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We show the existence of strong (anti)correlations between the topological hot spots and the local values
of the trace of the Polyakov loop in 2þ 1 flavor QCD with physical quark mass, in the vicinity of the
crossover transition corresponding to the simultaneous restoration of chiral symmetry and deconfinement.
Using sophisticated lattice techniques, we have carefully identified the topological hot spots using quark
zero modes and measured the short-distance fluctuations of the Polyakov loop about them, showing how
the latter is repelled quite strongly around the peak of the zero modes. Though we could explain some
aspects of these correlations within the instanton-dyon picture, our work sets the stage for a larger goal
towards a systematic study of the role of different topological species that interact with the Polyakov loop,
establishing the strong connection between topology and confinement.
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I. INTRODUCTION

The two most important nonperturbative phenomena in
quantum chromodynamics (QCD) are chiral symmetry
breaking and confinement [1–3]. The corresponding order
parameters are (the nonzero value of) the quark condensate
hq̄qi ≠ 0 and the (vanishingly small) expectation value of
the Polyakov loop hTr½Pðx⃗Þ�i=3 ¼ 0. Many authors have
debated whether and how precisely these two phenomena
can be related, see for e.g., Refs. [4–10]. In this Letter, we
address this fundamental question at the local level, using
gauge configurations from lattice simulations of 2þ 1
flavor QCD, by correlating the location of the maxima
of zero modes of the Dirac operator with the local minima
of the Polyakov loop.
Furthermore, it is now widely believed that both of these

phenomena are driven by gauge topology [11]. In order to
produce confinement, the topological objects need to
interact with Pðx⃗Þ locally and suppress it, in the confined
phase at T ≲ Tc, where Tc is the chiral crossover-transition
temperature [12–16]. With increasing temperatures, the
density of these topological objects gets small, but still to a

certain extent suppress the local fluctuations of Pðx⃗Þ. In
3þ 1 dimensions, instantons do not couple to the Polyakov
loop, though it was historically introduced to explain
confinement in 2þ 1 dimensions [17]. Several other
candidates have been considered in literature which include
vortices [18–21], monopoles [22–25], and the constituents
of instantons, the so-called instanton-dyons [26–28]. Well
separated isolated instanton-dyons are simply three-
dimensional monopoles, for which the gauge potential
A4ðx⃗Þ plays the role of the adjoint Higgs field. In
Euclidean finite temperature formulation, it may have a
nonzero average value, resulting in a nontrivial holonomy.
Similar to magnetic monopoles, instanton-dyons repel the
Higgs field at their centers. Therefore one expects to see a
difference between the average value of the Polyakov loop
and its local value at the center of an instanton-dyon.
A similar picture exists in the core of the vortices. However,
in order to really identify those and quantify the role which
each of them plays, one can only rely on first principles
lattice QCD calculations.
The main objective of this Letter is to unambiguously

identify the correlations, if any, between the position of the
topological zero modes of the QCD Dirac operator and the
local value of the Polyakov loop. We focus on a temper-
ature range just beyond the chiral crossover transition
where the connection between the zero modes to a semi-
classical ensemble of instanton-dyons has been shown
previously [29–34]. However the observables we suggest
here and techniques which we have developed in order to
reliably measure the correlations is very general and does
not rely upon the existence of any specific topological
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ensemble. We discuss the numerical setup in the next
section followed by our specific proposal of different
observables in the subsequent section that helps one to
reliably establish the sensitivity of the hot spots of
topological fluctuations to the local minima of the
Polyakov loop. We finally conclude with the deeper
implications of our work, of how it impacts our under-
standing of the role of topology in explaining confinement
in gauge theories.

II. METHODOLOGY

For success of such a study it is crucial that we use lattice
fermions with the best chiral properties on the lattice. This
includes maintaining an exact index theorem on the lattice,
by which one can identify the topological objects through
the zero modes of the QCD Dirac operator. It is also
important that the gauge ensembles generated using
dynamical fermions also preserve the chiral properties of
the latter, without which there could be artifacts of explicit
chiral symmetry breaking. The gauge configurations used
in this work are 2þ 1 flavor QCD configurations generated
by the HotQCD Collaboration [14] using the Möbious
domain wall discretization [35,36] for fermions and
Iwasaki gauge action. The residual chiral violation of the
configurations generated using Möbius domain wall fer-
mions is tiny, of the order of ∼2 × 10−3. We have used
overlap fermions [37,38] as the probe to measure the
topological content of the sea-gauge ensembles since the
domain wall fermions do not satisfy an exact index theorem
on the lattice. The zero modes of the valence overlap Dirac
operator can be identified with the topological objects of
the underlying gauge configurations [39] since it satisfies
an exact index theorem, even at finite lattice spacings [40].
The overlap Dirac operator is defined as D ¼

1 − γ5signðHWÞ where the kernel of the sign function is
HW ¼ γ5ðM − aDWÞ,DW being the massless Wilson-Dirac
operator [41].M is the domain wall height which is chosen
to be in the interval [0, 2) to simulate one massless quark
flavor on the lattice. The overlap operator satisfies the
Ginsparg-Wilson relation [42], γ5D−1 þD−1γ5 ¼ aγ5
which is numerically implemented to a precision of
10−10. Furthermore we studied the eigenspectrum of the
overlap operator by varying the periodicity phase ϕ of the
valence overlap Dirac fields along the temporal torus,
defined as ψðτ þ 1=TÞ ¼ eiϕψðτÞ. We can then identify
different species of instanton-dyons with the Dirac zero
modes corresponding to the phases ϕ, following the
procedure outlined in [34,43].
We have also carefully chosen fairly large volume

lattices for our study since the topological content of the
gauge field ensembles are sensitive to finite volume effects.
The Euclidean space-time lattice has Ns ¼ 32 sites along
each of spatial direction and Nτ ¼ 8 sites along the
temporal direction. The spatial volume in physical units

is ∼ð4 fmÞ3, each spatial extent about four times the pion
Compton wavelength. The quark masses are tuned to their
physical values corresponding to a Goldstone pion and
kaon mass of 135 and 435 MeV respectively. We have
performed the study at two different temperatures 1.1 Tc
and 1.2 Tc, where the number of independent configura-
tions with topological charge jQj ¼ 1 are 5, 12 respec-
tively. For this specific Q sector the zero modes are
particularly easier to locate precisely, which is important
for finding its correlations with the gauge observables. We
have not considered the other jQj > 1 sectors in this work
since identifying the zero mode for different boundary
angles is nontrivial, and we will address this topic sepa-
rately. Moreover, the number of configurations with jQj >
1 was small for the higher temperature ensembles and we
therefore do not expect the exclusion of these configura-
tions to strongly impact our results.
The pseudocritical temperature is Tc ¼ 155ð9Þ MeV

for these ensembles [14]. Moreover for these two temper-
atures the lattice spacings are fine enough in the range
∼0.13–0.14 fm, to ensure that cutoff effects are under
control.

III. OBSERVABLES

The aim of this work is to specifically look for
correlations between topological zero modes and confine-
ment, and our suggested techniques are very general,
irrespective of the specific nature of the topological objects.
However we will show some tantalizing connections to
some of our earlier studies on instanton-dyons [33,34] in
the next section.
Instanton-dyons, also called instanton-monopoles, are

one of the attractive candidates which may explain confine-
ment [44]. For SUðNcÞ gauge theory at finite temperature,
instanton-dyons naturally arise as the substructures of
instanton solutions in presence of a finite holonomy, also
known as Kraan-van Baal-Lu-Liu calorons [26–28,45].
Several lattice studies have reported the presence of dyons
in pure gauge theories [43,46–48] as well as in QCD
[49,50]. Using sophisticated fits to lattice data, it is now
possible to identify the different species of instanton-dyons
and measure their typical separations as a function of
temperature [34]. Clusters of local topological fluctuations,
identified using a local definition of topological charge
constructed out of the eigenvectors of the valence Dirac
operator with generalized periodicity phases, have been
observed to be correlated with the timelike monopole
currents in SUð3Þ gauge theory, defined in the maximal
Abelian gauge [48]. Furthermore scatter plots of the real and
imaginary parts of the Polyakov loop in the center of these
clusters [48] further hinted at a deeper connection between
these topological excitations and the Polyakov loop.
The local Polyakov loop or the holonomy is defined as the

product over the temporal links as Pðx⃗Þ ¼ ΠNτ
x4¼1U4ðx⃗; x4Þ
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whose kth eigenvalue, k ∈ ½1; Nc� is simply e2iπμkðx⃗Þ.
Measuring this observable at each spacetime point is quite
a challenging task as it has large contributions from the
ultraviolet fluctuations of the gauge fields. We use 10 steps
of hypercubic smearing [51] to remove these ultraviolet
fluctuations. With this choice of smearing we improved the
signal-to-noise ratio sufficiently to measure its local values.
We introduce an observable which measures how well the
local Polyakov loop operator on smeared gauge ensembles
correlate with the fermion zero mode density which is
defined as

CðΔP; ρÞ ¼
Z

d3x⃗ρðx⃗Þ 1
3
½Tr½Pðx⃗Þ� − hTr½Pðx⃗Þ�i�: ð1Þ

In our previous works [33,34], we have shown that the
fermionic zero modes are remarkably insensitive to the
ultraviolet noise due to the higher momentum modes of
the gauge fields. We take advantage of this fact through our
choice of this observable.

IV. ARE TOPOLOGICAL FLUCTUATIONS IN QCD
ABOVE Tc CORRELATED TO CONFINEMENT?

We first measure the local density of the fermion zero-
mode wave functions and compare with the density profile
of the trace of the Polyakov loop operator measured on
smeared gauge ensembles. The results of such a compari-
son for a typical QCD configuration at 1.1 and 1.2 Tc, for
the usual antiperiodic boundary phase along the temporal
direction, are shown in Fig. 1. We have shown the two
dimensional profiles of the quark zero modes along the x, y
coordinates (blue) superimposed over the local variation of
the Polyakov loop shown in yellow. In all these plots the z
coordinate is fixed to its value at the maxima of the zero
mode and the temporal direction is integrated out. We do
indeed observe that the local Polyakov loop value drops
strongly to negative values precisely at the location of the
maxima of the zero modes which correspond to L dyons
i.e., for the boundary phase ϕ ¼ π. This nice visual
correlation is quite robust, and exists for all temperatures
above Tc we have studied. We also see other minima of the
local Polyakov loop; some of them might correspond to
locations of other species of instanton-dyons, but some
perhaps to other topological objects e.g., vortices connect-
ing them. We have not systematically investigated their
origin, leaving it for a future study.
Though in Fig. 1 we have shown snapshots of correla-

tions between the (real part of) Polyakov loop and
topological zero modes for two configurations only, this
strong correlation itself is very prevalent. It is present in all
the configurations, at each temperature which we have
studied so far and also for other quark periodicity phases
ϕ ¼ �π=3. In order to bring out the cumulative informa-
tion, we measure the observable CðΔP; ρÞ introduced in
Eq. (1), which is averaged over all independent gauge

ensembles we have examined. The typical values of the real
and imaginary parts of CðΔP; ρÞ as a function of the
fermion temporal phases are shown in Fig. 2. Whereas its
imaginary part stays close to zero for all three values of
temporal boundary phases as expected, the real part is
distinctly finite and negative. This again establishes the fact
that local Polyakov loop values drop strongly at the center
of the topological hot spots, but now at a cumulative level
for all gauge ensembles at T ≳ Tc.
After demonstrating strong (anti)correlations between

local hot spots of Polyakov loop with the topological
fluctuations, we turn to some observations specific to the
instanton-dyon formalism. This is motivated from the
fact that the average values of the Polyakov loop at these
temperatures have been shown previously to be quite
accurately explained due to weakly interacting semiclass-
ical gas of instanton-dyons [34].
Each constituent dyon has its own Higgsing through a

certain color projection of the local Polyakov loop, and we
study whether such a property can be seen in the gauge
configurations. The Polyakov loop far away from the

FIG. 1. Typical snapshots of the inverted spatial density ρðx⃗Þ of
the fermion zero mode at ϕ ¼ π (blue) superimposed on the
spacetime profile of the inverted (real part of) Polyakov loop
Tr½Pðx⃗Þ�=3 (yellow), measured after smearing the 2þ 1 flavor
QCD gauge configurations at 1.2 Tc (above) and 1.1 Tc (below)
respectively. The flat blue sheet corresponds to the zero baseline
and the only zero mode is visible as a crater on this surface. Each
plot shows that the zero mode coincides with the most localized
fluctuation of the Polyakov loop.
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topological hot spots, also known as the holonomy, can be
represented as a diagonal matrix exp½2iπdiagðμ0; μ1; μ2Þ�.
The constituent instanton-dyon actions are fractions of the
total instanton action given as 8π2νm=g2, where νm ¼
μmþ1 − μm represents the fractions of the circle on which
the eigenvalues of the holonomy are located. For the gauge
group SUð3Þ, there are three of them with m ¼ 0–2
and μ3 ¼ 1þ μ0.
Furthermore if instanton-dyons are well separated, the

local holonomy at the position of the ith dyon can be
written as Pðx⃗iÞ ¼ diag½ei2πμi−1 ; eiπðμiþμiþ1Þ; eiπðμiþμiþ1Þ� [44].
In the confined phase at T ≲ Tc, where the average
Polyakov loop is vanishingly small, the instanton action
is split evenly between its constituent instanton-dyons,
ν0 ¼ ν1 ¼ ν2 ¼ 1=3, resulting in μ0 ¼ 0, μ1 ¼ 1=3 and
μ2 ¼ 2=3. The Polyakov loop operator near the fermion
zero mode corresponding to the L dyon with temporal
periodicity phase ϕ ¼ π (which normalized by 2π lies
between μ1 and μ2) is Pðx⃗1Þ ¼ diag½1;−1;−1�. Taking a
color trace and normalizing by the color factor, the imagi-
nary part of the local Polyakov loop is zero, whereas its real
part is −1=3. For the two M dyons which correspond to
temporal boundary phases ϕ ¼ �π=3, the values of the local
holonomy at its location are 1=6� i=

ffiffiffiffiffi
12

p
.

We next measure the real and the imaginary parts of the
Polyakov loop Tr½Pðx⃗Þ�=3 as a function of the distance
from the center of the fermion zero modes belonging to
specific species of instanton-dyons, for each gauge con-
figuration and subsequently performing a statistical average
over all the configurations studied. The results for these
observables at T ¼ 1.2Tc are shown in Fig. 3 for three
different temporal phases for the valence fermions corre-
sponding to the L (top panel) and two different species of
M dyons (mid and lower panels) respectively. For L dyons,
we observe that the real part of the local Polyakov loop at
its center (which is the origin of the plots) is negative,
whereas its imaginary part is consistent with zero.

At distances far away from the peak of the zero mode
the real part of the local value of the Polyakov loop
approaches its average value, while the imaginary part
remains close to zero. These results are consistent with the
expectations from a weakly interacting instanton-dyon
model close to the confining phase. Contrasting this with
the behavior of the local Polyakov loop for temporal
boundary phases ϕ ¼ �π=3, we find that its real part
shows an upward trend from negative towards zero,
respectively. The central value of the imaginary part on
the other hand, changes sign when changing between these

FIG. 2. The real and imaginary parts of CðΔP; ρÞ defined in
Eq. (1) shown as filled circles and triangles respectively for three
different fermion boundary phases ϕ ¼ π;�π=3. The data points
corresponding to temperatures 1.1 and 1.2 Tc are shown in gray
and red respectively and the points in red are shifted along the
horizontal axis for the sake of clarity.

FIG. 3. The variation of the real and imaginary parts of the
Polyakov loop Tr½Pðx⃗Þ�=3 at 1.2 Tc for temporal boundary
phases ϕ ¼ π (top), ϕ ¼ π=3 (middle) and ϕ ¼ −π=3 (bottom)
with the three-dimensional distance from the maximum of the
fermionic zero modes in each case.
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two boundary phases, albeit large statistical errors. The data
shows that the behavior of the local Polyakov loop deviates
from the expectation of a weakly interacting gas more so
forM dyons as compared to L dyons. This can be due to the
fact that the average Polyakov loop is not negligibly small
at 1.2 Tc and a semiclassical description of instanton-dyon
gas may no longer be good. With increased statistics, the
imaginary part of the local Polyakov loop might provide a
better understanding of the interactions between the differ-
ent species of instanton-dyons.

V. SUMMARY AND OUTLOOK

In this Letter we have shown that there exists strong
(anti)correlations between the topological hot spots (which
can be identified as instanton-dyons) and the confinement
order parameter hTr½Pðx⃗Þ�=3i at temperatures T ≳ Tc.
Moreover, it is a local effect. Revealing such correlations
at a local level was made possible due to a combination of
two novel techniques we have used. First was the efficient
identification of the topological zero modes of the noisy
2þ 1 flavor QCD ensembles. Although they were gen-
erated using domain-wall fermion discretization for the
quarks with a relatively good chiral property, we identified
its zero modes with valence overlap Dirac operator to make
use of the exact index theorem for the latter.
Secondly we have successfully isolated the localized

fluctuations of the Polyakov loop from the noisy large-scale

fluctuations via well-tuned smearing techniques. Our study
provides a first glimpse of how topological fluctuations due
to, for e.g., instanton-dyons can result in suppressing the
Polyakov loop values. In order to understand how topology
drives confinement at a more quantitative level, we would
like to extend this work towards identifying the role of
other topological objects and their interactions. Such a
study will quantify from first principles, the origin of
confinement, as driven by gauge topology in its various
forms.
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