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In this paper, we show the equivalency between the existence of fast neutrino flavor instability and that of
neutrino flavor lepton number (NFLN) crossings, which indicates that an NFLN angular distribution takes
both signs. The veracity of this proposition has been uncertain and sometimes controversial despite its
indispensability in the flavor evolutions of dense neutrinos. This study clarifies that the occurrence of an
NFLN crossing is both necessary and sufficient for fast instability.
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I. INTRODUCTION

In an environment such as a supernova where a large
number of neutrinos are present, neutrino oscillations
exhibit nonlinear behaviors due to the self-interaction of
neutrinos [1–11]. It is quite difficult to solve the kinetic
equations that describe this phenomenon, called collective
neutrino oscillations, because of the enormous computa-
tional cost; the spatial and temporal scales of the oscil-
lations are usually much smaller than those of a supernova,
and very fine grids are needed in the momentum space to
obtain even qualitatively correct behaviors [12].
However, collective neutrino oscillations do not always

occur by working against the matter suppression [13,14] of
flavor conversions when dense matter exists. The condi-
tions crucial for the occurrence of collective neutrino
oscillations have been investigated by linear stability
analysis [15–29]. In particular, fast flavor instability
[15,25–28,30–32], which is a kind of unstable mode and
whose spatial and temporal scales are proportional to the
inverse of the density of neutrinos, has attracted much
attention [33–44]. Indeed, some studies have discussed the
possibilities of fast flavor conversion in various regions,
such as the regions inside [45,46] and just above [47] a
protoneutron star and the preshock region [48] in a
supernova. Additionally, asymmetric neutrino emissions
[38,40,49,50] and breaking the degeneracy of heavy
leptonic neutrinos [29,51,52] can affect the possible regions
for fast flavor conversion.
It is important that all of these studies focus on crossings

of the neutrino flavor lepton number (NFLN) angular
distributions. Many studies have suggested that a fast
instability appears when the difference between the
NFLN angular distributions of two flavors crosses with
zero. However, whether an NFLN crossing is necessary
and/or sufficient is not known. In particular, the veracity of
its sufficiency is sometimes dubious and even controversial.

For example, Ref. [53] concluded that the presence of an
NFLN crossing is not sufficient for fast instability under the
assumption of axisymmetry and spatial homogeneity.
According to Ref. [51], a “shallow crossing” in the electron
lepton number distribution does not generate instability.
However, these results occur because artificially imposed
symmetries hinder the development of unstable modes.
In this paper, we show that the existence of fast

instability is equivalent to that of NFLN crossings.
Mathematical proof of this proposition has been a missing
link in the study of fast flavor conversion. In addition, we
find that spurious instability [12] by the discretization of
spectra does not appear over time, unlike stationary
solutions. If an NFLN crossing exists, at least modes with
the wave vector k around the “crossing direction”, at which
the NFLN angular distributions of two flavors cross each
other, exhibit instability. This study clarifies the condition
for fast neutrino flavor instability and plays a crucial role in
the elucidation of collective neutrino oscillations.

II. FAST NEUTRINO FLAVOR INSTABILITY

A. Kinetic equation

We consider the density matrix of Nf -flavor neutrinos
(antineutrinos) f (f̄), which is Nf × Nf matrices depending
on the spacetime position x, energy E and flight direction v.
Through the introduction of the density matrix with
negative energy −E < 0 as fð−EÞ≡ −f̄ðEÞ, their evolutions
are described collectively by the kinetic equation [54–58]

v · ∂fðx;ΓÞ ¼ −i½Hðx;ΓÞ; fðx;ΓÞ�; ð1Þ

where Γ≡ ðE; vÞ and ðvμÞ≡ ð1; vÞ, and the Hamiltonian H
is expressed as

Hðx;ΓÞ≡M2

2E
þ v · JðxÞ: ð2Þ
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The first term ofH is the vacuummixing term, which mixes
the neutrino flavors by the off-diagonal components of the
mass square matrix M2. The second term reflects the
forward scattering of neutrinos on leptons with

JμðxÞ≡ ffiffiffi
2

p
GF

�
diagðfjμαðxÞgÞ þ

Z
dΓfðx;ΓÞvμ

�
; ð3Þ

where jα is the lepton number current of charged leptons α
and

R
dΓ≡ ð2πÞ−3 R

∞
−∞ dEE2

R
dv.

B. Dispersion relation of the fast mode

Fast neutrino flavor instability is the instability of the
flavor eigenstates f ¼ diagðffναgÞ when the vacuum mix-
ing term is neglected because it is minor compared to the
self-interactions of neutrinos [27,28]. To consider this class
of instability, we omit M2 and linearize Eq. (1) as

v · fi∂ − J0αðxÞþ J0βðxÞgSαβðx;ΓÞ

þ ðfναðx;ΓÞ−fνβðx;ΓÞÞ
ffiffiffi
2

p
GF

Z
dΓ0v ·v0Sαβðx;Γ0Þ ¼ 0

ð4Þ

for the Hermitian matrix S given as f ¼ diagðffναgÞ þ S,
where Jμ0αðxÞ≡

ffiffiffi
2

p
GF½jμαðxÞ þ

R
dΓfναðx;ΓÞvμ�.

We neglect the spatial and temporal variations in fjαg
and ffναg and substitute the plane wave ansatz Sðx;ΓÞ ¼
S̃ðk;ΓÞe−ik·x into Eq. (4) to derive the dispersion relation
(DR), where ðkμÞ≡ ðω; kÞ denotes an angular frequency ω
and wave vector k. The diagonal components of Eq. (4)
yield DR v · k ¼ 0, which does not generate instabilities,
and the others do

ΔαβðkÞ≡ detΠαβðkÞ ¼ 0; ð5Þ

where

Πμν
αβðkÞ≡ ημν þ

Z
dv
4π

GαβðvÞ
vμvν

v · ðk − J0α þ J0βÞ
: ð6Þ

GαβðvÞ≡
ffiffiffi
2

p
GF

R
∞
−∞

dEE2

2π2
ðfναðΓÞ − fνβðΓÞÞ is the differ-

ence between the NFLN angular distribution for να and νβ.
We note that ΔαβðkÞ ¼ Δβαð−kÞ is satisfied and that all the
½NfðNf − 1Þ=2�-independent equations of Eq. (5) are can-
didates for instabilities. In the following discussions, we
consider one of them and omit the indices denoting flavor.
Additionally, we set J0 ¼ 0 because J0 shifts only the real
parts of the wave vector k and does not affect the instability.
In addition, we assume that G is continuous, which is a
natural assumption for treating realistic systems.
Because Δðω; kÞ ¼ Δðω̄; kÞ is satisfied for k ∈ R3, the

complex conjugate pair ðω; kÞ and ðω̄; kÞ are both solutions
of Eq. (5). Therefore, if there exist nonreal ω values for

k ∈ R3, S grows exponentially. Note that a nonreal k,
which is sometimes called a “spatial instability”, does not
directly play a role in spatiotemporal evolutions and does
not even guarantee the spatial growth of perturbations
imposed ceaselessly at some spatial point [32,33,59–63].

III. EQUIVALENCY BETWEEN FAST
INSTABILITY AND NFLN CROSSINGS

In this section, we show that the necessary and sufficient
condition for the existence of fast instability is that of
NFLN crossings.

A. Necessary condition

First, we focus on the necessary condition: if there exist
ω ∉ R and k ∈ R3 such that ΔðkÞ ¼ 0, GðvÞ takes both
positive and negative values.
We define

σ ≡ Imω; ð7Þ

ðκμÞ≡ ðReω; kÞ ð8Þ

to separate the real and imaginary parts of ω. Then, Π can
be decomposed as

ΠμνðkÞ ¼ RμνðkÞ − iIμνðkÞ; ð9Þ

where we define

RμνðkÞ≡ ημν þ
Z

dv
4π

GðvÞ vμvνv · κ
ðv · κÞ2 þ σ2

; ð10Þ

IμνðkÞ≡ σ

Z
dv
4π

GðvÞ vμvν

ðv · κÞ2 þ σ2
: ð11Þ

The symmetric tensor I can be diagonalized by an
orthogonal matrix V ∈ Oð4;RÞ as

Vμ
σVν

ρIσρ ¼ Dμν; ð12Þ
where D is a real diagonal matrix whose ðμ; μÞ component
is given as

DμμðkÞ ¼ σ

Z
dv
4π

GðvÞ ðV
μ
νðkÞvνÞ2

ðv · κÞ2 þ σ2
: ð13Þ

Then, Π can be expressed as

Πμν ¼ ðV−1ÞμσðV−1ÞνρðR̃σρ − iDσρÞ ð14Þ

with R̃μν ≡ Vμ
σVν

ρRσρ, and Eq. (5) is equivalent to
det ðR̃ðkÞ − iDðkÞÞ ¼ 0, which means that there exists a
nontrivial 4-vector a such that R̃μνaν ¼ iDμνaν. From
this equation, we can obtain āμR̃μνaν ¼ iāμDμνaν and
āμR̃μνaν ¼ −iāμ Dμνaν, whose difference yields
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X
μ

Dμμjaμj2 ¼ 0: ð15Þ

If GðvÞ does not change its sign for all v and σ ≠ 0, all the
diagonal components of D have the same sign as σG from
Eq. (13) and cannot satisfy Eq. (15). Therefore,Gmust take
both positive and negative values for σ to be nonzero.
We notice that the above discussion is valid even if G is

discretized as GðvÞ ¼ P
i Giδðv − viÞ. If we consider sta-

tionary solutions, the discretization of spectra sometimes
suffers from spurious instabilities [12]. On the other hand,
when we solve time evolutions, spurious instability does
not appear by discretization.

B. Sufficient condition

The remaining task is to show the sufficient condition: if
GðvÞ takes both positive and negative values, there exist
ω ∉ R and k ∈ R3 such that ΔðkÞ ¼ 0.
By introducing

nμ ≡ kμ

ω
; ð16Þ

Π can be expressed as

ΠμνðkÞ ¼ ημν þ 1

ω
TμνðnÞ; ð17Þ

where

TμνðnÞ≡
Z

dv
4π

GðvÞ v
μvν

v · n
; ð18Þ

whose integral converges for n in the open unit ball
B≡ fn ∈ R3jjnj < 1g. Here, trT ¼ 0 due to vμvμ ¼ 0,
where the trace of the natural powers of a tensor A is
defined as trAm ≡ Aμ1

μ2A
μ2

μ3 � � �Aμm
μ1 . Then, the DR is the

zeros of the quartic function of ω (see the Appendix A):

Δ̃ðω; nÞ≡ −ω4ΔðkÞ ¼ det ðωδμν þ Tμ
νðnÞÞ

¼ ω4 −
1

2
trT2ðnÞω2 þ 1

3
trT3ðnÞω

þ 1

8
ðtrT2ðnÞÞ2 − 1

4
trT4ðnÞ: ð19Þ

Henceforth, we express a solution for ω of ΔðkÞ ¼ 0 as
ωðkÞ and that of Δ̃ðω; nÞ ¼ 0 as ωðnÞ. It should be noted
that ωðnÞ is four-valued while ωðkÞ is multivalued but not
always four-valued.
In the following discussions, we assume that GðvÞ takes

both positive and negative values and prove that ωðkÞ can
be nonreal for some k ∈ R3. This proposition can be shown
by proving the following three lemmas instead:
Lemma 1. If some of the 4 branches of ωðn ¼ 0Þ are

nonreal, there is a nonreal ωðkÞ for some k ∈ R3.
Lemma 2. ωðnÞ is nonreal for some n ∈ B.
Lemma 3. ωðnÞ does not diverge to infinity for

all n ∈ B.

From lemma 1, we have only to consider the case in
which all four branches of ωðn ¼ 0Þ are real; otherwise, the
proposition is already proven. Then, the DR with real ω can
be categorized into three cases as shown in Fig. 1 by paying
attention to n ¼ k=ω. If all the branches of ωðnÞ are real for
all n ∈ B [case (a)] or some branches of ωðnÞ diverge to
infinity for some n ∈ B [case (b)], ωðkÞ is not necessarily
nonreal; otherwise, some branches of ωðnÞ must merge for
some n ∈ B [case (c)] and a branch point, at which the
gradient ∇ωðkÞ diverges and nonreal ωðkÞ begins, appears
at some k. Since lemma 2 excludes case (a) and lemma 3
excludes case (b), the three lemmas lead to the existence of
nonreal ωðkÞ for some k ∈ R3, which is the proposition
to prove.
Lemma 1 can be easily proven; since k ¼ ωn yields

ωðk ¼ 0Þ ¼ ωðn ¼ 0Þ, the existence of nonreal ωðn ¼ 0Þ
immediately means that of nonreal ωðk ¼ 0Þ. Lemma 3 is
also confirmed from Eq. (19) because trTmðnÞ is finite for
n ∈ B. In the following, we prove lemma 2 by showing that
there exists n ∈ B such that the coefficient of ω2 of Δ̃ðω; nÞ
is positive; for such n, Δ̃ðω; nÞ has only one local minimum
for ω, meaning that the number of real solutions of the
quartic equation Δ̃ðω; nÞ ¼ 0 is at most two and that the
remaining solutions are nonreal.
We define eξ as one of the unit vectors satisfying

GðeξÞ ¼ 0; we refer to these directions as crossing direc-
tions. eη is also defined as a unit vector parallel to ∇GðeξÞ,
and eζ ≡ eξ × eη [see Fig. 2(a)]. Hereinafter, the indices t, ξ,
η and ζ of vectors and tensors are used to denote their
temporal, eξ, eη and eζ components, respectively.
We focus on the behaviors of ωðnÞ around the crossing

direction by considering

Tμν ðnRζðθÞeξÞ ¼
Z

dv
4π

GðvÞ vμvν

1 − nv · fRζðθÞeξg
¼ Rζ

μ
σðθÞRζ

ν
ρðθÞT̃σρ

θ ðnÞ; ð20Þ
where RζðθÞ is the rotation operator around eζ with the
angle θ and

T̃μν
θ ðnÞ≡

Z
dv
4π

GðRζðθÞvÞ
vμvν

1 − nvξ
: ð21Þ

k

0

(a)

k

(b)

k

(c)

FIG. 1. Schematic pictures of the DRs for the cases in which
(a) ω is real for all n ∈ B, (b) ω diverges at n ∈ B and (c) ω has a
branch point (red dot). The black solid lines show
ωðk ¼ keÞ ∈ R, where we choose some direction e, and the
gray regions are the zones of avoidance.
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Now, trTmðnRζðθÞeξÞ ¼ tr T̃m
θ ðnÞ is satisfied because Rζ

is a Lorentz transformation.
n > 1 corresponds to the “zone of avoidance” [27], in

which T̃ diverges to infinity and there is no solution
satisfying Eq. (19). At the limit of n ↑ 1, T̃θðnÞ seems
to diverge as well. All the components of T̃θðnÞ whose
indices include η or ζ, however, converge to a finite value
because vη and vζ are proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðvξÞ2

p
. On the

other hand, the other components diverge and asymptoti-
cally behave as

T̃tt
θ ðnÞ ∼ T̃tξ

θ ðnÞ ∼ T̃ξξ
θ ðnÞ ∼

GðRζðθÞeξÞ
2

log
1

1 − n
ð22Þ

as n ↑ 1 for θ ¼ �ϵ with small ϵ > 0. At θ ¼ 0, vξ ¼ 1 is
zero for G, and all the components of T̃θðnÞ converge to a
finite value as n ↑ 1.
The components that converge at θ ¼ �ϵ as n ↑ 1 are

continuous for θ at θ ¼ 0 and n ¼ 1. From Eq. (22), the
other components for θ ¼ ϵ and θ ¼ −ϵ diverge to infinity
with different signs from each other as n ↑ 1. Although
these components diverge, the differences

cθðnÞ≡ T̃tξ
θ ðnÞ − T̃tt

θ ðnÞ ¼ −
Z

dv
4π

G ðRζðθÞvÞ
1 − vξ

1 − nvξ
;

ð23Þ

dθðnÞ≡ T̃ξξ
θ ðnÞ − T̃tt

θ ðnÞ ¼ −
Z

dv
4π

G ðRζðθÞvÞ
1 − ðvξÞ2
1 − nvξ

ð24Þ
converge to a finite value as n ↑ 1, and hence, those as
θ ↑ 0 and θ↓0 coincide with each other at n ¼ 1. Then,
straightforward computation yields asymptotic behavior

−
1

2
tr T̃2

θðnÞ ∼ ½2cθð1Þ − dθð1Þ�T̃tt
θ ðnÞ ð25Þ

as n ↑ 1. This is the coefficient of ω2 in Eq. (19) and takes
positive values for either θ ¼ ϵ or θ ¼ −ϵ with sufficiently
large n [64]. Therefore, for at least one of θ ¼ ϵ or θ ¼ −ϵ,
there exist nonreal ω values for sufficiently large n, and
lemma 2 has been proven.
We note that the proof of the sufficient condition here is

not valid for discrete spectra, unlike the case of the
necessary condition. Whether the sufficient condition holds
also for the discrete case is left for future research.
We focus on the distribution GðvÞ ¼ 3ðvzÞ2 − 1

4
to

exemplify the above discussion [see Fig. 2(a)]. In this
case, all the points satisfying vz ¼ � 1

2
ffiffi
3

p are the crossing

directions. Here, we choose feξ; eη; eζg as

0
B@

eξ
eη
eζ

1
CA ¼

0
B@

0
ffiffiffiffi
11

p
2
ffiffi
3

p 1

2
ffiffi
3

p

0 − 1

2
ffiffi
3

p
ffiffiffiffi
11

p
2
ffiffi
3

p

1 0 0

1
CA

0
B@

ex
ey
ez

1
CA ð26Þ

and define e� ≡Rζð�π=8Þeξ.
The DRs for k parallel to eξ=� are shown in Fig. 2(b). We

can confirm that nonreal ω values appear only for k ¼ ke−
and begin at the points at which dω=dk diverges to infinity.
We note that the solution ωðkÞ can vanish at large jkj. If
ΔðkÞ was holomorphic on C4, ωðkÞ ∈ C would exist for all
k ∈ R3. In reality, however, ΔðkÞ has the branch cut on
ω ∈ ð−jkj; jkjÞ, which corresponds to the zone of avoid-
ance, and the zeros ofΔðkÞ can terminate on the branch cut.
Figure 2(c) shows the asymptotic behaviors ofω as n ↑ 1

for n parallel to eξ=�. For n ¼ neξ, all the branches of ωðnÞ

G
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0.5

1.0

1.5

2.0

2.5

(a)

–1.5 –1.0 – 0.5 0.0 0.5 1.0 1.5
– 1.5

– 1.0

– 0.5

0.0

0.5

1.0

1.5

k

ω

(b)

0 2 4 6 8 10 12 14
– 2

– 1

0

1

2

log 1
1 – n

ω

(c)

FIG. 2. (a) The difference between the NFLN angular distributions of two flavorsGðvÞ ¼ 3ðvzÞ2 − 1
4
and feξ; eη; eζg and e�. The black

solid lines on the sphere show the crossing directions. The scales of eξ=� are adjusted for visibility. (b) The DR for GðvÞ ¼ 3ðvzÞ2 − 1
4
.

The black, cyan and red lines areωðkeξÞ, ωðkeþÞ and ωðke−Þ, respectively. The complexωðke−Þ values for real k are indicated by the red
areas, whose center lines are Reω, and the difference between the center lines and the boundaries of the areas is 10 Imω. The gray
regions are the zone of avoidance. (c) The relation between ω and n for GðvÞ ¼ 3ðvzÞ2 − 1

4
. The directions of n are eξ (black), eþ (cyan)

and e− (red).
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converge to finite values as n ↑ 1 because all the compo-
nents of T converge. On the other hand, for n ¼ neþ, only
two of them converge, and the remaining two logarithmi-
cally diverge to infinity because some components of T
diverge, as shown in Eq. (22). For n ¼ ne−, while two
branches converge, the remaining two merge at n≈
1 − e−7.3, and ω becomes nonreal for n larger than this
branch point; for sufficiently large n, the number of real
branches is less than four, which is the number of real
branches of the k ¼ 0 mode, meaning that there is some
branch point of ωðke−Þ for k ∈ R.

IV. CONCLUSION

We showed that fast flavor instability is present if and
only if the NFLN angular distributions of two flavors cross
each other. To find fast instability, we have only to seek
NFLN crossings. In contrast, once an NFLN crossing
appears, the flavor coherence grows in the linear regime,
and nonlinear oscillations are expected to begin after
several times the linear growth timescale.
We also find that unstable modes appear at least in k

around the crossing directions. We have to consider that the
fast instabilities may not be able to be captured if some
symmetries are imposed a priori. Determining which
modes are actually unstable is important for reasonable
results when we conduct nonlinear calculations.
To crystallize the effect of collective neutrino oscillations

on astrophysical systems, nonlinear behaviors should also
be elucidated. The resultant distributions after a sufficiently
long time in the regions where instabilities have propagated
might be simply flavor-decohered distributions. Whatever
the results of nonlinear evolutions are, it is important to
accurately understand the behaviors in the linear regime,
including how instabilities propagate in spacetime
[32,33,59–63], and this study has achieved one of the
major goals toward this understanding.
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APPENDIX A: PROOF OF EQ. (19)

We consider the characteristic polynomial pAðzÞ≡
detðzIN −AÞ for N × N matrix A. Δ̃ðω; nÞ in Eq. (19)
is Δ̃ðω; nÞ ¼ p−ðTμ

νÞðnÞðωÞ. In general, the coefficients of
pAðzÞ can be expressed as the summation of products of
trAkðk ¼ 1;…; NÞ, and their explicit expressions can be
calculated by the recursion formula derived below [65].

pAðzÞ is factorized as pAðzÞ ¼
Q

N
i¼1ðz − λiÞ, where

λ1;…; λN are the eigenvalues of A. It is also expanded
as pAðzÞ ¼

P
N
i¼0 ẽiðλ1;…; λNÞzN−i, where ekðx1;…; xnÞ

is the elementary symmetric polynomial of degree k in n
variables x1;…; xn and ẽk ≡ ð−1Þkek.
The elementary symmetric polynomials satisfy Newton’s

identity

Xk−1
i¼0

pk−iðx1;…; xnÞẽiðx1;…; xnÞ

þ kẽkðx1;…; xnÞ ¼ 0 for k ¼ 1;…; n; ðA1Þ
where pkðx1;…; xnÞ≡P

n
i¼1 x

k
i . Since pkðλ1;…; λNÞ ¼

trAk is satisfied, ẽkðλ1;…; λNÞ, which is the coefficients
of pAðzÞ, is given by

ẽkðλ1;…; λNÞ ¼ −
1

k

Xk−1
i¼0

trAk−iẽiðλ1;…; λNÞ

for k ¼ 1;…; N: ðA2Þ
Beginning with ẽ0ðλ1;…; λNÞ ¼ 1, ẽkðλ1;…; λNÞ for k ¼
1;…; N can be calculated recursively.

APPENDIX B: PROOF OF EQ. (22)

To prove Eq. (22), we consider

IðnÞ≡
Z

dv
4π

fðvÞ
1 − nvξ

; ðB1Þ

where f is a continuous function on the unit sphere that
satisfies fðeξÞ ≠ 0. This integral can be decomposed as

IðnÞ ¼
Z

1

−1

dvξ

2

Z
2π

0

dϕ
2π

fðvÞ
1−nvξ

¼
Z

1

−1

dvξ

2

FðvξÞ
1−nvξ

; ðB2Þ

where ϕ is the azimuthal angle when we choose the zenith
as the eξ direction and FðvξÞ≡ R

2π
0

dϕ
2π fðvÞ. For arbitrary

n ∈ ð−1; 1Þ, by dividing the integral domain at vξ ¼ 1 − ϵ
with ϵ > 0 and applying the mean-value theorem, we
obtain vξ− ∈ ½−1; 1 − ϵ� and vξþ ∈ ½1 − ϵ; 1� such that I is
expressed as

IðnÞ ¼ Fðvξ−Þ
1

2n
log

1þ n
1 − nð1 − ϵÞ

þ FðvξþÞ
1

2n
log

1 − nð1 − ϵÞ
1 − n

: ðB3Þ
Regardless of how small of ϵ we choose, the second term
dominates at the limit of n ↑ 1. Because FðvξþÞ → Fð1Þ ¼
fðeξÞ as ϵ↓0, asymptotic behavior

IðnÞ ∼ fðeξÞ
2

log
1

1 − n
ðB4Þ

is obtained.
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