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We generalize the time-honored Weinberg’s compositeness relations by including the range corrections
through considering a general form factor. In Weinberg’s derivation, he considered the effective range
expansion up to Oðp2Þ and made two additional approximations: neglecting the nonpole term in the Low
equation and approximating the form factor by a constant. We lift the second approximation and work out
an analytic expression for the form factor. For a positive effective range, the form factor is of a single-pole
form. An integral representation of the compositeness is obtained and is expected to have a smaller
uncertainty than that derived from Weinberg’s relations. We also establish an exact relation between the
wave function of a bound state and the phase of the scattering amplitude neglecting the nonpole term.
The deuteron is analyzed as an example, and the formalism can be applied to other cases where range
corrections are important.

DOI: 10.1103/PhysRevD.105.L071502

I. INTRODUCTION

Deciding whether a particle is composite or elementary
via low-energy scattering observables had been considered
impossible until Weinberg proposed his relations [1] that
connect the scattering length a and effective range r with
the compositeness of an S-wave shallow bound state.
For instance, the deuteron may be a superposition of a
composite (molecular) state of two nucleons and a compact
component (called an “elementary particle” in the original
publication [1] to be distinct from the two-nucleon
composite component). The probability of finding the
deuteron in the molecular state is called compositeness
X. The relations read [1]

a ¼ −
2XW

1þ XW
RþOðm−1

π Þ; ð1Þ

r ¼ −
1 − XW

XW
RþOðm−1

π Þ; ð2Þ

where R ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjEBj

p
, μ is the reduced mass, EB is the

binding energy, which is EB ¼ −2.224575ð9Þ MeV [2] for
the deuteron case, and the Oðm−1

π Þ terms are due to
neglecting the finite-range interactions. We denote the
compositeness from the above equations as XW in order
to distinguish it from the one to be derived later. Had the
deuteron an appreciable compact component, Weinberg’s
relations would predict a large and negative r and a small a,
which clearly contradict the measured values [3]

a ¼ −5.419ð7Þ fm; r ¼ 1.766ð8Þ fm: ð3Þ

So one can conclude that the deuteron is mostly a
composite system of two nucleons. The compositeness
X, being a probability, should be in the range [0, 1].
However, the XW value may go beyond that range. For
instance, the above relations lead to a value of 1.68 for the
deuteron, indicating a sizable correction. Besides the
deuteron, Weinberg’s relations and their extensions [4–26]
have been widely used to study many near-threshold
hadrons (see Ref. [27] for a review).
On the other hand, the wave function of the deuteron has

been studied by hundreds of works (see Ref. [28] for a
review). Mostly constrained by the scattering phase shift,
various models can predict wave functions with similar
properties at long distances, suggesting a potential model-
independent relationship between the two terms. In fact,
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such a relation exists formally for purely local potentials in
the context of the inverse scattering problem (see, e.g.,
Ref. [29]). In the derivation of Weinberg’s relations, the
form factor of the deuteron, which encodes its coupling to
the proton and neutron, is approximated by a constant (see
below), which greatly limits the behavior of the wave
function and, therefore, precludes a detailed study on it.
In this Letter, we will generalize the compositeness

relations by lifting the constant-form-factor approximation
completely. Consequently, the uncertainty of composite-
ness is considerably reduced, and a relation between the
wave function and the scattering phase shift follows. The
obtained compositeness for a bound state will always be in
the range [0, 1]. We will also derive an analytic expression
for the form factor considering the effective range expan-
sion (ERE).

II. DERIVATION

We restrict our discussion to the near-threshold region
and thus consider only the S-wave interaction with a
Hamiltonian Ĥ ¼ Ĥ0 þ V̂. Its half-shell T matrix

Tp;k ≔ hpjT̂ðhk þ iεÞjki; ð4Þ

with p the momentum of one constituent particle in the
center-of-mass frame of the two-body system, the normali-
zation hpjki ¼ ð2πÞ3δðp − kÞ=p2, and the kinetic energy
hk ¼ k2=ð2μÞ, is constrained by the Low equation [1]

Tp;k ¼ Vp;k þ
gðpÞg�ðkÞ
hk − EB

þ
Z

∞

0

q2dq
ð2πÞ3

Tp;qT�
k;q

hk þ iε − hq
; ð5Þ

where Vp;k ≔ hpjV̂jki, EB < 0 is the binding energy of the
bound state jBi, and gðpÞ ≔ hpjV̂jBi is the form factor.
For a shallow bound state with jEBj ≪ hΛ ≔ Λ2=ð2μÞ,

where Λ is a hard momentum scale, the second term on the
right-hand side of Eq. (5) is enhanced by ðhk − EBÞ−1 in
the low-momentum regime, where k ≪ Λ compared with
the nonpole term Vp;k. Then Weinberg made two approx-
imations. The first is to ignore the nonpole term Vp;k in the
Low equation. The second is to replace the form factor gðpÞ
by a constant g, amounting to keeping only the leading-
order term in a nonrelativistic expansion. In the following,
we adopt only the first one, i.e., neglecting the nonpole
term, which should work well in the near-threshold region
dominated by the pole. Note that a nonpole term of the form
that can be generated by redefining gðkÞ is already
accounted for by the second term of Eq. (5).
With a separable ansatz,

Tp;k ¼ tkgðpÞg�ðkÞ; ð6Þ

the Low equation can be solved (details can be found in the
Supplemental Material [30]),

Tp;k ¼
1

1 − FðhkÞ
gðpÞg�ðkÞ
hk − EB

; ð7Þ

with

FðWÞ ≔
Z

∞

0

q2dq
ð2πÞ3

ðW − EBÞjgðqÞj2
ðhq − EBÞ2ðW − hqÞ

: ð8Þ

The solution is obtained without the so-called Castillejo-
Dalitz-Dyson zeros [31] as Weinberg did (for a discussion
of the impact of such zeros on the compositeness, see
Refs. [6,7,32]). Interestingly, the compositeness X shows
up as

Fð∞Þ ¼
Z

∞

0

q2dq
ð2πÞ3

jhqjV̂jBij2
ðhq − EBÞ2

¼
Z

∞

0

q2dq
ð2πÞ3 jhqjBij

2 ¼ X;

ð9Þ

where the Schrödinger equation hqjðhq þ V̂ÞjBi ¼
EBhqjBi has been used. The integral in Eq. (8) can be
solved in a closed form if gðqÞ is approximated by a
constant, as done in Ref. [1].
One can define, with the convention δBð0Þ ¼ 0,

δBðE ¼ hpÞ ≔ argTp;p ¼ − arg ð1 − FðEþ iεÞÞ; ð10Þ

where δB means the phase of the on-shell T matrix Tp;p ¼
tpjgðpÞj2 and differs from the full phase shift δ by having
neglected the nonpole term in Eq. (5) [for convenience, we
take the convention δð0Þ ¼ 0, the same as that for δB].
Nevertheless, we have δB ≈ δ in the low-momentum
regime where the near-threshold pole dominates and the
full on-shell T matrix (∝ eiδ sin δ) is well approximated.
Furthermore, one can show

−π ≤ δB ≤ 0 ð11Þ

by noting Fð0Þ ≤ 0 and ImFðEþ iεÞ ≤ 0 for E ≥ 0, and
δBð∞Þ ¼ 0 unless X ¼ 1.
One can work out a dispersive representation of FðWÞ

(see the Supplemental Material for the derivations [30]),

FðWÞ ¼ 1 − exp

�
W − EB

π

Z
∞

0

dE
−δBðEÞ

ðE −WÞðE − EBÞ
�
;

ð12Þ

which, combined with Eq. (9), leads to an integral
representation of X in terms of the low-energy observable
δB, which is the phase shift under the approximation
neglecting Vp;k,

X ¼ 1 − exp

�
1

π

Z
∞

0

dE
δBðEÞ
E − EB

�
: ð13Þ
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The above formula presents a generalization of Weinberg’s
treatment by lifting the leading-order nonrelativistic
approximation to the form factor [an expression of the
compositeness in terms of the T matrix given by Eq. (5) can
be found in Refs. [8,11]]. It ensures that X computed in this
way cannot be larger than 1; furthermore, since δB ≤ 0, we
also have X ≥ 0. Thus, X ∈ ½0; 1� is ensured, in contrast to
that computed from Eqs. (1) and (2).
The form factor can also be constructed from δB by

noticing

ImFðhp þ iεÞ ¼ −
πpμ
ð2πÞ3

jgðpÞj2
hp − EB

: ð14Þ

Working out the imaginary part of Eq. (12) and comparing
it with Eq. (14), one finds

jgðpÞj2 ¼ −
ð2πÞ3
πpμ

ðhp −EBÞ sinδBðEÞ

× exp

�
hp −EB

π
⨎∞
0
dE

−δBðEÞ
ðE− hpÞðE−EBÞ

�
; ð15Þ

where ⨎ denotes the principal value integral.
The form factor gðpÞ is related to the radial wave

function in the momentum space ũðpÞ and that in the
position space uðrÞ as follows:

ũðpÞ ¼ p

ð2πÞ3=2
gðpÞ

hp − EB
; ð16Þ

uðrÞ ¼ 4π

ð2πÞ3=2
Z

∞

0

dp ũðpÞ sinðprÞ: ð17Þ

These wave functions are normalized asZ
∞

0

dpjũðpÞj2 ¼
Z

∞

0

drjuðrÞj2 ¼ X: ð18Þ

We note that Eq. (15) does not determine the phase of gðpÞ.
However, if the system respects time reversal symmetry and
the bound state is not degenerated, uðrÞ, ũðpÞ, and gðpÞ can
all be made real.
Finally, with the convention in the current Letter, we can

write the ERE,

p cot δB ≈ −
8π2

μ
ReT−1ðhpÞ ¼

1

a
þ r
2
p2 þOðp4Þ; ð19Þ

where the ≈ is used to remind us that the nonpole term Vp;k

has been neglected from the Low equation.

III. DISCUSSION

Equation (13) is a generalization of Weinberg’s relations.
It is expected to have a smaller uncertainty, ofOðΛ−2Þ, than

that of Weinberg’s relations, i.e., OðΛ−1Þ with Λ ∼mπ for
the deuteron case (for discussions of the uncertainty of
Weinberg’s relations, see, e.g., Refs. [21,24]). Here the
small dimensionless quantity for estimating uncertainties
needs to be understood as 1=ðRΛÞ, and we neglect R for
simplicity. Typically, momenta appear in a square form
in the potential. Therefore, we expect the ignored Vp;k

only brings an uncertainty of OðΛ−2Þ. The reason that
Weinberg’s relations have an uncertainty of OðΛ−1Þ is that
the constant-form-factor approximation gðpÞ ¼ g0 has
been applied to the estimation of X. Although this
approximation neglects the OðΛ−2Þ terms of g2ðpÞ, whose
Λ dependence reads g2ðpÞ ¼ g20 þ p2

Λ2 g̃2ðp2

Λ2Þ, the resulting
uncertainty is

ΔX ¼ 1

Λ2

Z
∞

0

q2dq
ð2πÞ3

q2g̃2ðq2Λ2Þ
ðhq − EBÞ2

∼OðΛ−1Þ; ð20Þ

where the integral is linearly divergent when Λ → ∞ and
needs to be cut at the hard scale Λ. As the derivation of
Eq. (13) does not rely on this approximation, we expect the
uncertainty is of OððRΛÞ−2Þ.
In fact, when we take the ERE up to Oðp2Þ for δB as

given in Eq. (19), an analytic model-independent, based on
the separable ansatz in Eq. (6), expression (the form factor
was modeled in a Gaussian form in, e.g., Ref. [33] and with
a hard cutoff in, e.g., Ref. [5]) can be worked out for the
form factor g2ðpÞ from Eq. (15),

g2ðpÞ ¼ 8π2

μ2R
×

(
tþOðp4Þ t ∈ ½0; 1�
a2

R2
1

1þðaþRÞ2p2 þOðp4Þ t > 1
; ð21Þ

where t ≔ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r=a

p ¼ −a=ðaþ 2RÞ, which is just
XW using Eqs. (1) and (2), and we have expressed r in
terms of r ¼ 2Rðaþ RÞ=a in the second line. The above
expression is exact for ERE up toOðp2Þ, andOðp4Þ therein
denotes that higher-order terms have been neglected in
the ERE.
One sees that the form factor is a constant for

XW ∈ ½0; 1�, i.e.,

a ∈ ½−R; 0�; r ≤ 0; ð22Þ

and the relation between XW and the coupling constant in
Ref. [1] is reproduced in this case.
However, when XW > 1, which corresponds to a ∈

ð−2R;−RÞ and r ∈ ð0; RÞ, g2ðpÞ contains Oðp2Þ terms
and is of a single-pole form. Since the form factor enters the
T matrix through the Low equation (5), such Oðp2Þ terms
would contribute to the effective range and need to be taken
into account consistently up to Oðp2Þ. However, it was
neglected in the original treatment of Ref. [1]; then for
r > 0 the value of XW solved using a constant form factor
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(or coupling) is larger than 1, as is the case for the deuteron
(XW ¼ 1.68), and loses its direct interpretation as a
probability. On the contrary, the compositeness given in
Eq. (13), which is the exact solution of the Low equation
with the nonpole term Vp;k neglected, will be exactly X ¼ 1

because δBð∞Þ ¼ −π, as can be seen from Eq. (19). Thus,
we conclude that the compositeness of the deuteron is 1.
The same also applies to the D�

s0ð2317Þ and Ds1ð2460Þ as
computed by the RQCD Collaboration using lattice quan-
tum chromodynamics in Ref. [34], where the isoscalar DK
and D�K effective ranges are positive and the authors
obtained larger-than-1 values for the compositeness using
Eqs. (1) and (2). For comparison, the DK effective range
obtained by the Hadron Spectrum Collaboration is neg-
ative, and the extracted compositeness close to 1 using the
same relations is valid [35]. From the above discussion,
considering the binding energy ranging from 22 to 60 MeV
at the two pion masses therein [35], the systematic
uncertainty of X from using Weinberg’s relations should
be about ðRΛÞ−2 ∈ ½0.03; 0.07�, which is much less than
ðRΛÞ−1 ∈ ½0.16; 0.27� that one would naively assume. Here
Λ ∼mρ is estimated from the lightest meson exchanged
between Dð�ÞK.
Since Wigner’s causality inequality constrains the effec-

tive range r to be negative semidefinite for a zero-range
interaction (see, e.g., Refs. [26,36]), a positive r implies a
sizable range correction. This is reflected by the p2

dependence in Eq. (21). For the deuteron case, one has
jaþ Rj ≈ 1.1 fm, at the order of the inverse of the
pion mass.
There is a crucial difference between a negative and a

positive r (see also Refs. [10,13,26] for related discus-
sions). The T matrix has two poles in the complex
momentum plane using ERE up to a nonvanishing effective
range term, which are located at p− ¼ i=R and
pþ ¼ −i=ðRþ aÞ. Here we have chosen to express the
quantities in terms of a and R, and the effective range is
r ¼ 2RðRþ aÞ=a. a must be negative in order to have a
bound state pole. For a ∈ ð−R; 0Þ, p− is a bound state pole,
and pþ is a remote virtual state pole; in this case, r < 0,
and, correspondingly, the form factor is just a constant up to
Oðp2Þ. However, for a ∈ ð−2R;−RÞ, pþ becomes a bound
state pole as well; in this case, r ∈ ð0; RÞ. Although this
pole is spurious, it effectively resums range corrections (see
Ref. [37] for discussions of range corrections in two-photon
decays of hadronic molecules), and the form factor in
Eq. (21) is indeed proportional to 1=ðp2 − p2þÞ. For
a < −2R, the roles of pþ and p− are interchanged, and
the above discussions still apply. For the fine-tuning case
a ≈ −2R, the poles are close to each other and the Low
equation needs to be modified.
The result of Eq. (13) for X has an uncertainty because

δB is obtained by neglecting the nonpole term Vp;k, which
could have a sizable contribution in the high-momentum
range. Thus, we introduce

δBðE;ΛÞ ¼
�
δBðEÞ E ≤ hΛ
0 E > hΛ

;

δBðE; Λ̄Þ ¼
�
δBðEÞ E ≤ hΛ
−π E > hΛ

; ð23Þ

with hΛ ¼ Λ2=ð2μÞ, so that

−π ≤ δBðE; Λ̄Þ ≤ δBðEÞ ≤ δBðE;ΛÞ ≤ 0: ð24Þ

The corresponding compositenesses, form factors, and
wave functions will be denoted in a similar way. For the
compositeness, one has

XðΛÞ ¼ 1 − exp
�
1

π

Z
hΛ

0

dE
δBðEÞ
E − EB

�
≤ X ≤ 1 ¼ XðΛ̄Þ:

ð25Þ

For the form factor, one can show

g2ðp;ΛÞ ≤ g2ðpÞ ≤ g2ðp; Λ̄Þ; when p ≤ Λ; ð26Þ

g2ðp;ΛÞ ¼ g2ðp; Λ̄Þ ¼ 0; when p > Λ: ð27Þ

Thus, with a larger Λ, one has tighter bounds on X, which,
on the other hand, bear a larger uncertainty. For the wave
function in the momentum space, there are similar rela-
tions. For the position space, however, there are not.
For a shallow bound state, the p=ðhp − EBÞ factor in

Eq. (16) peaks sharply around p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjEBj

p
. Once Λ is

chosen beyond the peaking range, ũðpÞ will be largely
determined by the long-distance physics. When we go to
the position space, the short-distance (small-r) part of uðrÞ
receives little contribution from the small-p part of ũðpÞ as
a consequence of the uncertainty principle. To be more
concrete, because of the sinðprÞ term in Eq. (17), ũðpÞ
contributes to uðrÞ only when p≳ π=ð2rÞ. This reflects the
inability to probe the short-distance structure of a shallow
bound state using the information of low-energy scattering.
For the deuteron, for instance, it is impossible to distinguish
the compact nucleon-nucleon component, i.e., the compo-
nent of the small-r part of uðrÞ, from a possible elementary-
particle core using only the low-energy nucleon-nucleon
scattering.

IV. ANALYSIS OF DEUTERON

As discussed before, our prediction for the composite-
ness of the deuteron is simply 100%. The uncertainty of
this value is determined by how well δB approximates
the genuine phase shift. As argued above, around Eq. (20),
for the deuteron, while Weinberg’s relations would
predict X ¼ 1.68þOððRmπÞ−1 ≃ 0.3Þ, we have X ¼ 1þ
Oð0.32 ¼ 0.09Þ.
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We plot the form factor and wave functions of the
deuteron in Fig. 1, where we also include the results from
three famous Nijmegen models [38,39] [the references
provide wave functions both in position and momentum
spaces directly, and the form factors are obtained from
Eq. (16)]. The three Nijmegen models give X ¼
ð94.246–94.365Þ% (the remaining 1 − X part comes from
the D-wave component). It is interesting to find that
the ERE phase shift produces a form factor that drops
quickly, as given in the second line of Eq. (21), showing
the importance of the range corrections neglected in
Weinberg’s relations. Compared to Nijmegen models, the
discrepancy of the form factor from ERE becomes larger at
higher momenta unsurprisingly. However, thanks to the
p=ðhp − EBÞ factor in Eq. (16), the wave function ũ2ðpÞ
drops faster than g2ðpÞ, so the discrepancy becomes hardly
visible for ũ2ðpÞ even in the high-momentum range. For the
wave function in position space, the discrepancy is mainly
in the small-r range as expected. The deuteron wave
function has been computed using many other methods;
e.g., Ref. [28] compared wave functions from the Nijmegen
group potentials [38] and Argonne v18 potential [40],
Ref. [41] compared their results with the results from the
Idaho (500) N3LO potential of Ref. [42], the N3LO
(550=600) potential of Ref. [43], and the CD-Bonn
potential [44], and Ref. [45] discussed wave functions in
an EFT context. Most of these wave functions share a
quite similar large-r behavior and differ mainly in the
r≲ 2 fm range.
We can even go beyond the ERE by using a para-

metrization fitted to the experimental phase shifts up to a
higher momentum. We adopt the following parametrization
used in Ref. [46], where the authors refer to it as the pole
approximation:

p cot δPole ¼
1

a
þ r
2
p2 þ v2p4

1 −Dp2
; ð28Þ

with a ¼ −5.4030 fm, r ¼ 1.7494 fm, v2 ¼ 0.163 fm3,
and D ¼ 0.225526 fm2. When p > D−1=2 ¼ 416 MeV,

δPole < −π, violating the restriction (11). So we have to
introduce a cutoff Λ ¼ 416 MeV, with which
XðΛÞ ¼ 92.8%, consistent with X ¼ 1þOð0.09Þ given
above. We also note that, even with a much smaller Λ, e.g.,
one would have X ≥ XðmπÞ ¼ 62% is already larger than
50%, which reliably concludes the deuteron to be mostly
composite. The corresponding form factors and wave
functions are included in Fig. 1. It is clear from the
g2ðpÞ plots that δPole is better than δERE at approximating
Nijmegen models.
Although it is hard to quantify the uncertainty of

neglecting the nonpole term Vp;k from the Low equation,
such an approximation, in fact, works rather well up to a
relatively high momentum for the deuteron case, as can be
seen from Fig. 2. Here, the δB curves for the Nijmegen
models and for the ERE are shown together with the
empirical phase shift δPole. It is clear that δB from the
Nijmegen models approximate δPole very well even up to
the cutoff 416 MeV. Note that, although the nonpole term is
neglected from the Low equation, the resulting T matrix is
more than simply a pole term.

FIG. 1. The form factors (left) and wave functions in the momentum space (middle) and position space (right) for various cases:
obtained from δB ¼ δERE (blue), obtained from δB ¼ δPole from Eq. (28) with a cutoff 416 MeV (green), and using three Nijmegen
models (dashed). The shaded area indicates that they are the bounds for g2ðpÞ and ũ2ðpÞ. The vertical gray line in the right plot
denotes 1.6 fm.

FIG. 2. δB from ERE and the Nijmegen models and the phase
shift from an empirical parametrization used in Ref. [46] (denoted
by “Pole”). The vertical gray line denotes D−1=2 ¼ 416 MeV.
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V. SUMMARY

In this Letter, we have generalized Weinberg’s compos-
iteness relations with a general form factor (and thus the
range corrections are included), which also builds an exact
relation between the phase shift δB, with the nonpole term
neglected from the Low equation, and the bound state wave
function. For a shallow bound state, δB can approximate
well the full phase shift in the low-momentum range, which
goes up to more than 400 MeV for the deuteron case. The
compositeness derived from Eq. (13) is strictly within [0, 1]
for a bound state even when the range corrections are
important. It is expected to have a significantly smaller
uncertainty than that from Weinberg’s relations. An ana-
lytic expression for the form factor is obtained considering
the ERE up to Oðp2Þ. It is a constant for a ∈ ½−R; 0�, and
r ≤ 0, verifyingWeinberg’s approximation. However, if the
effective range is positive, the form factor contains Oðp2Þ
contributions in a single-pole form, and thus Weinberg’s
treatment is not self-consistent, as it keeps only part of the
Oðp2Þ contributions.
We then analyzed the deuteron as an example. The range

corrections are important in this famous case, as reflected in
the strongly momentum-dependent form factor derived here.
Given that many near-threshold states were observed in

particular in the past two decades, the formalism will find

its applications in such systems. Of particular importance is
that the uncertainty of the extracted compositeness will be
substantially reduced compared to that from Weinberg’s
relations. The formalism can also be applied to other
composite systems with short-range interactions beyond
hadron physics.
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