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We present a formalism that sums up the soft-virtual (SV) and next-to-SV (NSV) diagonal contributions
to inclusive colorless productions in hadron colliders to all orders in perturbative QCD. Using the
factorization theorem and renormalization group invariance as well as employing the transcendental
structure of perturbative results, we show the exponential behavior of soft-collinear function. This allows us
to predict certain SVand NSV terms to all orders from lower order information. We also present an integral
representation for the coefficient functions that is suitable for Mellin N-space resummation.
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I. INTRODUCTION

The tests [1] of the Standard Model (SM) of high energy
physics has been going on at the Large Hadron Collider
(LHC) with an unparalleled accuracy. Together, precise
theoretical predictions of several of the observables with
strong and electroweak radiative corrections are also avail-
able. Perturbative quantum chromodynamics (QCD) results
for both inclusive [2–5] and differential observables to third
order in the strong coupling constant play an important role
in precision studies. These perturbative results improve our
understanding of ultraviolet and infrared structures of the
underlying quantum field theory [6–11]. In particular, the
factorization properties of amplitudes and cross sections and
the corresponding renormalization group (RG) equations
shed light on certain universal structures of the underlying
dynamics which help us to sum up certain dominant
contributions to all orders in perturbation theory [12–20].
The factorization of ultraviolet (UV) and infrared (IR)
sensitive terms in Green’s function or in the observables
bring in unphysical scales, and their RGs are controlled by
the universal anomalous dimensions. In the seminal works
by Sterman [21] and by Catani and Trentadue [22] the
contributions from large logarithms from soft gluons were
shown to exponentiate in a systematic fashion. Remarkable
success [23–28] in the resummation of soft gluons lead to

questions related to the summing up of subleading threshold
logarithms, for example logarithms resulting from next
to soft-virtual (NSV) contributions. In QCD and in
soft-collinear effective theory there have been significant
developments to resum NSV terms to all orders [29–41]. In
this article, restricting to the diagonal channels of the
inclusive production of a colorless particle, we provide a
framework to resum next to soft-virtual terms to all orders in
perturbation theory using the mass factorization, RG invari-
ance, and transcendentality structure of fixed order predic-
tions.We provide an elaborate discussion on the structure of
NSV logarithms and on the resummation formalism in the
longer version [42].

II. FACTORIZATION

Weconsider the inclusive cross sections for the production
of color-singlet final states, such as the production of a single
scalar Higgs boson in gluon fusion or in bottom quark
annihilation and lepton pair production in theDrell-Yan (DY)
process. In the QCD improved parton model, thanks to the
well established factorization theorem for the inclusive cross
sections, the hadronic cross section σðq2; τÞ can be expressed
in terms of mass factorized partonic coefficient functions
(CFs), Δabðq2; μ2R; μ2F; zÞ, and parton distribution functions
(PDFs), fcðxi; μ2FÞ, of incoming partons:

σðq2; τÞ ¼ σ0ðμ2RÞ
X
ab

Z
dx1

Z
dx2faðx1; μ2FÞfbðx2; μ2FÞ

× Δabðq2; μ2R; μ2F; zÞ; ð1Þ
with σ0 being the born level cross section. The hadronic
scaling variable is defined by τ ¼ q2=S, whereS is the square
of the hadronic center of mass energy. A similar scaling
variable of CF at the partonic level is denoted by z ¼ q2=ŝ,
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with ŝ being the partonic center of mass energy. Here q2

refers to the invariant mass of final state leptons, M2
lþl− , for

DYand for the Higgs boson productions q2 ¼ m2
H, withmH

being theHiggs bosonmass. The subscripts a, b inΔab and c
in fc collectively denote the type of parton (quark, antiquark,
and gluon), their flavor, etc. The hadronic and partonic
scaling variables are related through ŝ ¼ x1x2S, which in
turn implies z ¼ τ=ðx1x2Þ with xi refers to the momentum
fraction of the incoming partons.
The inclusive cross sections beyond leading order in

perturbation theory contain collinear singularities resulting
from massless initial states. The mass factorization theorem
allows one to decompose such cross sections in terms of
collinear singular but universal/process independent
Altarelli-Parisi (AP) kernels [43], Γab, and process depen-
dent finite CFs, Δab, at an arbitrary factorization scale μF:

1

z
σ̂abðq2;z;ϵÞ¼σ0ðμ2RÞ

X
a0b0

ΓT
aa0 ðz;μ2F;Þ

⊗Δa0b0 ðq2;μ2R;μ2F;z;ϵÞ⊗Γb0bðz;μ2F;ϵÞ: ð2Þ
The PDFs given in (1) are related to bare PDFs f̂b by

AP kernels, i.e., faðμ2FÞ ¼ Γabðμ2FÞ ⊗ f̂b. The CFs are
expanded in powers of coupling constant asðμ2RÞ ¼
g2sðμ2RÞ=16π2 as Δab ¼

P
i a

i
sðμ2RÞΔðiÞ

abðμ2RÞ. The gs is a
renormalized strong coupling constant of QCD and μR is
the renormalization scale.
The CFs, Δab, can be classified into two categories, viz.,

diagonal (CFd) when b ¼ ā and off-diagonal (CFnd). These
CFs depend on two unphysical scales μF, μR, a physical
scale q2, and the scaling variable z. In the following, we
will investigate the all order perturbative structure of CFs in
terms of q2 and the scaling variable z by setting up a
Sudakov type of differential equation for CFs in the
kinematic region where z is closer to threshold limit
z ¼ 1. Let us begin with the mass factorization for
CFd’s, for example, of the DY process:

σ̂qq̄
zσ0

¼ ΓT
qq ⊗ Δqq̄ ⊗ Γq̄ q̄ þ ΓT

qq ⊗ Δqg ⊗ Γgq̄ þ � � � : ð3Þ

If we restrict only to distributions such as DkðzÞ ¼
ðlnkð1 − zÞ=ð1 − zÞÞþ; k ≥ 0, and δð1 − zÞ, the SV terms
and Lk

z ¼ lnkð1 − zÞ; with k ≥ 0, called NSV terms, then
only the first term in the above expansion survives. The rest
of the terms in (3) contains at least one pair of nondiagonal
pieces which upon convolutions will give terms of the form
ð1 − zÞl lnkð1 − zÞ; l > 0; k ≥ 0. They are called beyond
NSV contributions and are not considered in our study.
Further, the diagonal Γqq’s in the first term in (3) also

contain beyond NSV terms, dropping the latter will give rise
to a simple form for the Γqq’s containing only diagonal AP
splitting functions, Pcc. This is true for σ̂bb̄ and σ̂gg in the
threshold limit. In summary, for diagonal channels, the mass

factorized result given in (2) contains only diagonal terms
σ̂cc̄,Δcc̄, andAPkernelsΓcc, and the sumoverab is dropped:

σ̂svþnsv
cc̄

zσ0
¼ ΓT

cc ⊗ Δsvþnsv
cc̄ ⊗ Γc̄ c̄: ð4Þ

We will show below that this remarkable simplification
happens only for the diagonal CFs, allowing us to explore
their perturbative structure with the help of the Sudakov
K þG type of first order differential equation with respect
to q2.
For an off-diagonal channel, say σ̂qg, we find

σ̂qg
zσ0

¼ ΓT
qq ⊗ Δqq ⊗ Γqg þ ΓT

qq ⊗ Δqg ⊗ Γgg þ � � � : ð5Þ

In the above expansion, no single term produces distribu-
tions after the convolution, since each term contains at least
one off-diagonal term. If we then restrict to NSV contri-
butions, those involving at least two off-diagonal pieces do
not contribute and hence results in

σ̂svþnsv
qg

zσ0
¼ΓT

qq ⊗Δsvþnsv
qq̄ ⊗Γq̄gþΓT

qq⊗Δsvþnsv
qg ⊗Γgg: ð6Þ

Note that the off-diagonal Δqg receives contributions from
σ̂qg as well as from Δqq̄ unlike the diagonal Δqq̄ which
receives only from σ̂qq̄. This feature makes the diagonal
ones simpler than the rest. The rest of the article will only
deal with CFd’s, unless otherwise stated.

III. COEFFICIENT FUNCTION

The CFd’s of inclusive cross sections get contributions
from form factor (FF) type processes, where the final state
contains only colorless particle(s), and from those proc-
esses that involve at least one real parton emission. The
former from the FF, such as F̂c; c ¼ q, g, b, is proportional
to δð1 − zÞ and hence can be factored out from σ̂svþnsv

cc̄
along with the square of UV renormalization constant
ZUV;c, if any. We call the resulting one by soft-collinear
function, that is,

Scðâs; μ2; q2; z; ϵÞ ¼ ðσ0ðμ2RÞÞ−1ðZUV;cðâs; μ2R; μ2; ϵÞÞ−2
× jF̂cðâs; μ2;−q2; ϵÞj−2δð1 − zÞ
⊗ σ̂svþnsv

cc̄ ðq2; z; ϵÞ: ð7Þ

Note that the function Sc is computable in perturbation
theory in powers of âs and is RG invariant with respect to
μR. Substituting for σ̂cc̄ from (7) in terms of Sc, in (2) and
keeping only the diagonal terms in AP kernels, we obtain
Δsvþnsv

cc̄ ≡ Δc:
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Δcðq2;μ2R;μ2F; zÞ ¼ ðZUV;cðâs;μ2R;μ2; ϵÞÞ2
× jF̂cðâs;μ2;−q2; ϵÞj2δð1− zÞ
⊗ ðΓTÞ−1cc ðz;μ2F; ϵÞ ⊗ Scðâs;μ2; q2; z; ϵÞ
⊗ Γ−1

c̄ c̄ðz;μ2F; ϵÞ: ð8Þ
So far, we have shown that if we restrict ourselves to

SVþ NSV terms in the partonic CFs, the diagonal CFs
take a simpler form compared to nondiagonal ones. For the
diagonal ones, CFd’s decompose into building blocks such
as squares of FF and of UV renormalization constant, soft-
collinear function, and diagonal AP kernels.
There is a great deal of understanding of the infrared and

UVstructure of theFFs through theSudakovK þ G equation
[13,44–50] and of the AP kernels through the AP evolution
equation in terms of universal anomalous dimensions. For the
FF, the factorization of IR singularity implies that F̂cðq2Þ ¼
ZF̂c

ðq2; μ2sÞFc;finðq2; μ2sÞ, where ZF̂c
is IR singular, Fc;fin is

IR finite, and the scale μs is the IR factorization scale.
Differentiationwith respect toq2 leads to the SudakovK þ G
differential equation, namely dlnF̂c=dlnðq2Þ¼ðKcþGcÞ=2,
where the IR singular kernelKcðμ2sÞ ¼ d lnZF̂c

=d lnðq2Þ and
IR finite Gcðq2; μ2sÞ ¼ d lnFc;fin=d lnðq2Þ. The solution to
the K þ G equation

F̂cð−q2; ϵÞ ¼ exp

�Z
−q2

0

dλ2

λ2
ΓF̂;cðλ2; ϵÞ

�
ð9Þ

with F̂cð−q2¼0;ϵÞ¼1 andΓF̂;c¼ðKcþGcÞ=2 is thekernel.
The UV renormalization constant ZUV;c admits a similar
exponential solution governed by anomalous dimension
γUV;c. The latter are known to third order in QCD for
c ¼ b (see [51]) and for c ¼ g (see [52]). The AP kernel
Γcc satisfies the AP evolution equation, and in the approxi-
mationweworkwith, they are controlledonly bydiagonalAP
slitting functions Pcc. Hence, the all order solution takes the
simple form

Γccðμ2F; z; ϵÞ ¼ C exp
�
1

2

Z
μ2F

0

dλ2

λ2
Pccðλ2; z; ϵÞ

�
: ð10Þ

The symbol C is defined in [13]. The AP splitting function is
known to third order in perturbation theory and the SV
distributions and NSV logarithms present in them are con-
trolled by universal cusp and collinear anomalous dimensions.

IV. SOFT-COLLINEAR FUNCTION

Our next task is to unravel the factorization properties of
the soft-collinear function by setting up a differential
equation in dimensional regularization. Differentiating both
sides of (8) with respect to q2 and using theK þG equation
for the FF, we obtain

q2
dScðq2; zÞ

dq2
¼ ΓS;cðq2; zÞ ⊗ Scðq2; zÞ; ð11Þ

where

ΓS;c ¼ q2
d
dq2

ðC lnΔcðq2; μ2R; μ2F; zÞÞ

− ln jF̂cð−q2Þj2δð1 − zÞÞ: ð12Þ
The fact that Sc and F̂c are RG invariant with respect to μR
and μF implies that the derivative with respect to q2 ofΔc in
the first term in (12) has to be a function of only q2 and z.
While the first term is finite, the second term will be
proportional to singular Kc and finite Gc of the kernel
ΓF̂;c. This allows us to decompose the kernel ΓS;c into a
singular K̄c and finite Ḡc pieces to all orders in perturba-
tion theory and write (11) as dScðq2; zÞ=d lnðq2Þ ¼
Scðq2; zÞ ⊗ ðK̄cðμ2s ; zÞ þ Ḡcðq2; μ2s ; zÞÞ=2. We find that
K̄c can depend only on μs and process independent
anomalous dimension Ac as it is proportional to the Kc

of the FF. However, Ḡcðq2; μ2s ; zÞ will contain the process
dependent parts. Here, the scale μs is an arbitrary scale. The
fact that K̄c þ Ḡc decomposition is valid to all orders in
perturbation theory implies that the Sc is factorizable; i.e.,
we can write Scðq2; zÞ ¼ Zcðq2; μ2s ; zÞ ⊗ Sc;finðq2; μ2s ; zÞ
and identify the IR singular K̄c ¼ d lnZc=d lnðq2Þ and IR
finite Ḡc ¼ d lnSc;fin=d lnðq2Þ. Sc;fin is IR finite. Zc is IR
singular, and the fact that it depends on K̄cðμ2sÞ implies
that we can fix only the structure of lnðq2Þ terms in Zc.
However, the complete singular structure of Zc and its
dependence on μs and q2 can be obtained by solving the
renormalization group

μ2s
dZcðμ2s ; q2; zÞ

dμ2s
¼ γS;cðμ2s ; q2; zÞ ⊗ Zcðμ2s ; q2; zÞ; ð13Þ

where γS;c takes the remarkable structure ξ1ðμ2s ; zÞ×
lnðq2=μ2sÞ þ ξ2ðμ2s ; zÞ to all orders in perturbation theory.
This structure follows from the fact that Zc has to contain
right infrared poles to cancel against those from FF and AP
kernels, leaving Δc finite. We find that

γS;c ¼
�
Acðμ2sÞ ln

�
q2

μ2s

�
−
fcðμ2sÞ

2

�
δð1− zÞþP0

ccðμsÞ;

where

P0
cc¼

2Acðμ2sÞ
ð1− zÞþ

þ2Ccðμ2sÞ lnð1− zÞþ2Dcðμ2sÞ: ð14Þ

Here Ac; ðDc; CcÞ and fc are cusp, collinear, and soft
anomalous dimensions, respectively. The solution to Sc
takes the form

Scðq2; z; ϵÞ ¼ C exp
�Z

q2

0

dλ2

λ2
ΓSc

ðλ2; z; ϵÞ
�

¼ C exp ð2Φcðq2; z; ϵÞÞ ð15Þ

with Scðq2 ¼ 0; z; ϵÞ ¼ δð1 − zÞ.
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V. TRANSCENDENTALITY PRINCIPLE

In the following, we study the logarithmic structure ofΦc
using the available fixedorder results andpropose an all order
generalization based on their remarkable transcendentality
structure. TheΓS;c can be determined usingΔc and F̂c which
are known to third order in as and to desired accuracy in ϵ for
DY (c ¼ q), Higgs boson production in gluon fusion (c ¼ g)
and in bottom quark annihilation (c ¼ b) (see [53–65] and
[2–5]). InΔcs, the explicit results to third order in as show a
certain universal structure for leading SV distribution as well
as NSV logarithm; for example, at order ais, both of them
have degree 2i independent of c. Similarly, in FFs, computed
in dimensional regularization, if we assign nϵ weight for ϵ−nϵ
and nζ for lnnζð1 − zÞ, then the highest weight at every order
in ϵ shows uniform transcendentalityω¼nϵþnζ. Hence, the
explicit results for ΓSc

obtained from Δc and F̂c in dimen-
sional regularization also reveal the rich structure for SV
distributions and NSV logarithms through transcendental
weight.
We now turn to Sc. Note that Sc is UV finite, and hence a

simple dimensional analysis implies that the ΓS;c can be
expanded in powers of âsðq2=μ2Þϵ=2. The fact that Δc is
finite implies the soft-collinear function Sc has to contain
right soft and collinear singularities to cancel against those
from FF and the AP kernels. These singularities appear as
poles in ϵ resulting from the Feynman loop and phase space
integrals. In [13,55], the all order structure of the SV part
of ΓS;c or equivalently the SV part of Φc was determined.
Here, we generalize this to include the NSV part by
modifying ΓS;c in such a way that it contains additional
collinear sensitive terms that cancel collinear singularities
from the NSV part of AP kernels giving rise to the right
NSV part of Δc. Keeping RG invariance intact, we write

Φcðâs;q2;μ2;z;ϵÞ¼Φc
AþΦc

B

¼
X∞
i¼1

âis

�
q2ð1− zÞ2

μ2

�
iϵ
2

Siϵ

�
iϵ

1− z

�

× ðϕ̂SV;ðiÞ
c ðϵÞþð1− zÞφ̂ðiÞ

c ðz;ϵÞÞ; ð16Þ
where Sϵ ¼ expðϵ

2
½γE − lnð4πÞ�Þ with γE being the Euler

Mascheroni constant. The term q2ð1 − zÞ2 inside the
parentheses is the scale corresponding to soft gluon
emissions. Note that we have normalized the second term

by this soft scale. The functions ϕ̂SV;ðiÞ
c ðϵÞ and φ̂ðiÞ

c ðz; ϵÞ
contain poles in ϵ. The first term Φc

A containing ð1 − zÞiϵ=
ð1 − zÞϕ̂SV;ðiÞ

c ðϵÞ is sufficient to obtain the right distribu-
tions Dj and δð1 − zÞ in Δc, and they constitute to the SV
contributions to CF (see [13,14]). The NSV terms
lnkð1 − zÞ; k ¼ 0;…, in Δc, on the other hand, are gen-
erated from the first as well as the second term Φc

B

containing ð1 − zÞiϵφ̂ðiÞ
c ðz; ϵÞ. Note that in Φc

A, the entire

z dependence factors out leaving only ϕ̂SV;ðiÞ
c ðϵÞ at every

order. This happens because the soft gluons factorize at a
single scale, namely q2ð1 − zÞ2 at every order in as.
Consequently, the entire series containing soft gluon
contributions can be summed up to obtain exponential
solution expð2Φc

AÞ. Explicit computation of the exponent
Φc

B demonstrates a peculiar dependence on the scaling

variable z through φ̂ðiÞ
c ðz; ϵÞ at every order in âs, given an

accuracy in ϵ. In Φc
B, we find that the highest power of

lnð1 − zÞ is controlled by the order of as and the accuracy
in ϵ. In particular, if we assign nϵ weight for ϵ−nϵ and nL for
lnnLð1 − zÞ, then the highest weight at every order in as
shows uniform transcendentality ω ¼ nϵ þ nL. For exam-
ple, at the order as, we find ω ¼ 1 irrespective of the
accuracy in ϵ, at a2s , ω ¼ 2, and so on. If we generalize this
uniform transcendentality to all orders, the highest power of
lnð1 − zÞ turns out to be iþ j,

Φc
B ¼

X∞
i¼1

âis

�
q2

μ2

�
iϵ
2

Siϵ
X∞
j¼−i

Xiþj

k¼0

Φ̂c;ði;jÞ
k ϵj lnkð1 − zÞ: ð17Þ

Because of this structure, we find in the successive orders
of as in Δc that there is an increment of two in the power of
leading lnð1 − zÞ terms.

VI. MULTISCALE STRUCTURE

In [66] theCFswere computed up to third order inas using
the method of threshold expansion in dimensional regulari-
zation. Interestingly, for the diagonal channel, σ̂gg, the results
show a remarkable structure in terms of z and ϵ. One finds
that σ̂gg factorizes into terms of the form ð1 − zÞϵ and
functions that depend only on ϵ. Generalization to ith order
in as gives factorization of the form

P
2i
η¼2ð1 − zÞηϵ=2χηi ðϵÞ.

The factor ð1 − zÞηϵ=2 results from soft and collinear con-
figurations of partons at the corresponding soft and collinear
scales given by ðq2ð1 − zÞÞηϵ=2. This allows us to sum up the
lnð1 − zÞ terms in (17) to obtain

Φc
B ¼

X∞
i¼1

âis
X2i
η¼2

�
q2ð1 − zÞηi

μ2

�iϵ
2

Siϵφ̃
ðiÞ
c;ηðϵÞ: ð18Þ

The form of the above solution inspired from the structure of
fixed order results obtained in [66] explicitly reveals the
presence of multiple scales. One finds that every collinear
parton gives ð1 − zÞϵ=2 and soft parton gives ð1 − zÞϵ, while
pure virtual contributions to born amplitude give δð1 − zÞ
and the hard part from the real emissions gives terms
proportional to ð1 − zÞη; η ≥ 0. At given order as, we can
determine the values of η by counting the allowed soft and
collinear configurations in that order. The values of η
extracted from results known to third order can be used to
extrapolate to obtain the upper limit on η at ith order in as
and it turns out to be 2i. The coefficients of the scales χηi ðϵÞ
can be expanded in powers of ϵ. The singularity structure in
ϵ is completely determined by the finiteness of the mass
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factorized result. Note that the multiscale structure of the
solution is peculiar to the NSV part of the solution.

VII. INTEGRAL REPRESENTATION

Having studied the general structure of Φc
B, our next

task is to sum up the series to obtain a compact integral
representation similar to the SV case. We use Φc

B given
in (16) to obtain

Φc
B ¼

Z
q2ð1−zÞ2

μ2F

dλ2

λ2
Lcðasðλ2Þ;zÞ

þφf;cðasðq2ð1− zÞ2Þ;z;ϵÞþφs;cðasðμ2FÞ;z;ϵÞ: ð19Þ
Here, the first two terms are finite as ϵ → 0 while φs;c is
divergent. Since Φc

B is RG invariant, φs;c satisfies the RG
equation:

μ2F
d

dμ2F
φs;cðasðμ2FÞ; zÞ ¼ Lcðasðμ2FÞ; zÞ: ð20Þ

Further, the fact thatΔc in (8) is finite at every order in as in
the limit ϵ → 0 allows us to determine the coefficients Lc in
terms of the NSV coefficients Cc and Dc in AP splitting
kernels. We find, at each order in perturbative expansion,

Lcðasðμ2FÞ; zÞ ¼
X∞
i¼1

aisðμ2FÞLc
i ðzÞ

with Lc
i ðzÞ ¼ Cc

i lnð1 − zÞ þDc
i ; ð21Þ

where the coefficients Cc
i and Dc

i are related to those of
cusp Ac

i and collinear Bc
i anomalous dimensions (see

[55,56,61,67–71] and for beyond three loops, see
[64,69,70,72]). The finite part φf;c can be expanded in
powers of as:

φf;cðλ2; zÞ ¼
X∞
i¼1

aisðλ2Þ
Xi

k¼0

φðkÞ
c;i ln

kð1 − zÞ; ð22Þ

where the highest power of lnð1 − zÞ is in accordance with
the same in (17). Defining fμig ¼ μR; μF, we get

Δcðq2;fμ2i g;zÞ¼Cc
0ðq2;fμ2i gÞCexpð2Ψcðq2;μ2F;zÞÞ; ð23Þ

where

Ψcðq2;μ2F; zÞ ¼
1

2

Z
q2ð1−zÞ2

μ2F

dλ2

λ2
P0
ccðasðλ2Þ; zÞ

þQcðasðq2ð1− zÞ2Þ; zÞ;

with Qcðas; zÞ ¼
�

1

1− z
Ḡc

SVðasÞ
�

þ
þφf;cðas; zÞ: ð24Þ

The coefficient Cc
0 is a z independent coefficient and is

expanded in powers of asðμ2RÞ as Cc
0ðq2; μ2R; μ2FÞ ¼P∞

i¼0 a
i
sðμ2RÞCc

0iðq2; μ2R; μ2FÞ. An elaborate discussion on
Φc can be found in the longer version of the paper [42].
The integral representation given in (23) is suitable for
obtaining certain SV and NSV terms to all orders, which

subsequently lead to a framework to resum the diagonal
NSV terms [42].

VIII. ALL ORDER PREDICTIONS

Given Ψc at order as, expanding the exponential in
powers of as we obtain the leading SV terms ðD3;D2Þ,
ðD5;D4Þ;…; ðD2i−1;D2i−2Þ and the leading NSV terms
ln3ð1 − zÞ; ln5ð1 − zÞ;…; ln2i−1ð1 − zÞ at a2s ; a3s ;…; ais,
respectively, for all i. Since Cc

1 is identically zero,
ln2ið1 − zÞ terms do not contribute for all i. At this stage,
we can ask whether these predictions will be affected if we
include a second order result for Ψc. Since the power of the
leading logarithmat εj accuracy is2þ j and hence at ε0 order
the highest logarithm is log2ð1 − zÞ, we observe that the
second order result forΨc will only contribute to subleading
logarithms at a2s , not to leading ones. A similar prediction at
third order will also be unaffected by the third order result for
Ψc and so on. Now from Ψc to order a2s, we can predict the
tower consisting of ðD3;D2Þ; ðD5;D4Þ;…; ðD2i−3;D2i−4Þ
and of L4

z ; L6
z ;…; L2i−2

z at a3s ; a4s ;…; ais, respectively, for all
i. Note that even though the L4

z term is absent at the second
order inΨc at the accuracy ε0, we can predict this term simply
because of convolutions between Dl and Lm

z from first and
second order terms in Ψc. Generalizing this, if we know Ψc

up to nth order, we can predict ðD2i−2nþ1;D2i−2nÞ and L2i−n
z

at every order in ais for all i.

IX. CONCLUSIONS

In this article, we have set up a formalism to sum up both
SV and NSV logarithms of diagonal CFs of inclusive
production of a colorless state in hadron colliders to all
orders in perturbative QCD. The simple factorization
structure helped us to set up a Sudakov type integro-
differential equation with respect to q2 for the soft-collinear
function. The latter implies a remarkable factorization of
the IR singular part in the soft-collinear function to all
orders in perturbation theory. Its solution admits an expo-
nential structure, and thanks to the uniform transcenden-
tality structure for the leading logarithms of CFd’s, we could
parametrize the z dependence of the solution at every
order in as given an accuracy in ϵ. The resulting integral
representation for the solution allows us to predict certain
SV and NSV terms to all orders from the knowledge of
previous order information, and in addition, it will be useful
for resummation studies in Mellin-N space. Our result will
be useful for phenomenological studies for processes such
as Drell-Yan and Higgs boson productions at the LHC.
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