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We compute 2 → 2 scattering in massive ϕ4 theory on R1;m × Tn to NLO. We perform the calculations
using “denominator regularization” instead of the usual dimensional regularization, which allows for
asymmetric configurations of the Tn. We give a transparent derivation of and equation for the analytic
continuation of the generalized Epstein zeta function. We show that the optical theorem is satisfied and
generalize a conjecture by Hardy on square counting functions. We comment on the implications.
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I. INTRODUCTION

Measurements from RHIC and LHC show that signs of
quark-gluon plasma formation seen in large nucleus-nucleus
collisions are also present in high multiplicity pþ p and
pþ A collisions [1–4]. The distribution and correlations
between low momentum particles in these small system
collisions arewell describedusing relativistic, nearly inviscid
hydrodynamics using an equation of state computed using
lattice QCD and extrapolated to infinite spatial volume [5,6].
The interpretation of the latter is that themediumproduced in
these high multiplicity small systems is a nearly invsicid
quark-gluon plasma of the same nature as that produced in
large system Aþ A collisions.
A recent investigation of the finite size effects in a mass-

less free scalar thermal field theory with Dirichlet boundary
conditions showed that finite size effects can effectively
mimic the effects of temperature dependence on the phase
structure of full QCD [7]: 40%þ corrections to the usual
thermodynamic quantities of pressure, entropy, etc., were
found for systems of the size of pþ p collisions; even for
systems of the size of midcentral Aþ A collisions showed
∼10% corrections. Quenched lattice QCD calculations with
periodic boundary conditions confirmed the importance of
finite size effects in systems of asymmetric size [8].
The equation of state—equivalently the speed of sound or

the trace anomaly—plays a critical role in hydrodynamics

simulations of high multiplicity relativistic hadronic colli-
sions. Surprisingly, despite the breaking of conformal
symmetry due to the presence of Dirichlet boundary con-
ditions, we find that the free massless scalar field theory
yields a trace of the energy momentum tensor that is
identically 0 [9]. Presumably, then, any trace anomaly in a
massless theory in a finite-sized system must come from
running coupling effects. The effect of the finite size
correction to the trace anomaly in QCD was very roughly
estimated by using the finite size correction to the coupling as
calculated in amassive scalar theory [10]. It was seen that the
finite size corrections dramatically reduced the size of
the trace anomaly [9]. Such a large reduction in the trace
anomaly would have a significant impact on the extracted
sheer and bulk viscosities from comparing hydrodynamics
simulations to data.
We are therefore interested in computing analytically the

effect of a finite system size on the trace anomaly of QCD
induced through the finite size effect on the QCD coupling.
This is a significant challenge that will require under-
standing several important techniques. The two most
important challenges will be to understand how to regu-
larize and renormalize the thermal field theory in a finite
size system and to include the effect of torons, nontrivial
vacuum gauge configurations on a torus [11,12].
This work provides a step in the direction of the first

challenge by computing the finite size correction to the
running coupling in massive ϕ4 theory for 2 → 2 scattering.
In order to perform this computation, we introduce a
technique that we will call “denominator regularization.”
While one can formulate dimensional regularization on a
hypercube of equal sides [13], denominator regularization is
a more natural procedure and also allows for asymmetric
spaces. The freedom to have asymmetric spaces allows us to
smoothly capture results for, e.g., n ¼ 1, 2, and 3 compact
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dimensions when starting from an R × T3 space. (More
broadly, denominator regularization provides an alternative
to the heat kernel or zeta function regularization in curved
spacetimes [14] and avoids the complications with dimen-
sional regularization and the representations of the Lorentz
group for field theories of spin greater than 0.) Following
[15] we then derive an analytic continuation of the gener-
alized Epstein zeta function that is of critical value when
employing denominator regularization and is exceptionally
well suited to future thermal field theory studies in small
systems. We then apply this analytic continuation to the
problem at hand. We perform a nontrivial check by con-
firming that our 2 → 2 amplitude at next to leading order
(NLO) satisfies the optical theorem. This check suggests to
us a generalization of a conjecture of Hardy on the square
counting function [16].

II. FINITE SIZE CORRECTIONS

Consider a real scalar field theory with n directions
periodically identified and m directions of infinite extent.
Let the ith compact spatial dimensions have size
½−πLi; πLi�, where the Li for different i do not have to
be equal. If we restrict ourselves to three periodic spatial
directions and no spatial directions of infinite extent, n ¼ 3
and m ¼ 0, we may immediately write down the quantity
needed to evaluate the NLO correction to 2 → 2 scattering.
We will see that this setup also captures the n < 3 physics.
Defining p≡ pA þ pB, where pA and pB are the incoming

momenta, and Vðp2Þ by ; we

have after combining denominators and Wick rotating

Vðp2; fLigÞ ¼ −
1

2

Z
1

0

dx
Z

dl0
E

2π

X
k⃗∈Z3

1

ð2πÞ3L1L2L3

×
1

½l2
E þ Δ2�2 ; ð1Þ

where Δ2≡−xð1−xÞp2þm2−iε and lμ
E¼ðl0

E;
ki
Li
þxpiÞμ.

The above is UV divergent. To capture the divergence we

introduce denominator regularization. Instead of analyti-
cally continuing the number of spacetime dimensions, we
allow the power of the denominator in the loop integral to
be a variable and analytically continue to the log divergent
value of 2. To keep V dimensionless we must simulta-
neously introduce a dimensionful scale μ. We thus are
interested in

Vðp2; fLig; μ; ϵÞ ¼ −
1

2

Z
1

0

dx
Z

dl0
E

2π

X
k⃗∈Z3

1

ð2πÞ3L1L2L3

×
μ2ϵ

½l2
E þ Δ2�2þϵ : ð2Þ

Notice how one cannot as in the infinite size case simply
shift the spatial integration to remove the þxpi shift in lμ

E.
Evaluation of the l0

E integral yields

Vðp2;fLig;μ;ϵÞ ¼−
1

2

1

2π

1

ð2πÞ3L1L2L3

Z
1

0

dx

ffiffiffi
π

p
Γð3

2
þ ϵÞ

Γð2þ ϵÞ

×
X
k⃗∈Z3

μ2ϵ

ðP3
i¼1ðk

i

Li
þ xpiÞ2þΔ2Þ32þϵ

:

Our result includes a generalized Epstein zeta function
[17],

ζðfaig; fbig; c; sÞ≡
X
n⃗∈Zp

½a2i n2i þ bini þ c�−s; ð3Þ

where repeated indices are assumed summed over. The
generalized Epstein zeta function converges for s > d. As
per usual we wish to isolate the pole occurring at s ¼ d and
determine the finite remainder. To do so, we utilize the
Poisson summation formula to provide an analytic con-
tinuation of the generalized Epstein zeta function; we detail
the derivation in the Appendix. We may immediately apply
Eq. (A5) with s ¼ 3

2
þ ϵ to find

Vðp2; fLig; μ; ϵÞ ¼ −
1

2

1

ð4πÞ2
Z

1

0

dx
�
1

ϵ
− 1þ ln

μ2

Δ2
þ 2

X0

m⃗∈Z3

e−2πix
P

mipiLiK0

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
X

m2
i L

2
i

q ��
þOðϵÞ; ð4Þ

where the suppressed limits of the sums run from i ¼ 1…3.
It’s interesting that the −1 of the finite part from denom-
inator regularization is identical to the −1 that one finds
when regularizing through an explicit UV cutoff. One may
find similar expressions using Eq. (A5) for different
numbers of spatial dimensions; for n < 3 there is no
divergence.
We may modify the usual MS convention to have the

counterterm absorb the ubiquitous −1 from denominator

regularization. Then the renormalized NLO contribution to
2 → 2 scattering in 3 periodic spatial dimensions is

V̄ðp2; fLig; μÞ ¼ −
1

2

1

ð4πÞ2
Z

1

0

dx

�
ln

μ2

Δ2

þ 2
X0

m⃗∈Z3

e−2πix
P

mipiLiK0

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
X

m2
i L

2
i

q ��
; ð5Þ
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and the counterterm is unchanged from theR1;3 case. Notice
that in the denominator regularization case we have com-
pletely removed the ϵ dependence in the renormalized V̄.
Since asymptotically K0ðzÞ ∼ expð−zÞ=pz we see that

the finite size corrections naturally go to zero as the system
size grows and the result converges to the R1;3 limit
∼ ln μ2=Δ2. We see that we also obtain the results for
n ¼ 0, 1, and 2 since we may take the associated Li → ∞
limit smoothly. Notice further that the UV divergence is
unaffected by the finite size corrections. We should have
expected this lack of sensitivity of the UV divergence to the
finite system size, since a finite system size acts as an IR
cutoff; the infinitely small distances probed at the infinite
UV are insensitive to the global existence of a finite-
sized edges or periodic boundary conditions for the mani-
fold (effectively) infinitely far away. As a result, a leading
logarithmic analysis such as from an application of the
Callan-Symanzik equation will not be able to capture the
finite size effects on the running coupling; rather, we must
explicitly perform the resummation of the 1PI diagrams to
see the subleading 1=L corrections to the running coupling.
Even though this analysis is a subleading log in the limit of
large p, we are interested in the momentum region in which
the finite size effects are not vanishingly small; i.e., we are
interested in the case of p≲ 1=L.

III. UNITARITY CHECK

For self-consistency we should find that 2ImM ¼ σtot.
In general, to NLO,

2ImM ¼ −2λ2ImðV̄ðs; fLig; μÞ
þ V̄ðt; fLig; μÞ þ V̄ðu; fLig; μÞÞ; ð6Þ

where V̄ðp2; fLig; μÞ is given by Eq. (5). As noted in the
Appendix, one may organize the sum for the finite size
correction such that the phases are only cosines. Therefore
the only contribution to the imaginary part of the amplitude
may come from values of x such that Δ2 < 0, in which case
there are contributions from evaluating the logarithm of
negative numbers and from evaluating the modified Bessel
function for arguments with an imaginary part. Since t and
u are nonpositive, we must therefore have that ImM only
comes from V̄ðs; fLig; μÞ. We will in general work in the
center of mass frame, in which case pi ¼ 0 for the s
channel V̄ðs; fLig; μÞ. Recall from the R1;3 case that
ReΔ2< 0 for s> 4m2 and x−<x<xþ, where 0<x�< 1

are given by x� ¼ 1
2

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

p2

q i
. We self-consistently

align the branch cuts of arg, log, and K0 along the negative
real axis. Then the small imaginary part from the propa-
gators in the loop means that for s > 4m2 and x− < x < xþ
we have that Δ2 is in the third quadrant of the complex
plane; thus

ffiffiffiffiffiffi
Δ2

p
is in the fourth quadrant of the com-

plex plane. Therefore for x− < x < xþ we have, for
Δ2 ≡ −xð1 − xÞsþm2 − iε,

ImK0

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
X

m2
i L

2
i

q �
¼ π

2
J0

�
2πjΔj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m2

i L
2
i

q �
;

where J0 is the usual Bessel function of the first kind, and
we have dropped the irrelevant terms linear and higher
order in ε on the right-hand side [and can take jΔj ¼
xð1 − xÞs −m2].
Defining Q̃≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð4m2=sÞ
p

we have

2ImM¼ λ2

16π
Q̃θðQ̃2Þ

×

�
1þ 1

Q̃

X0

m⃗∈Zn

Z
xþ

x−

dxJ0

�
2πjΔj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m2

i L
2
i

q ��
;

¼ λ2

16π
Q̃θðQ̃2Þ

X
⃗̃m∈Λn

sincðπ ffiffiffi
s

p
Q̃j ⃗̃mjÞ: ð7Þ

In the first line, the 1 in the square brackets is the contribution
from

R
dx Im ln μ2=Δ2. In the second line we exploitedR

a
0 dxJ0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−x2

p
Þ¼ sinðaÞ, and sincðxÞ≡sinðxÞ=x. We

also exchanged the sum over integers m⃗ (which areweighted
byL2

i in the summand) with a sumover the latticeΛn defined
by the n lengthsL2

i . Wemake this last change to a sumover a
lattice in anticipation of exploiting the Poisson summation
formula over lattices [18]. The Poisson summation over
lattices is given byX

⃗m̃∈Λn

fð ⃗m̃Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
det Λ

p
X
⃗k̃∈Λ�n

F̃ð ⃗k̃Þ; ð8Þ

where Λ� is the lattice dual to Λ and F̃ is the usual Fourier

transform of f, F̃ð ⃗̃kÞ≡R dnme2πik⃗·m⃗fð ⃗̃mÞ. Following exactly
the method of performing the n dimensional Fourier trans-
form as shown in the Appendix with now fð ⃗m̃Þ ¼
sincðπ ffiffiffi

s
p

Q̃j ⃗m̃jÞ, we have that F̃ð ⃗k̃Þ ¼ Ω2−nðs4 Q̃2 − k̃2Þ1−n2 ×
θðs

4
Q̃2 − k̃2Þ. Thus

2ImM ¼ λ2

2ð4πÞ2 ffiffiffi
s

p θðQ̃2ÞΩ2−n

×
1Q
Li

X
⃗k̃∈Λ�n

�
s
4
Q̃2 − k̃2

�1−n
2

θ

�
s
4
Q̃2 − k̃2

�
: ð9Þ

Consider now the total cross section,

σtot ¼
1

2

Y2
j¼1

X
k⃗j∈Zn

1

ð2πÞnQLi

Z
dmpj

ð2πÞm2Ej

× λ2ð2πÞ4
Y

Liδðp0
A þ p0

B − p0
1 − p0

2Þ
× δðmÞðp⃗A þ p⃗B − p⃗1 − p⃗2ÞδðnÞk⃗Aþk⃗B;k⃗1þk⃗2

: ð10Þ

We may immediately collapse the p2 integrals with the
Dirac delta functions and the k2 sums with the Kronecker
deltas. Then
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σtot ¼
λ2

2ð2πÞ2
X
k⃗1∈Zn

1Q
Li

Z
dmp1

ð2E1Þ2

× δ

 ffiffiffi
s

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ

X k2i
L2
i
þm2

s !
;

¼ λ2

2ð4πÞ2 ffiffiffi
s

p θðQ̃2ÞΩ2−n

×
1Q
Li

X
⃗k̃∈Λ�n

�
s
4
Q̃2 − ⃗k̃

2
�1−n

2

θ

�
s
4
Q̃2 − ⃗k̃

2
�
: ð11Þ

To arrive at the last line we integrate out the Dirac delta
function, use nþm ¼ 3 to set m ¼ 3 − n, and change the
sum over the integers to a sum over the lattice dual to the
lattice from Eq. (7).
One can readily see that Eqs. (9) and (11) are equal, and

therefore the optical theorem (i.e., unitarity) is satisfied for
our newly derived result for n ¼ 0, 1, and 2. The n ¼ 3 case
is more subtle, but for physical values of momenta, both
ImM and σtot diverge similarly.

IV. CONCLUSIONS AND OUTLOOK

In this work we computed the finite size correction to
2 → 2 scattering at NLO in a R1;m × Tn universe. To do so,
we introduced denominator regularization, derived an
analytic continuation of the generalized Epstein zeta
function, and gave the explicit result for mþ n ¼ 3. The
denominator regularization naturally isolated the 1=ϵ UV
divergence and allowed for asymmetric finite sized spaces.
We performed a nontrivial check by confirming that our
explicit result respects the optical theorem. In performing
the check, the generalized Poisson summation formula [18]
allowed us to equate Eq. (7) with Eq. (9). The equality of
these two formulas is equivalent to a generalization of the
conjecture by Hardy [16]

Xbxc
n¼0

r2ðnÞffiffiffiffiffiffiffiffiffiffiffi
x − n

p ¼ 2π
ffiffiffi
x

p X∞
n¼0

r2ðnÞsincð2π
ffiffiffiffiffi
nx

p Þ; ð12Þ

where r2 is the square counting function (in 2D) and x is a
positive noninteger, to

π
1−m
2

2
ffiffiffi
x

p
Γð3−m

2
Þ
Xbxc
n¼0

rmðnÞffiffiffiffiffiffiffiffiffiffi
x−n

p m−1 ¼
X∞
n¼0

rmðnÞsincð2π
ffiffiffiffiffi
nx

p Þ; ð13Þ

where rm is the square counting function in m dimensions.
Although not shown here, we have explicitly checked

that all momentum dependent subdivergences in the two
loop 4 point function in ϕ4 theory cancel in denominator
regularization; i.e., all divergences up to two loops in the 4
point function can self-consistently be absorbed in momen-
tum-independent counterterms. While we have not yet

checked explicitly, very interesting future work includes
showing that denominator regularization preserves Lorentz
and gauge invariance and allows renormalization to all
orders. One should further be able to readily apply
denominator regularization to problems in thermal field
theory by replacing the integral over l0 in Eq. (1) with a
sum over Matsubara modes in the imaginary time formal-
ism, and then capturing divergences using the analytic
continuation of the Epstein zeta function Eq. (A5).
Crucially we see that the μ dependence only resides in

the R1;3 contribution. Thus the running coupling from
Callan-Symanzik is insensitive to finite size effects. This is
perhaps not surprising as Callan-Symanzik only captures
the leading logarithmic behavior of the effective coupling
for large scales, where the effective coupling comes from
the resummation of bubble diagrams. To determine the
finite size effects on the coupling, then, one must perform
the full resummation, λeff ¼ λ=ð1− λðV̄ðsÞþ V̄ðtÞþ V̄ðuÞÞ.
We will fully explore the highly nontrivial qualitative and
quantitative behavior for λeff in future work [19].
We believe the techniques developed here may be used in

a number of other physical applications. These techniques
should easily allow for a computation of the finite size
effective coupling in thermal field theory. Also, there are a
number of physical systems that display conformal sym-
metry, even nonrelativistically, for which finite size system
effects may play an interesting role [20]. Moreover, one
ought to be able to compute the finite size corrections to
critical exponents in the universality class of ϕ4 theory
through the resummed 2 point function [21]. The latter may
provide valuable insight, e.g., in detecting the critical
endpoint of the QCD phase diagram from measurements
of particle fluctuations in hadronic collisions [22,23].
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APPENDIX: ANALYTIC CONTINUATION OF
THE GENERALIZED EPSTEIN ZETA FUNCTION

We would like to analytically continue the generalized
starting steps of [15]. One begins from the Poisson
summation formula, Eq. (8), applied to the generalized
Eptein zeta function, Eq. (3). We need to evaluate the
Fourier transform of the generalized Epstein zeta function.
Let us consider the case in which we subtract a small
imaginary part from c such that we avoid the possibility of
integrating through any poles. Then, for ε > 0,
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Z
dpxe2πik⃗·x⃗ða2i x2i þ bixi þ c − iεÞ−s

¼ e
−2πi
P

p
i¼1

kibi
2a2

i
1Qp

i¼1 ai

Z
dpx0 e2πik⃗·x⃗0 ðx⃗02 þ c0 − iεÞ−s;

ðA1Þ

where x0i ≡ xi þ bi
2a2i

and c0 ≡ c −
Pp

i¼1

b2i
4a2i

. The remaining

integral may be split into radial and angular parts,Z
dpx0e2πik⃗·x⃗0 ðx⃗02 þ c0 − iεÞ−s

¼
Z

∞

0

ρp−1dρðρ2 þ c0 − iεÞ−s
Z

dΩp−1e2πikρ cos θ; ðA2Þ

where ρ≡ jx⃗0j, k≡ jk⃗j, and Ωp ¼ 2π
pþ1
2 =Γðpþ1

2
Þ is the solid

angle of a p-dimensional sphere; Ω2 ¼ 4π. The angular
integration evaluates for kρ > 0 (which is always satisfied
in our case) and p > 1 toZ

dΩp−2

Z
π

0

sinp−2θdθe2πikρ cos θ

¼ 2πp=2

Γðp=2Þ 0F1

�
;
p
2
;−ðπkρÞ2

�
; ðA3Þ

where 0F1ð; a; zÞ is a usual generalized hypergeometric
function. One may check that for p ¼ 2 the above correctly
reproduces 2πJ0ð2πkρÞ, where JνðzÞ is the usual Bessel
function of the first kind. One may then complete the
evaluation through the use of

Z
∞

0

ρp−1dρðρ2 þ c0 − iεÞ−s 2πp=2

Γðp=2Þ 0F1

�
;
p
2
;−ðπkρÞ2

�

¼ 2π2

ΓðsÞ
�
c0 − iε

k⃗2

�p
4
−s
2

Ks−p
2
ð2πjk⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 − iε

p
Þ ðA4Þ

for Re s > p=2, d > 1, c0 ∈ R, ε > 0, and jk⃗j > 0, where
KνðzÞ is the usual modified Bessel function of the sec-
ond kind.
Equation (A4) does not have an obvious k⃗ ¼ 0⃗ limit. We

must therefore separately evaluate the k⃗ ¼ 0⃗ Fourier mode.
One finds that for Res > d=2 > 0, c0 ∈ R, and ε > 0

Z
dpx0ðx⃗02 þ c0 − iεÞ−s ¼ πp=2

Γðs − p
2
Þ

ΓðsÞ ðc0 − iεÞp2−s:

Putting the pieces together we arrive at our master
formula for the analytic continuation of the generalized
Epstein zeta function:

X
n⃗∈Zp

ða2i n2i þ bini þ c − iεÞ−s ¼ 1

a1 � � � ap
1

ΓðsÞ

"
πp=2Γ

�
s −

p
2

��
c −

X b2i
4a2i

− iε

�p
2
−s

þ 2πs
X0

m⃗∈Zp

e
−2πi
Pmibi

2a2
i

 
c −

P b2i
4a2i

− iεP m2
i

a2i

!p
4
−s
2

Ks−p
2

 
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c −

X b2i
4a2i

− iε

��Xm2
i

a2i

	s !#
;

ðA5Þ

where
P0

m⃗∈Zp
indicates a sum over all integers m⃗ ∈ Zp except for m⃗ ¼ 0⃗ and where the suppressed limits on the sums run

from i ¼ 1…p. Notice that the contribution from m⃗ ¼ 0⃗ isolates the pole as we analytically continue s → p=2.

One may numerically evaluate the
P0

m⃗∈Zp
in Eq. (A5) more efficiently by combining the phases into cosines. The speedup

comes from evaluating a pure real expression and from drastically reducing the total number of summed terms. The result is
a sum over all the subsets of the set of numbers f1;…; pg, known as the power set, 2½p�:

X0

m⃗∈Zp

e
−2πi
P

mibi
2a2

i

0
B@c −

P b2i
4a2i

− iεP m2
i

a2i

1
CA

p
4
−s
2

Ks−p
2

 
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c −

X b2i
4a2i

− iε

��Xm2
i

a2i

�s !

¼
X
s∈2½p�

2jsjþ1
X∞
mi¼1
i∈s

Y
i∈s

ðcosð2πxmiLipiÞÞ

0
B@c −

P b2i
4a2i

− iεP m2
i

a2i

1
CA

p
4
−s
2

Ks−p
2

 
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c −

X b2i
4a2i

− iε

��Xm2
i

a2i

�s !
; ðA6Þ

where jsj is the length of the current set of indices being summed over and the sums with the suppressed limits are
over i ∈ s.
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