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We examine the Tolman temperature by using Carter’s variational formalism of thermodynamics.
We restrict our interests to fluids in thermal equilibrium that the heat does not propagate. We show that this
condition presents a general formula for the local temperature gradient. We suggest a resolution of the
recently addressed conflict in Tolman temperature when a chemical potential does not vanish.
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Two physical systems in thermal contact are said to be in
thermal equilibrium if there is no net flow of thermal energy
between them. There may exist chemical or mechanical
differences between the two systems even if they are in
thermal equilibrium. It is characterized by a physical
parameter, temperature.
In considering general relativity, Tolman [1,2] discov-

ered that there exist relativistic temperature gradients for
fluids in thermal equilibrium in static spacetimes in 1930.
The locally measured temperature ΘðxiÞ is

ΘðxiÞ ¼ T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00ðxiÞ

p ; ð1Þ

where g00 is the time-time component of the metric on a
static geometry, and T0 is a constant. T0 represents the
physical temperature at the zero gravitational potential
hypersurface [3]. In 1949, Buchdahl [4] extended
Tolman’s result, which looks identical to Tolman’s. They
considered fluids in stationary spacetimes following a
timelike Killing vector. Recently, the nonuniqueness of
the Killing vector and the temperature gradient was
explored by Santiago and Visser [5]. The study is based
on the gradient flow normal to a spacelike hypersurface.
The authors also argued that the temperature gradients take
the same form for two distinct systems composed of
different materials. The argument is based on the univer-
sality of gravity [3]: If the temperature depends on a
specific material property, then one can make a perpetual
motion machine. This argument using the “evading a
perpetuum mobile” is so powerful that it is difficult to
refute.
On the other hand, Lima et al. [6] recently argued that the

original Tolman temperature should be modified for fluids
in a static spacetime when its chemical potential does not

vanish. They explicitly solved the energy conservation law
for a general equation of state and used the conservation of
particle number and entropy. The discrepancy between the
two arguments seems so different that it cannot be
compromised easily.
There is another approach to derive the temperature

gradient by Cocke [7]. He also derived the Tolman-
Oppenheimer-Volkoff equation (TOV) [8,9] through a
maximum entropy principle which was further extended
by Sorkin et al. [10]. Roupas [11–14] recalculated the TOV,
the Tolman’s, and Klein’s results [15] after specifying an
appropriate thermodynamic ensemble. It is also worth
mentioning that Rovelli and Smerlek [16] obtained the
Tolman temperature by applying the equivalence principle
to a property of thermal time. The quantum-mechanical
modification of Tolman temperature based on the trace
anomaly was also proposed by Gim and Kim [17].
To examine the above schism, we use Carter’s axiomatic

approach for relativistic thermodynamics [18–21] to derive
the Tolman temperature. The approach has the same level
of generality as the Israel-Stewart theory [22–24]. The
theory generalizes Eckhart’s thermodynamics [25] in the
context of general relativity. Moreover, the two theories are
equivalent in the limit of linearized perturbations around a
thermal equilibrium state. The two theories coincide as far
as the causal property is concerned [26]. The original
Carter’s theory was further generalized to consider viscos-
ity and resistivity by Andersson and Comer [27].
The original Carter’s theory dealt with a general two-

constituent, two-fluid model composed of the caloric
(entropic) flow sa and the number flow na of matter.
There, the number flows were generalized to describe
various matter flows by introducing a number flow vector
for each kind of matter.
In general, the two flows move freely from each other

and allow heat conduction. However, in thermal equilib-
rium, there is no heat conduction. Thus, we restrict our
interest to the case that the two constituents sa and na are
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parallel, sakna. It is to demonstrate the essential parts of
what we want to describe avoiding technical complexities
due to entrainments and heat flow. In the previous literature
[20,21,27,28], the authors had dealt with the original
single-fluid model in more general forms. We display
the results which are necessary for the present work.
Mostly, we follow the notations of Carter [20].
The variational theory begins with an unidentified master

function, Λðs; nÞ, of two scalars s and n given by

s ¼ ð−sasaÞ1=2; n ¼ ð−nanaÞ1=2: ð2Þ

When the caloric flow sa is not parallel to the number flow
na, the master function depends on another scalar,
x≡ −sana, additionally. However, x is not independent
because x ¼ sn (sakna). The master function can be
integrated to compose an action functional for s and n,

I ¼
Z
M

dMΛðs; nÞ; ð3Þ

where dM represents the four-dimensional spacetime
volume form.
It is useful to introduce a unit tangent vector ua along the

flow lines of na by

ua ≡ na

n
; n≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−nana
p

; uaua ¼ −1; ð4Þ

where ua ≡ gabua and gab is the metric of the manifoldM.
Then, the entropy flow can be written as

sa ¼ sua: ð5Þ

The conjugate covectors to sa and na are

Θa ≡ Θðs; nÞua; χa ≡ χðs; nÞua; ð6Þ

where Θðs; nÞ and χðs; nÞ denote the temperature and the
chemical potential with respect to comoving observers,
which are conjugates to s and n, respectively.
Varying the action functional (3) with respect to the fluid

path and the metric, one can find the stress tensor:

Tb
a ¼ Θasb þ χanb þ Ψgab ¼ −Λuaub þ Ψγab;

where the pressure Ψ and the energy density ρ are

Ψ ¼ Θsþ χn − ρ; ρ ¼ −Λ: ð7Þ

The force densities for the caloric and the number parts, by
using differential form notation, are

f 0 ¼ ΘΓs þ ⃗s · ðdΘÞ; ð8Þ

f 1 ¼ χΓn þ n⃗ · ðdχ Þ: ð9Þ

Here, ½dΘ�ab ¼ 2∇½aΘb� and ½dχ �ab ¼ 2∇½aχb�. The crea-
tion rates are

Γs ≡∇ · ⃗s ¼ _sþ sθ; Γn ≡∇ · n⃗ ¼ _nþ nθ; ð10Þ

where θ≡∇aua is the expansion rate of the flow lines.
From now on, the overdot denotes the time derivative, i.e.,
_s≡ ua∇as and _n≡ ua∇an, respectively.

1

The divergence of the stress tensor can be decomposed
into two parts, each representing the forces for the caloric
and the number flows,

∇cTc
a ¼ f0a þ f1a: ð11Þ

Therefore, when the fluid is isolated, the stress tensor must
be conserved, ∇cTc

a ¼ 0, which gives

f 0 ¼ −f 1: ð12Þ

The two forces work as a pair of action on the caloric part
and reaction on the number part.2 It reminds us of Newton’s
third law. It reads that the “caloric” force and the “numeric”
force are equal in magnitude and opposite in direction.
When the particle flux na is no longer parallel to the
entropy flux sa, we need more equations of motion to cover
the additional degrees of freedom. An example is the Israel-
Stewart version of the relativistic Cattaneo equation,
qa ¼ qaðκ; T; T ;c; ua; ua;cÞ, Eq. (3.35) in Ref. [28]. In the
case of the thermal equilibrium, the equation qa ¼ 0
suffices the condition.
The spatial projections of the forces on a spacelike

section Σ orthogonal to ua become

f0
a
≡ γbaf0b ¼ suc∇½cΘa� ¼ s

�
∇aΘþ d

dτ
ðΘuaÞ

�
;

f1
a
≡ γbaf1b ¼ nuc∇½cχa� ¼ n

�
∇aχ þ

d
dτ

ðχuaÞ
�
; ð13Þ

where we multiplied γba ¼ gba þ uaub to Eqs. (8) and (9)
using the property of χa and Θa parallel to ua in Eq. (6).
Starting from this formula, one can deduce the two

incompatible arguments mentioned earlier. Let us display
the two in order.
(1) When the caloric flow is inseparable from the

number flow, the two forces f0a and f1a must cancel
each other. One can see it in Eq. (12) without

1In the generalized Carter theory developed in Refs. [27,29],
the equations of motion for the forces were shown to have extra
terms representing resistivity and viscosity.

2This identity is satisfied even if the particle flux na is no
longer parallel to the entropy flux sa. It is because this identity is
the natural result of local energy-momentum conservation. The
introduction of another scalar x≡ −sana for a heat transfer does
not change the result (see Eq. (2.26) in [20]).
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knowing the internal mechanism. We are not inter-
ested in the precise mechanism but rather focus on
the consequences in the present work.
The sum of the two forces vanishes because of the

conservation law (12), which gives

�
1þσΘ

χ

�
_uaþ

�
Da logχþ

σΘ
χ
Da logΘ

�
¼0; ð14Þ

where _ua ¼ uc∇cua is the acceleration of the fluid
andDa ¼ γba∇b is the natural covariant derivative on
the spacelike section Σ. Using Eq. (7), the equation
becomes

_ua þDa logΘþ nχ
ρþ Ψ

Da log
χ

Θ
¼ 0: ð15Þ

Because na denotes the number flow, without loss
of generality, we may choose the unit vector ua to
flow along the coordinate time, i.e., ð∂tÞa ¼ ua. In
other words, the fluid is irrotational, i.e., to have
vanishing vorticity. On a comoving coordinates with
the number flow na, the acceleration is

_ua ¼ uc∇cua ¼ Γa
bcubuc:

Specifically, we consider the metric which does not
have a shift vector:

ds2 ¼ −g00ðt; x⃗Þdt2 þ gijðt; x⃗Þdx⃗2: ð16Þ

Now, the spacelike surface Σ is described by a
t ¼ constant surface. Because _ua is orthogonal to ua,
ua _ua ¼ 0, it is enough to consider only the spatial
component of _ua. Then, the Christoffel symbol
Γa

bc ¼ 1
2
gad½gbd;c þ gcd;b − gbc;d� becomes, using

g00ðutÞ2 ¼ −1,

_ui ¼ Γi
00ðu0Þ2 ¼

gij

2g00

∂g00
∂xj ⇒ _ui ¼

∂
∂xi logð−g00Þ

1=2:

ð17Þ

Using Eqs. (17) and (15) becomes

ρþΨ
nχ

Di logð
ffiffiffiffiffiffiffiffiffiffi
−g00

p
ΘÞ þDi log

χ

Θ
¼ 0; ð18Þ

when ρ ¼ −Ψ, χ=Θ is constant over the given
spacelike surface. When the chemical potential
χ ¼ 0 or χ=Θ is spatially homogeneous, one gets
the temperature in a Tolman form [1]. Else, the
Tolman temperature is to be modified. This pos-
sibility was reported only recently in Ref. [6] for
static spacetimes. The authors explicitly pointed out
that the ratio χ=Θ does not need to be a constant over

Σ under general conditions. In an almost complete
degenerate regime (Θ=ΘF ≪ 1, ΘF is the Fermi
temperature), one can write the chemical potential
for a degenerated relativistic Fermi gas as

χ ¼ EF

�
1 −

π2

12

�
Θ
ΘF

�
2

þ � � �
�
þmc2;

where EF ¼ kBΘF is the Fermi energy. With this
relation, it is sure that the position independence of
χ=Θ fails to hold for such fluids. The Tolman
relation does not hold anymore when Eq. (18) is
satisfied.

(2) In the previous argument, we assume the caloric flow
is inseparable from the number flow. This assumption
is not always valid because the caloric flow flows
with the heat. As we know, heat may move inde-
pendently from the matter as a form of thermal
energy. Let us review shortly the results in the
literature [26,28,30]. The authors have assumed the
absence of particle creation. In the presence of heat,
the spatial part of the force f0

a
has the form [28]

f0
a
¼ fqqa þ f⊥a; ð19Þ

where fq represents the force parallel to the heat qa

and f⊥a, orthogonal to ua and qa, respectively. The
orthogonal term, in general, takes the form

f⊥a ¼ γca⊥d
c ½Adq2 þ B∇dðq2Þ þ Cqbqd;b�; ð20Þ

where Ad, B, and C are unspecified coefficients that
are regular at q ¼ 0. Here, ⊥d

c ¼ δdc − qcqd=q2 de-
notes the projection operator orthogonal to the heat
directionqa. The force f⊥a is not related to the entropy
production even though it is involved in the heat. In
the absence of heat, q ¼ 0, we can safely set the
orthogonal force to vanish, f⊥a ¼ 0. Note that the
parallel force to the heat also vanishes.3 This result
presents a strong constraint on the caloric flow
satisfying naksa because it makes the spatial part
of the caloric force, f0

a
, vanish. Naturally, from

Eq. (12), the number force f1
a
also vanishes.

Multiplying γab to Eqs. (8) and (9) after combining
the two, we get, from f0

a
¼ 0 ¼ f1

a
, the equilibrium

condition for the fluid:

3This vanishing property of forces holds even for the gener-
alized Carter theory [29]. The caloric and the numeric forces here,
f0a and f1a, correspond to f̄xa þ Γxμ̄

x
a for x ¼ 0, 1 in Eq. (14) in the

reference, respectively. In thermal equilibrium, where the dis-
sipation contributions vanish, f̄xa þ Γxμ̄

x
a ¼ 0, which confirms the

vanishing property. Note that nonzero creation rates, Γx ≠ 0, do
not change our analysis because f0a and f1a include those rates by
definition.
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∇b
Θ
χ
þ
�
d
dt

Θ
χ

�
ub ¼ 0 ⇒ γba∇b

Θ
χ
¼ 0: ð21Þ

The last equation implies that the ratio between
temperature and chemical potential, Θ=χ, should
be constant over Σ. This relation is nothing but
Klein’s law [15].
The remaining equation in Eq. (13) with vanishing

orthogonal forces presents another equilibrium
condition,

_ua ¼ −Da logΘ: ð22Þ
This equation determines how the temperature Θ
varies in space, which gives the local temperature of
Tolman [1] for a static spacetime. That is, using
Eq. (17), one gets

ffiffiffiffiffiffiffiffiffiffi−g00
p Θ is constant over Σ for a

spacetime given by the metric (16).
Note that we do not assume the spacetime to be static or

stationary in deriving this formula. The differential result
follows from the unique assumption, the absence of heat.
In general, Eq. (22) is not integrable. Hence, it does not

give an unambiguous temperatureΘ for an arbitrary fluid in
arbitrary spacelike sections. On a spacelike surface Σ, the
temperature Θ is well defined only when the acceleration
_ua takes the form of a gradient of a scalar function on Σ,

_ua ¼ Da logϕ ¼ γba∇b logϕ: ð23Þ

Then, we get the temperature

Θ ¼ T0

ϕ
: ð24Þ

It is natural to ask whether one can define the temper-
ature over the whole spacetime starting from the temper-
ature on Σ. To answer this question, we define an exact
form field:

va ¼ ∇a logϕ0: ð25Þ

If we choose ϕ ¼ ϕ0 on Σ, the projection of va on the
spacelike surface reproduces _ua. However, va ≠ _ua because
_uaua ¼ 0 but vaua ≠ 0 in general. The differential form va
is closed,

∇½bva� ¼ ∇½b∇a� logϕ0 ¼ 0;

where we used the torsion-free condition of the Einstein
gravity theory. On Σ, identifying ϕ0 ¼ ϕ after projecting the
above equation onto Σ by using γba, we get

γcbγ
d
a∇½cvd� ¼ D½b _ua� ¼ 0:

This equation implies that the one-form field _ua ≡ γbavb is
closed on Σ, a necessary condition for the well-defined

temperature on each Σ. When the geometry of Σ allows the
closed one-form field to become an exact form, one can
define the temperature uniquely from the field va. For
example, when Σ is simply connected, the temperature is
well defined. One may apply the present approach that the
static spacetime must be the homogeneous Robertson-
Walker spacetime in cosmology.
Finally, let us return to the previously mentioned

discrepancy: In general, a chemical potential must be an
independent parameter from temperature, and the two may
not be proportional to each other, as was stated in Ref. [6].
When gravity is weak, the chemical potential and the
temperature may not have a spatial gradient, and Eq. (18) is
automatically satisfied. However, as the gravity effect
becomes measurable, the nontrivial relation between the
chemical potential and the temperature must falsify Klein’s
law. Let us examine the derivation process of Klein’s law in
detail. In deriving the law, we used f0

a
¼ 0 when heat is

absent. The absence of the orthogonal force presents the
Tolman temperature. We use this result and the energy-
momentum conservation law of the stress tensor to derive
f1

a
¼ 0, which is crucial for Klein’s law. Therefore, the

law is an indirect consequence contrary to the Tolman
temperature. Because of this, we can avoid the law by
considering multiconstituents fluid models. For example,
let us consider three constituents models composed of sa,
n1a, and n2a. Now, the energy-momentum conservation law
presents

∇cTc
a ¼ f0a þ f1a þ f2a ¼ 0:

In this case, the condition f0
a
¼ 0 fails to make the

orthogonal force for matter, γbafkb (k ¼ 1, 2), vanish.
Therefore, for each number flow, Klein’s law will not hold
contrary to the relation γbaðf1b þ f2bÞ ¼ 0. For the case of the
degenerated relativistic Fermi gas, other matters such as the
protons and the nucleons exist that keep the electron to stay
around. Therefore, when we consider the force law for
matter, we should take care of them. Those matters will
contribute to the orthogonal force f⊥a in Eq. (19).
In summary, we have examined Tolman temperature by

using Carter’s variational formalism of thermodynamics.
To deal with the situation, we have restricted our interests to
fluids in thermal equilibrium. We also suggest a resolution
of the recent conflict in the Tolman temperature when a
chemical potential does not vanish. Our results support the
generality of the Tolman temperature over different kinds
of matter. We have also argued that Klein’s law does not
hold in general.
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