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We calculate the renormalization group flows of all perturbatively renormalizable interactions in the
three-dimensional Ginzburg-Landau potential for the chiral phase transition of three-flavor quantum
chromodynamics. On the contrary to the common belief we find a fixed point in the system that is able to
describe a second-order phase transition in the infrared. This shows that long-standing assumptions on the
transition order might be false. If the transition is indeed of second order, our results may hint that the axial
Uð1Þ symmetry restores at the transition temperature.
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I. INTRODUCTION

The nature of the chiral phase transition of quantum
chromodynamics (QCD) with massless quarks is a question
that has been under debate for decades. The seminal work
of Pisarski and Wilczek [1] showed that when applying
the ϵ expansion to the renormalization group (RG) flows
of the Ginzburg-Landau potential of the chiral transition,
no infrared (IR) stable fixed point appears, indicating that
irrespectively of the number of quark flavors, Nf, the
transition is of first order. This analysis was based on the
assumption that at the transition point the axial anomaly
disappears, which, if, in fact does survive the thermal
evolution, then according to [1], for Nf ¼ 2, the transition
becomes of second order with Oð4Þ critical exponents. For
Nf ≥ 3, however, the anomaly does not appear to have
significance and either way one arrives at the conclusion of
a first-order transition, even after including higher loop
effects [2].
Studies using the functional renormalization group

(FRG) also seemed to have confirmed the results of the
ϵ expansion. Numerous papers reported fluctuation-
induced first-order transitions for various flavor numbers;
see Nf ¼ 2 [3,4], Nf ¼ 3 [5], Nf ≥ 2 [6]. These studies
typically neglected the momentum dependence of the
n-point vertices, i.e., used a local potential approximation,
which was reasonable for evaluating the effective action in
homogeneous backgrounds (thus investigating the transi-
tion order), but they generally approximated the local

potential via a restricted set of chirally symmetric oper-
ators. Still, apart from the case of a substantial axial
anomaly for Nf ¼ 2, all analyses agree that the only
way to obtain a second-order transition is to entirely drop
fluctuations, i.e., employ Landau’s theory. If explicit
fermion degrees of freedom are also introduced into the
effective description, then in the mean-field approximation
(i.e., the sole inclusion of one-loop fermion terms), the
second-order prediction of Landau’s theory survives [5].
The results of [1], however, show that fluctuations of the
chiral field must not be dropped, but then one inevitably
seems to get first-order transitions.
It has to be noted that for Nf ¼ 2, FRG explicitly

confirmed that an Oð4Þ fixed point can indeed be hit in
the IR, but only if the anomaly is strong enough [4].
Furthermore, (for Nf ¼ 2) there have been indications that
the transition could be of second order even if the axial
Uð1Þ symmetry does get restored at the transition temper-
ature [7,8], but then presumably belonging to a different
universality class. That is, for Nf ¼ 2, fluctuations of the
chiral order parameter may form a new IR fixed point, but
no convincing evidence emerged that it could indeed be
physical. No similar results were obtained forNf ≥ 3 and it
has even become textbook material [9] that the transition
for Nf ¼ 3 is discontinuous in the chiral limit, which may
or may not extend toNf ¼ 2, depending on the thermal fate
of the axial anomaly.
Earlier attempts using lattice QCD simulations also

agreed with the first-order nature of the chiral transition
[10–12], but cutoff effects were typically large and it was
also argued that the existence of a discontinuous transition
might be questionable [13]. The problem with lattice QCD
is that due to the singular behavior of the fermion
determinant in the zero quark mass limit, a direct approach
for simulations is not available. Furthermore, it is a
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notoriously hard task to acquire the chiral limit via a
sequence of finite quark masses while keeping the cutoff
and infinite volume limits under control.
Thermal fate of the axial anomaly in the chiral limit is

not settled either. There are numerous lattice studies from
the past decade that support [14–16], and many that are
against [17–22] the restoration of the axial Uð1Þ symmetry
at the transition point. In this study we attempt to argue that
the transition order for Nf ¼ 3 could be very sensitive to
the anomaly evolution toward the chiral transition, and
exploration in this direction is of huge importance [23].
Even though most studies pointed in the direction of a

discontinuous chiral transition for three flavors, recently,
via lattice QCD simulations, Cuteri, Philipsen, and Sciarra
conjectured that, for vanishing quark masses, the transition
might become second order [24]. This claim was followed
by [25] obtaining a similar result. These lattice QCD
studies are in serious conflict with all the renormalization
group arguments, since for Nf ¼ 3 neither in the ϵ
expansion, nor via the FRG the existence of an IR stable
fixed point emerges, which is a necessary condition for
critical behavior and a second-order transition. The main
motivation of this study is to show via the FRG that this
conflict may potentially be resolved.

II. GINZBURG-LANDAU THEORY AND
RENORMALIZATION GROUP FLOWS

According to the Ginzburg-Landau paradigm, for physi-
cal systems close to a second-order transition, there exists a
local order parameter,Φ, emerging from some averaging of
microscopic degrees of freedom, which can be used as an
expansion parameter in the coarse-grained free energy, F ,
at a suitable ultraviolet (UV) momentum scale. For the
three-flavor chiral transition, Φ is a 3 × 3 complex matrix,
parametrized as Φ ¼ ϕaTa ≡ ðσa þ iπaÞTa, where Ta are
the usual Uð3Þ generators, TrðTaTbÞ ¼ δab=2. One needs
to write down in growing powers of ϕa the most general
free-energy functional that respects Uð3Þ ×Uð3Þ chiral
symmetry, which acts as Φ → LΦR†, where L and R are
arbitrary Uð3Þ matrices. A possible set of independent
combinations that can appear in F is

I1 ¼ TrðΦ†ΦÞ; I2 ¼ TrðΦ†Φ − TrðΦ†ΦÞ=3 · 1Þ2;
I3 ¼ TrðΦ†Φ − TrðΦ†ΦÞ=3 · 1Þ3: ð1Þ

It can be shown that any other chirally invariant term can be
expressed as a function of I1, I2, and I3. The axial anomaly
is described by the Kobayashi–Maskawa–’t Hooft deter-
minant,

Idet ¼ detΦþ detΦ†; ð2Þ

as it is invariant under any chiral transformation, except for
the axial Uð1Þ subgroup. Note that Ĩdet ¼ detΦ − detΦ† is
forbidden due to parity reasons, while Ĩ2det (and thus
detΦ† · detΦ) is not independent, as it can be expressed
in terms of (1) and (2). Therefore, the most general
functional for F that respects chiral symmetry but breaks
axial Uð1Þ is

F ½Φ� ¼
Z

d3x½m2I1 þ aIdet þ g1I21 þ g2I2 þ bI1Idet

þ λ1I31 þ λ2I1I2 þ a2I2det þ g3I3 þOðϕ7Þ
þ Tr½∂iΦ†∂iΦ� þOð∂4ϕ2Þ�: ð3Þ

Note that in (3) we substantially extended the operator set
compared to earlier treatments, and included all perturba-
tively renormalizable operators in three dimensions. This is
in contrast with four dimensions (and thus with the ϵ
expansion), where only the couplings m2, a, g1, and g2
would appear. On top of these constants, we now have five
more, i.e., b, λ1, λ2, a2, g3.
To determine the scale (k) evolution of the free energy,

F k, we use the FRG technique. This is particularly
convenient as it allows the evaluation of all β functions
directly in three dimensions. The scale dependence is
described by Wetterich’s flow equation [26,27]. Under
the assumption that the momentum structure of F retains
its UV form throughout the scale evolution (i.e., generation
of non renormalizable higher derivative terms are dropped),
Litim’s optimization procedure [28] leads to the following
form of the flow equation:

k∂kF k½Φ� ¼ k2
Z
jq⃗j<k

d3q
ð2πÞ3 Trðk

2 · 1þ F 00
kÞ−1q¼0½Φ�

¼ k5

6π2
Trðk2 · 1þ F 00

kÞ−1q¼0½Φ�; ð4Þ

where Φ is a homogeneous but otherwise arbitrary field
configuration. As in ordinary Wilsonian renormalization, it
is assumed that the scale evolution is governed by the k
dependence of the renormalizable couplings, i.e., effects of
(perturbatively) irrelevant operators are dropped. Note that
these terms are still generated during the scale evolution
and it is not known a prioriwhether they can alter the fixed-
point structure and their stability. Further investigations on
this issue, including the question of the wave-function
renormalization and higher derivative terms are very
important, but beyond the scope of this paper.
Flows of the couplings are obtained by (i) calculating the

zero momentum part of the 18 × 18 second derivative
matrix, F 00

k;q¼0, in a homogeneous background Φ, then
(ii) expanding the rhs of (4) in terms of the components of
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Φ leading to the emergence of all chiral invariants, and
finally (iii) matching all terms in the lhs and rhs of (4),
which yields the k derivative of each individual coupling.
This leads to the β functions, which, as usual, are defined as
the logarithmic k derivative of the dimensionless couplings,
which are rescaled versions of the original couplings with
appropriate powers of k. These dimensionless couplings
will be denoted by a bar on top (e.g., m2

k ¼ k2m̄2
k).

III. β FUNCTIONS AND FIXED POINTS

Evaluating the rhs of (4) in a general background of Φ
is problematic in its full generality, as it is practically
impossible to invert the F 00

k matrix as the number of
nonzero components in Φ increases. Fortunately, the actual
background field is not of particular importance when
searching for the β functions, as at each order in the field
expansion one is free to choose the background at one’s
disposal, under the condition that the operators generated at
the order in question are distinguishable. This lets the
corresponding β functions be acquired uniquely.
A potential sequence of background field choices is the

following. At Oðϕ2Þ and Oðϕ3Þ we choose Φ ¼ σ0T0,
which uniquely determines βm2 and βa. At Oðϕ4Þ the latter
background yields βg1 , but since I2jΦ¼σ0T0

¼ 0, it is not
suitable for obtaining βg2 . Note that once βg1 is calculated,
we may switch to Φ ¼ σ8T8 and by subtracting the
contributions of βg1 we arrive at βg2 . At Oðϕ5Þ we switch
back to Φ ¼ σ0T0 to get βb. The most complicated part of
the calculation occurs at Oðϕ6Þ, as there are four operators
contributing [see (3)], and we need a sequence of back-
ground field choices that uniquely allows for disentangling
them. If we start with Φ ¼ iπ0T0, then it yields βλ1 as the
other three operators vanish in this background. Using the
result for βλ1, we may switch back once again toΦ ¼ σ0T0,
which albeit mixes βλ1 and βa2 (but eliminates the other two
invariants), since the former is already known and can be
subtracted, the latter is obtained uniquely. As for the
calculation of βλ2 and βg3 , we always need a two-
component background, as all choices for one-component
fields lead the remaining two invariants to either vanish
simultaneously, or they both acquire nonzero values,
making them and the corresponding β functions impossible
to disentangle. A convenient choice could be Φ ¼ σ8T8þ
iπ0T0, which readily allows the unique distinction between
βλ2 and βg3 .
As opposed to the β functions themselves, the outlined

set of choices for the background fields is not unique. In
principle if F 00

k was invertible for a generic background
field of Φ, the whole approach would be to just simply
expand the rhs of (4) in terms of ϕa and let all invariants
naturally be built up while reading off their prefactors as the
β functions. Since from a practical point of view this is not
possible, the outlined procedure is one of the simplest ways

to get the k evolution of F . All β functions are listed in the
Appendix.
Similarly to the procedure of [29], first we search for the

zeros of the β functions of the marginal interactions, i.e., we
solve the βλ1 ¼ 0, βλ2 ¼ 0, βa2 ¼ 0, βg3 ¼ 0 equations for
λ̄1;k, λ̄2;k, ā2;k, and ḡ3;k in terms of the relevant couplings,
m̄2

k, āk, ḡ1;k, ḡ2;k, b̄k. Then, after plugging the former into
the β functions of the latter couplings, we get expressions in
terms of ḡ1;k and ḡ2;k that are genuinely nonperturbative.
This shows that via a perturbative RG around d ¼ 4 no
such results can be obtained. Finally, we are ready to
analyze numerically the RG flows in the five-dimensional
space of fm̄2

k; āk; ḡ1;k; ḡ2;k; b̄kg. Note that the fixed-point
equations are symmetric under the simultaneous reflections
of a → −a, and b → −b; therefore, without the loss of
generality, we assume that a < 0.
In Table I, we show those fixed points,1 which have a

stability matrix, defined as Ωij ¼ ∂βωi
=∂ωj (here ωi is the

collection of all couplings), with real eigenvalues. The first
line is the Gaussian fixed point, the second one is the usual
Oð18Þ fixed point, and in addition we find two new ones
with two and four relevant directions, respectively. The one
with two relevant directions is of particular interest. Since a
finite temperature second-order transition corresponds to a
fixed point with one relevant direction, it seems that none of
the new fixed points describes a continuous phase tran-
sition. For the one with two relevant directions, however,
the stability matrix happens to be block diagonal; we have a
3 × 3 block in the space of fm̄2

k; ḡ1;k; ḡ2;kg, and a 2 × 2

block in the fāk; b̄kg plane. That is, if the axial Uð1Þ
symmetry is recovered at the transition point, i.e., no āk and
b̄k directions exist in the Ginzburg-Landau potential, then
this fixed point has only one relevant direction (see Fig. 1).
This is in sharp contrast with the results of the ϵ expansion,
and provided that the axial anomaly disappears at the
critical temperature, the newly found fixed point may
indicate a second-order chiral transition. On the flip side,
one can also argue that if the chiral transition is shown to be
indeed of second order [24,25], then our result may hint

TABLE I. Fixed points having a stability matrix with real
eigenvalues. In the last column we indicate the number of relevant
directions (RD).

m̄2 ḡ1 ḡ2 ā b̄ # of RD

0 0 0 0 0 5
−0.31496 0.43763 0 0 0 3
−0.38262 0.59726 −0.62042 0 0 2
−0.01786 0.09163 −0.14148 −0.11900 0.39087 4

1Since we are focusing on the possibility of a finite-
temperature second-order transition, complex fixed points or real
fixed points with complex stability eigenvalues are not listed.
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that the axial Uð1Þ symmetry is recovered at the transition
point. Note that this is the exact opposite as the two-flavor
case in the ϵ expansion, where the only way to end up in a
fixed point [i.e., the Oð4Þ fixed point] toward the IR is to
have a large (strictly speaking infinity) initial anomaly
coefficient [4].
The second-order transition described by the anomaly free

IR fixed point cannot belong to any of theOðNÞ universality
classes, since the symmetry of the free energy in the
aforementioned fixed point is Uð3Þ ×Uð3Þ. As for
the corresponding critical exponents, the eigenvalue of the
stability matrix that corresponds to the temperature variable
is yt ≈ −1.206, which predicts the ν exponent of the
transition to be ν ¼ −1=yt ≈ 0.829. Since in the present
approximation no wave-function renormalization is taken
into account, the η exponent (i.e., the anomalous dimension)
is zero.

IV. CONCLUSIONS

In this paper we have calculated the renormalization
group flows of all couplings up to sixth order in the three-
dimensional Ginzburg-Landau potential for the three-flavor
chiral transition in the zero quark mass limit. On the
contrary to the results of the ϵ expansion [1,2] and several
studies using FRG flows [3–6], we find a fixed point in the
infrared, which could potentially correspond to a continu-
ous chiral transition. We believe that the discrepancy

between the results of the present study and that of the
aforementioned earlier works is that here we significantly
extend the space of operators included in the free-energy
functional, guided by the principle of (perturbative) renor-
malizability. As a result, in the multidimensional space of
coupling constants new fixed points can be revealed, which
are inaccessible in simpler truncations.
We have also found that stability requires the anoma-

lously broken Uð1Þ axial symmetry to restore at the critical
temperature; otherwise, the transition would presumably be
of first order. Our results may resolve the conflict between
renormalization group arguments and recent lattice simu-
lations [24,25], which predict the transition to be of second
order. If the transition is indeed continuous, our results also
hint that the axial Uð1Þ symmetry is recovered at the
transition point.
It would be important to investigate the robustness of the

obtained results with respect to improving the truncation of
the free-energy functional. There are at least three direc-
tions that are worth more exploration: (1) the inclusion of
higher-order (nonrenormalizable) operators in terms of the
chiral field, (2) the introduction of a field-dependent wave-
function renormalization factor, and (3) taking into account
higher derivative terms. These directions are already under
investigation and will be reported elsewhere.
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APPENDIX: LIST OF β FUNCTIONS

Here we list all the β functions that were used to calculate
the location and the stability of the fixed points in the
system. Note that all couplings are dimensionless, rescaled
by appropriate powers of the scale (k). For (perturbatively)
relevant interactions we get

FIG. 1. Infrared fixed point having one relevant direction
without the axial anomaly.
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βm2 ≡ k∂km̄2
k ¼ −2m̄2

k −
4

9π2
15ḡ1;k þ 4ḡ2;k
ð1þ m̄2

kÞ2
þ 4

3π2
ā2k

ð1þ m̄2
kÞ3

;

βa ≡ k∂kāk ¼ −
3āk
2

−
4

π2
b̄k

ð1þ m̄2
kÞ2

þ 4

3π2
ākð3ḡ1;k − 4ḡ2;kÞ

ð1þ m̄2
kÞ3

;

βg1 ≡ k∂kḡ1;k ¼ −ḡ1;k −
1

9π2
2ā2;k þ 99λ̄1;k þ 16λ̄2;k

ð1þ m̄2
kÞ2

þ 4

27π2
24ākb̄k þ 117ḡ21;k þ 48ḡ1;kḡ2;k þ 16ḡ22;k

ð1þ m̄2
kÞ3

−
16

9π2
ā2kð6ḡ1;k þ ḡ2;kÞ

ð1þ m̄2
kÞ4

þ 8

9π2
ā4k

ð1þ m̄2
kÞ5

;

βg2 ≡ k∂kḡ2;k ¼ −ḡ2;k þ
1

3π2
ā2;k − 5ḡ3;k − 13λ̄2;k

ð1þ m̄2
kÞ2

−
4

3π2
ākb̄k − 6ḡ1;kḡ2;k − 4ḡ22;k

ð1þ m̄2
kÞ3

þ 4

3π2
ā2kð3ḡ1;k þ 5ḡ2;kÞ

ð1þ m̄2
kÞ4

þ 2

3π2
ā4k

ð1þ m̄2
kÞ5

;

βb ≡ k∂kb̄k ¼ −
b̄k
2
þ 4

9π2
b̄kð66ḡ1;k − 4ḡ2;kÞ þ 3ākð5ā2;k þ 9λ̄1;k − 4λ̄2;kÞ

ð1þ m̄2
kÞ3

þ 8

3π2
−3ā2kb̄k − 18ākḡ21;k þ 12ākḡ1;kḡ2;k þ 4ākḡ22;k

ð1þ m̄2
kÞ4

þ 32

9π2
ā3kð3ḡ1;k − ḡ2;kÞ

ð1þ m̄2
kÞ5

;

while for the marginal ones we obtain

βλ1 ≡ k∂kλ̄1;k ¼
8

27π2
9b̄2k þ 3ā2;kḡ1;k þ 24ḡ1;kð9λ̄1;k þ λ̄2;kÞ þ 4ḡ2;kð9λ̄1;k þ 4λ̄2;kÞ

ð1þ m̄2
kÞ3

−
4

81π2
72ākb̄kð9ḡ1;k þ ḡ2;kÞ þ 4ð297ḡ31;k þ 108ḡ21;kḡ2;k þ 72ḡ1;kḡ22;k þ 16ḡ32;kÞ þ 9ā2kð2ā2;k þ 45λ̄1;k þ 4λ̄2;kÞ

ð1þ m̄2
kÞ4

þ 32

81π2
ā2kð15ākb̄k þ 171ḡ21;k þ 36ḡ1;kḡ2;k þ 8ḡ2;kÞ

ð1þ m̄2
kÞ5

−
80

81π2
ā4kð15ḡ1;k þ ḡ2;kÞ

ð1þ m̄2
kÞ6

þ 8

9π2
ā6k

ð1þ m̄2
kÞ7

;

βλ2 ≡ k∂kλ̄2;k ¼
2

9π2
2ḡ2;kð25ḡ3;k þ 54λ̄1;k þ 44λ̄2;k − 2ā2;kÞ− 9b̄2k − 6ḡ1;kðā2;k − 5ḡ3;k − 28λ̄2;kÞ

ð1þ m̄2
kÞ3

þ 1

3π2
36ākb̄kð2ḡ1;k þ ḡ2;kÞ− 8ḡ2;kð36ḡ21;k þ 21ḡ1;kḡ2;k þ 7ḡ22;kÞ þ ā2kð6ā2;k þ 5ḡ3;k þ 36λ̄1;kÞ

ð1þ m̄2
kÞ4

þ 8

27π2
9ā3kb̄k þ 180ā2kḡ

2
1;k þ 132ā2kḡ1;kḡ2;k þ 26ā2kḡ

2
2;k

ð1þ m̄2
kÞ5

þ 20

9π2
ā4kð3ḡ1;k þ 2ḡ2;kÞ

ð1þ m̄2
kÞ6

;

βa2 ≡ k∂kā2;k ¼
4

3π2
6b̄2k þ 15ā2;kḡ1;k − 8ā2;kḡ2;k

ð1þ m̄2
kÞ3

þ 16

π2
ākb̄kðḡ2;k − 3ḡ1;kÞ

ð1þ m̄2
kÞ4

þ 16

3π2
ā2kð9ḡ21;k þ 2ḡ2;kÞ

ð1þ m̄2
kÞ5

;

βg3 ≡ k∂kḡ3;k ¼
4

3π2
15ḡ1;kḡ3;k þ ḡ2;kð2ā2;k þ ḡ3;k þ 12λ̄2;kÞ

ð1þ m̄2
kÞ3

þ 1

π2
4ākb̄kḡ2;k þ 8ḡ22;kðḡ2;k − 9ḡ1;kÞ þ ā2kðḡ3;k þ 8λ̄2;k − 2ā2;kÞ

ð1þ m̄2
kÞ4

þ 16

9π2
3ā3kb̄k þ 2ā2kḡ2;kð7ḡ2;k − 12ḡ1;kÞ

ð1þ m̄2
kÞ5

þ 20

9π2
ā4kð5ḡ2;k − 6ḡ1;kÞ

ð1þ m̄2
kÞ6

þ 2

π2
ā6k

ð1þ m̄2
kÞ7

:
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