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g3−mom
ab ¼ lim

ξa
2
→ξa

1

∂2

∂ξa1ξb2
�
l2

2

�

¼

0
BB@

0 0 0

0 μ2 0

0 0 μ2sinh2ðχÞσAB

1
CCA ð12Þ

where σAB is the canonical metric on the 2-sphere. We note
that, apart from a zero eigenvalue, the above metric is
conformal to the Lobachevsky metric of the relativistic
velocity space, dl2rel ¼ dχ2 þ sinh2χdΩ2 [14]: μ2dl2rel ¼
−p2dl2rel. This therefore gives a rigorous justification for
our definition of distance measure: it correctly gives a
locally Lorentz invariant measure of relative momentum
on the space of three momenta. To extend it to a four
dimensional metric dl2, we demand that (i) the four
momentum geometry is Lorentzian, and (ii) for points in
momentum space that have zero relative velocity, that is,
dlrel ¼ 0, the metric gives the difference in rest masses (or
rest energies) associated with the corresponding momenta.
That is, we require that dl2 ¼ −dm2 when dl2rel ¼ 0. This
then gives the full metric as:

dl2 ¼ −dm2 − p2dl2rel ¼ −
p2F02

F
dμ2 þ μ2dl2rel; ð13Þ

where F0 ¼ dF=dp2.
When Fðp2Þ ¼ p2, we have the standard dispersion

relation p2 ¼ −m2 and the above metric is easily recog-
nized as flat Minkowski metric in hyperbolic coordinates,
and hence Riemann ¼ 0.
Modified dispersion relations which are Lorentz invari-

ant, conventionally given in the form Fðp2Þ ¼ −m2,
correspond to fðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F−1ð−x2Þ

p
. These would generi-

cally yield Riemann ∝ f00=f ≠ 0. In terms of the
dispersion relation Fðp2Þ ¼ −m2, the commutators are
given by,

½xa; pb� ≔ iℏ

�
δab þ

�
Fðp2Þ

p2F0ðp2Þ − 1

�
hab

�
; ð14Þ

where hab is the projector orthogonal to ∂=∂μ. One can
write the above expression in a form in which it is easily
compared with the existing works on generalized uncer-
tainty principle (for instance, the now familiar version that
was introduced in [1,4]). To do this, one uses the basic
definition of normal coordinates, given in Sec. II, applied
to the momentum space geometry, and recognize that m
represents the geodesic length (from the origin) in the
momentum space metric. The above expression then
becomes:

½xa; pb� ¼ iℏ

�
F

p2F0 δ
a
b −

1

F

�
F

p2F0 − 1

�
papb

�
: ð15Þ

The remaining commutators then follow from a straightfor-
ward application of the Jacobi identity. The final form for
the modified Heisenberg algebra is then given by:

½xa; pb� ¼ iℏðG1ðp2Þδab þG2ðp2ÞpapbÞ; ð16Þ

½pa; pb� ¼ 0; ð17Þ

½xa; xb� ¼ 2iℏ

�
G2 − 2G0

1 −
2G0

1G2p2

G1

�
x½apb�; ð18Þ

where G1 ¼ F=ðp2F0Þ and G2 ¼ −ðG1 − 1Þ=F. (Note,
however, that the last commutator above holds for arbitrary
G1, G2.) Evidently, the modified dispersion relation intro-
duces a noncommutativity in normal coordinates. It will be
interesting to study the implications of this noncommuta-
tivity vis-a-vis the its connection with modified dispersion
[15]. The behavior of ½xa; pb� for some model dispersion
relations are shown in the Fig. 2.
Some useful limits: To obtain some useful limits, let us

write Fðp2Þ ¼ p2ð1þ qðp2ÞÞ which defines qðp2Þ. If we

FIG. 2. The behavior of functions G1ðp2Þ and G2ðp2Þ for three different dispersion relations. These functions are defined by:
½xa;pb� ¼ iℏðG1ðp2Þδab þ G2ðp2ÞpapbÞ. The three curves correspond to FðxÞ: (i) xþ x½exp ðx=ΛÞ2 − 1� (Red), (ii) x exp ðx=ΛÞ (Blue),
(iii) x½1þ ðx=ΛÞ2� (Orange). Here, Λ is a momentum scale and Λ → ∞ corresponds to FðxÞ ¼ x.
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demand qðp2Þ to be analytic at p2 ¼ 0, and qð0Þ ¼ 0, then
F ∼ p2 as p2 → 0 and F0ð0Þ ¼ 1. In this case, we have

G1ðp2Þ ¼ 1 − q0ð0Þp2 þOðp4Þ
G2ðp2Þ ¼ q0ð0Þ þOðp2Þ ð19Þ

which induces a noncommutativity ½xa; xb� ∼ 6iℏq0ð0Þx½apb�
to the lowest order.
The opposite limit, p2 → ∞, depends very much on the

fall-off behavior of G1, G2, which in turn would be
determined by the theory that yields the modified
dispersion. For instance, an exponential fall-off in, say,
G2, of the form exp½−αðp2Þn� (α a real positive constant,
n ∈ positive integers) would give a divergent contribution
for timelike momenta p2 < 0 provided n is odd. As a
concrete example that does not involve exponentials,
consider a dispersion relation of the form Fðp2Þ ¼
p2ð1þ αp2nÞ−1 (α a real constant, n ∈ positive integers).
For such cases, in the high energy limit, G1 ∼ 1=ð1 − nÞ,
while G2 ∼ αðn=ðn − 1ÞÞp2ðn−1Þ. We therefore see that G2

would blow up in the high energy limit for n > 1. One can
do a similar analysis for any dispersion relation; such
analysis would be particularly interesting since it might
connect analytic properties of Fðp2Þ with the nature of
commutators.

IV. DISCUSSION

We have presented a geometric formalism for the gener-
alized uncertainty principle which is covariant and connects
features of the underlying geometry with the deformation of
canonical commutator relations. This deformation is tied to
extrinsic geometry of the equigeodesic surfaces of the
manifold. When the manifold in question is the momentum
space, we characterized its geometry in terms of a four
dimensional extension of the relative velocity (Lobachevsky)
space, whose Riemann curvature is determined by the
modified dispersion relation Fðp2Þ ¼ −m2. Our work
therefore interconnects generalized uncertainty principle,
momentum space geometry, and modified dispersion rela-
tions in a covariant setting, whose only free function is the
one that yields the dispersion relation.
Let us highlight some key features inherent in the setup

we have described:
As already stated in the Introduction and described in

Sec. II, our choice of variables ðxa; pbÞ are intrinsically
determined by geodesic flows in spacetime and momentum
space. These flows are nicely described in terms of Synge’s
World function and the van Vleck matrix. Therefore, the
construction is completely covariant and in terms of
physically well-defined variables.
It is also nonlocal, since one must choose a base point of

the geodesic flow, in both position and momentum space.
The nonlocality in position space is evident from the
corresponding commutators in Eq. (18).

In our description of the momentum space, we have chosen
a coordinatization which is based on manifestly covariantly
variables, viz the rest mass m and the relative velocity space
metric. It will therefore not make much physical sense to talk
about general coordinate transformations in the momentum
space, although nothing in the formalism forbids it. The
equations remain covariant under arbitrary coordinate repar-
ametrizations of the momentum space.
More interesting is the issue of choice of origin in the

momentum space. The astute reader would have noticed
that we have taken m ¼ 0 as the origin. However, we can
keep the reference point arbitrary, in which case, the
expression for extrinsic curvature Ka

b will be messy.
Mathematically, one can still compute it, but conceptually,
the interpretation is subtle since when choice of origin
corresponds to m ≠ 0, the coordinates in the relative
velocity space ðχ; θ;ϕÞmust refer to some specific timelike
vector. However, note that one does not have to introduce
such a vector as an additional object. If x ∈ Iþðx0Þ, then the
tangent to the geodesic connecting x0 to x already provides
such a vector; see Fig. 3. This nicely intertwines the issue of
reference point in momentum space with the normal
coordinates in the position space, but also makes the
former “position” dependent. It will be worth exploring
the physical implications of this. Finally, we wish to
highlight that our construction of the momentum space
geometry has an elegant interpretation for the standard
dispersion relation p2 ¼ −m2: it describes flat spacetime in
the Milne coordinates, with rest massm giving the measure
of geodesic length from origin.
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APPENDIX: COMMUTATORS AND PHASE
SPACE REPRESENTATIONS

Here, we briefly discuss the commutators between
position and momentum operators, their phase-space

FIG. 3. The choice of reference point in the momentum space
can be obtained from the vector ua giving normal coordinates in
position space.
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representations, and constraints arising from the Jacobi
identity.

½xa; pb�p0
¼ iℏΘa

bðp0;pÞ: ðA1Þ

One can show that the Jacobi identities yields,

½pc;½xa;xb��¼2iℏðΘ½b
cxa�−x½aΘb�

cÞ¼2iℏ½Θ½b
c;xa��: ðA2Þ

This clearly indicate that ½xa; xb� is not going to commute.
Let us try to write the possible representation of the position
operator in the momentum basis, then we will give the
½xa; xb� relation in terms of ΘðpÞ.

xa ¼ iℏΘa
m∂m: ðA3Þ

But for being the physical observable the operator must be
symmetric with respect to integration measure of the

momentum space i.e., d4p
ffiffiffiffiffiffi−gp

. Using the definition of
the symmetric operator,

Z
d4p

ffiffiffiffiffiffi
−g

p
ϕ�x̂ψ ¼

Z
d4p

ffiffiffiffiffiffi
−g

p ðx̂ϕÞ�ψ : ðA4Þ

We write momentum representation of the position
operator as,

xasym ¼ iℏ

�
1

2
ΘmaΓi

mi þ
1

2
Θm

a;m þ Θm
a∂m

�
: ðA5Þ

where f;m ¼ ∂f=∂pm. By using the Eqs. (A2) and (A5),
we write the commutation relation between x̂i, as

½xa; xb� ¼ iℏfxl; ðΘ−1ÞmlΘn
½aΘm

b�;ng: ðA6Þ

The f; g represent anticommutators bracket.
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