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We introduce a method for deriving constraints on the symbol of Feynman integrals from the form of
their asymptotic expansions in the neighborhood of Landau loci. In particular, we show that the behavior of
these integrals near singular points is directly related to the position in the symbol where one of the letters
vanishes or becomes infinite. We illustrate this method on integrals with generic masses and as a corollary
prove the conjectured bound of bDl

2
c on the transcendental weight of polylogarithmic l-loop integrals of

this type in integer numbers of dimensionsD. We also derive new constraints on the kinematic dependence
of certain products of symbol letters that remain finite near singular points.
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The analytic structure of scattering amplitudes is
strongly constrained by physical principles such as locality
and causality. These principles imply, for instance, that
amplitudes can only develop branch cuts at solutions to the
Landau equations—where propagators are put on shell
and particles interact in physically possible configurations
[1]—and that double discontinuities in partially overlap-
ping momentum channels must vanish [2–4]. In this paper,
we derive new constraints on the branch cut structure of
Feynman integrals from considerations of their behavior
near Landau loci. We do this by connecting the leading
nonanalytic behavior of a generic polylogarithmic expres-
sion near one of its singular points to its various integral
representations. We also identify new constraints on the
logarithmic branch points that appear next to these singu-
larities in iterated integrals that follow from integrability.
To illustrate our approach, we focus in this Letter on
constraints for Feynman integrals involving generic
masses, whose leading nonanalytic behavior near singular
points was worked out by Landau [1]. Even for this class of
integrals, the methods we introduce have powerful impli-
cations, such as bounding the number of integrations that
can appear when they are expressed in terms of iterated
integrals.
In carrying out our analysis, we are assisted by the

symbol map [5], which encodes how polylogarithms can be
written as linear combinations of iterated integrals of d log

differential forms. We thus build on a growing body of
literature that has leveraged the natural connection between
the study of symbols of Feynman integrals and Landau
analysis [6–13]. More generally, the symbol has been
observed to encode many important features of the analytic
structure of Feynman integrals, such as the Steinmann
relations [2–4,14,15], and the more extensive cluster
adjacency conditions (or extended Steinmann relations)
that have been observed in planar N ¼ 4 supersymmetric
Yang-Mills theory [16,17].
In Ref. [1], Landau first identified the set of kinematic

loci where a Feynman integral can become singular (see
Ref. [18] for a pedagogical presentation). To do so, he
considered a generic l-loop Feynman integral with n
propagators in D dimensions, which takes the form

IðpiÞ ¼
Z

dDk1 � � � dDkl
A1 � � �An

; ð1Þ

where the propagators Ai are quadratic in the external
momenta pi and loop momenta ki. When combined with
Feynman parameters αi, this integral can be rewritten as

IðpiÞ ¼ ðn − 1Þ!
Z

dDlkdnα
Mn δ

�
1 −

Xn
i¼1

αi

�
; ð2Þ

where

M ¼ α1A1 þ � � � þ αnAn: ð3Þ

In this form, we see that IðpiÞ will only be singular where
M vanishes, if either αi ¼ 0 or Ai ¼ 0 for each i.
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The leading singularity of IðpiÞ will be given by
solutions to the M ¼ 0 constraint in which all αi ≠ 0,
while subleading singularities correspond to solutions in
which a subset of these Feynman parameters vanish.
However, these conditions are not yet sufficient to guar-
antee that IðpiÞ is singular; if these conditions are satisfied
at a generic point in the integration region, the integration
contour can be deformed to avoid the corresponding
singularity. To encounter an actual singularity, the contour
must be pinched: at least two zeros of the denominator must
coalesce, which is equivalent to requiring both that M ¼ 0

and ∂
∂ki M ¼ 0. Thus, the Landau equations—which com-

pletely characterize the singular surface, called the Landau
locus—are given by ∂

∂ki M ¼ 0 and either ∂
∂αiM¼ 0 or αi ¼ 0

for all i. For now, we focus on the leading singularity and
impose the conditions that ∂

∂αi M ¼ 0 and ∂
∂ki M ¼ 0 for all i.

In the same paper [1], Landau also characterized the
nature of the singularity in a Landau limit, as the Landau
locus is approached. To do this, one first completes the
square and shifts ki → k0i to remove all terms in the
denominator that are linear in the loop momenta. This
leads to

M ¼ φðpi; αiÞ þ Kðk0i; αiÞ; ð4Þ

where K is a homogeneous quadratic form in the shifted
loop momenta k0i. After this change of variables, the
Landau equations become φ ¼ 0 and K ¼ 0 at the pinched
singular surface, in addition to ∂

∂k0i K ¼ 0 for all i.

Let us now consider a phase space point p̄i close to this
singular surface, and let ᾱi be the (nonzero) values of αi that
minimize φ at p̄i. Writing αi ¼ ᾱi þ α0i, we then have

M ¼ φ0 þQðk0i; α0iÞ þ � � � ; ð5Þ

where φ0 ¼ φðp̄i; ᾱiÞ and Q is now quadratic in the
Feynman parameters α0i as well as the loop variables k0i.
All remaining contributions, which we have omitted, are
cubic or higher in the k0i and α0i variables.
The nature of the singularity near φ0 is determined by the

behavior of the integral in the region where the value of M
is close to φ0. Thus, it is sufficient to consider values of k0i
and α0i that are below some small cutoff δ. Collecting the
lD loop momenta and n − 1 Feynman parameters into a
vector x⃗ of dimension m ¼ lDþ n − 1, the nature of the
singularity is characterized by the integral

Iðφ0Þ ∼
Z

δ

0

dmx
ðφ0 þ x⃗2Þn ∼ φγ

0

Z
δ=

ffiffiffiffi
φ0

p

0

rm−1dr
ð1þ r2Þn ; ð6Þ

where we have rescaled x⃗ →
ffiffiffiffiffi
φ0

p
x⃗ and gone to spherical

coordinates in the second step. We call γ ¼ m
2
− n ¼

1
2
ðlD − n − 1Þ the Landau exponent. If γ < 0, the integral

multiplying φγ
0 is convergent as φ0 → 0, and then the

singular behavior is Iðφ0Þ ∼ φγ
0. If γ > 0, then this integral

diverges as φ0 → 0. In this case, one can first take ⌈γ⌉
derivatives of Iðφ0Þ, evaluate the integral, and then inte-
grate with respect to φ0 the same number of times. The
result is that the dominant singular behavior is Iðφ0Þ ∼
φγ
0 logφ0 if γ is an integer and Iðφ0Þ ∼ φγ

0 if γ is a half-
integer. Finally, if γ ¼ 0, the integral gives Iðφ0Þ ∼ logφ0.
Thus, Landau’s result for the nature of the singularity is that

Iðφ0Þ ∼
�
Cφγ

0 logφ0 if γ ∈ Z; γ ≥ 0

Cφγ
0 otherwise:

ð7Þ

Alternatively, one can simply evaluate Iðφ0Þ directly in
terms of hypergeometric functions and then expand at small
φ0 to deduce the singular behavior. A formula for the
prefactor C in terms of the Hessian H of M with respect to
α1;…; αn−1, evaluated at the solution of the Landau
equations, can be found in Ref. [19], in which it is shown
that C ∝ ðdetHÞ−1

2.
The same analysis can also be carried out for subleading

singularities, where some of the αi are expanded around
zero. The result for the Landau exponent γ is the same as
above, with n reinterpreted as the number of nonzero
Feynman parameters rather than the number of internal
lines in the original diagram [18,19].
Some comments are in order. First, note that the Landau

singularities arise from the integration region where the
loop momenta k0 are small. Although the logarithmic
behavior arises from the region where k0ffiffiffiffi

φ0
p → ∞, this does

not require the loop momenta k0 to take values larger than δ.
If the Feynman integral is infrared divergent, as may
happen when massless particles are involved, multiple
singularities can converge, and the analysis is more
complicated. Even so, we note that the asymptotic expan-
sion near a Landau locus can be computed exactly in the
dimensional regularization parameter ϵ using the results of
Ref. [19]. We leave the more involved analysis of this
expansion in dimensional regularization to future work.
Second, we highlight the fact that the singular behavior

characterized in (7) is the leading nonanalytic behavior, but
not necessarily the dominant behavior in the expansion
around φ0 ¼ 0. For example, when γ ¼ 1, we will generi-
cally find Iðφ0Þ ∼ φ0 logφ0 þ const for small φ0.
Third, Landau’s result in (7) must be generalized if some

of the integration variables do not appear at quadratic order
in the expansion near the singular locus in (5), or
equivalently if the determinant of the Hessian H is zero.
This may happen when the internal masses are not generic.
For example, the bow-tie graph with reflection symmetry in
the masses has a double-logarithmic singularity,
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ð8Þ

where φ0 matches the quantity that vanishes in one of the
singular limits of a single triangle integral, whose Landau
equations are solved in Ref. [20]. Such factorized integrals
arise when describing subleading singularities of non-
factorizing integrals with specific internal masses (for
example, the two-loop ladder collapses to the bow tie
when the middle rung is contracted).
Finally, Landau’s result must also be revised if φ0 is

identically zero. Then, one should consider the expansion
around the first nonvanishing term in the denominator
rather than around φ0. This type of situation arises, for
instance, for subleading singularities in the sunrise integral.
In this work, we restrict to situations in which φ0 ≠ 0
and detH ≠ 0.
With these subtleties out of the way, let us return to the

types of singularity that arise in Eq. (6) for integer γ.
As φ0 approaches zero with real on-shell momenta
(on the physical sheet), φγ

0 logφ0 is nonsingular for
γ > 0. However, Feynman integrals typically evaluate
to functions whose maximal analytic continuation
away from the physical sheet strongly constrains their
possible singular behavior. For example, the classical
polylogarithm Liγþ1ð1 − φ0Þ has a branch point at
φ0 ¼ 0 near which its leading nonanalytic behavior takes
the form seen above, Liγþ1ð1 − φ0Þ ∼ φγ

0 logφ0. Although
limφ0→0 φ

γ
0 logφ0 ¼ 0 for γ > 0, one can encircle the

branch point at φ0 ¼ 0 and find additional singularities
on higher Riemann sheets. Conversely, if one knows that a
function is a classical polylogarithm, and is told that the
leading nonanalytic behavior near φ0 ¼ 0 is φγ

0 logφ0 on
the principal branch, one can immediately deduce
this function must be Liγþ1ð1 − φ0Þ. Classical polylogar-
ithms are the simplest examples of the types of iterated
integrals that appear ubiquitously in Feynman integrals.
Thus, we would similarly like to know how such iterated
integrals are constrained by their known form in Landau
limits.
We thus consider an iterated integral FðsiÞ that depends

on some arguments si (internal masses and Lorentz-
invariant combinations of external momenta). We take
one of the independent arguments in si to be φ0 and study
the limit φ0 → 0. For simplicity, we assume that the
function FðsiÞ is polylogarithmic and thus has a symbol
[5], which can be written as

S½FðsiÞ� ¼
X

a1ðsiÞ ⊗ � � � ⊗ anðsiÞ; ð9Þ

where we have left the sum over terms in the symbol
schematic.1 Equation (9) represents the fact that FðsiÞ can
be expressed as a sum of iterated integrals over the forms
d logajðsiÞ, where the integration contour begins at some
chosen base point s•i and ends at the point si.
We can formulate the iterated integrals represented by

these terms in the symbol explicitly by pulling back the
integral over each d logajðsiÞ to an auxiliary space of
variables tj, in which the integration contour is given by
0 ≤ t1 ≤ t2 ≤ � � � ≤ tn ≤ 1. For this purpose, it is simplest
to choose the straight path

σiðtÞ ¼ ð1 − tÞs•i þ tsi: ð10Þ

Then, the pullbacks are given by

σ�ðd log ajÞðtÞ ¼
ðsi − s•iÞ · ð∇iajÞðσðtÞÞ

ajðσðtÞÞ
dt: ð11Þ

For example, if we take the base point in the φ0 variable to
be φ•

0 ¼ 1, the pullback along a straight path from the base
point to a generic value of the arguments si (along which
the other variables are also allowed to vary) will be given by

σ�ðd logφ0ÞðtÞ ¼
φ0 − 1

1 − tþ tφ0

dt: ð12Þ

After changing variables using the pullback, the symbol in
(9) can be rewritten in terms of iterated integrals as

FðsiÞ ¼
XZ

0≤t1≤���≤tn≤1
σ�ðd log a1Þðt1Þ

× σ�ðd log a2Þðt2Þ � � � σ�ðd log anÞðtnÞ: ð13Þ

Importantly, all of the dependence on the variables si is now
in the integrands σ�ðd log ajðsiÞÞðtÞ.
Let us now study the φ0 → 0 limit of FðsiÞ. We do this

by expanding each of the forms d logajðsiÞ within the
integrand of Eq. (13) near the φ0 ¼ 0 hypersurface.
Individual dlogs may become singular as they approach
this hypersurface, if the corresponding symbol letter ajðsiÞ
approaches zero or infinity. In generic polylogarithms, any
number of symbol letters may become singular in each term
of the symbol. We will work out here the case in which at
most a single letter becomes singular, as this will allow us
to connect to the leading nonanalytic behavior Feynman
integrals with generic masses are expected to have from

1We work at the level of the symbol throughout, as this will be
sufficient for establishing our main results. However, it is
straightforward to generalize the argument in this section to
include contributions involving transcendental constants.
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Eq. (7).2 Symbol terms in which multiple letters become
singular can be analyzed using the same approach.
Thus, let us analyze the contribution to FðsiÞ coming

from a term in the symbol that involves a single letter φ0 in
the limit φ0 → 0. Such a term generically takes the form

b1 ⊗ � � � ⊗ bp ⊗ φ0 ⊗ c1 ⊗ � � � ⊗ cq ð14Þ

for some p, q ≥ 0, where none of the bi or ci depends on φ0

at leading order (and we have left their dependence on the
rest of the variables si implicit). As an iterated integral, the
contribution from this term can be written as

fðφ0Þ ¼
Z

1

0

UðtÞσ�ðd logφ0ÞðtÞVðtÞ; ð15Þ

where

UðtÞ ¼
Z

t

0

σ�ðd logb1Þðt1Þ � � �
Z

t

tp−1

σ�ðd log bpÞðtpÞ; ð16Þ

and

VðtÞ ¼
Z

1

t
σ�ðd log c1Þðt1Þ � � �

Z
1

tq−1

σ�ðd log cqÞðtqÞ; ð17Þ

and the pullback of d logφ0 is given in Eq. (12).
As can be seen in Eq. (12), the logarithmic singularity

arises in Eq. (15) near the t ¼ 1 boundary. As t → 1, the
function UðtÞ will generically limit to a nonzero value
(independent of φ0), while VðtÞ will vanish, since its
integration interval shrinks to zero. Thus, to determine
the leading contribution to fðφ0Þ, we consider the expan-
sion of VðtÞ near t ¼ 1. This requires computing derivatives
of VðtÞ with respect to t; for instance,

d
dt

VðtÞ ¼ −
σ�ðd log c1Þ

dt
ðtÞ

×
Z

1

t
σ�ðd log c2Þðt2Þ � � �

Z
1

tq−1

σ�ðd log cqÞðtqÞ:

ð18Þ

When q ≥ 2, the integration interval in the remaining
integrals will still shrink to zero, so d

dt Vð1Þ will also
vanish. The first nonzero derivative of VðtÞ at t ¼ 1 will
thus be

dqV
dtq

ð1Þ¼ ð−1Þq σ
�ðd logc1Þ

dt
ð1Þ � � �σ

�ðd logcqÞ
dt

ð1Þ; ð19Þ

where we have dropped all terms in which multiple
derivatives act on a single logarithm, since these terms
also vanish. Integrating this constant in the region of t ¼ 1
gives us the leading contribution to Eq. (15), namely,

fðφ0Þ ∼ Uð1Þ 1
q!

dqV
dtq

ð1Þ
Z

1

0

ðt − 1Þq ðφ0 − 1Þdt
1 − tþ tφ0

; ð20Þ

where we have plugged in the explicit form of
σ�ðd logφ0ÞðtÞ from Eq. (12).
We can evaluate Eq. (20) using the change of variables

u ¼ 1 − tþ tφ0, which allows us to rewrite

Z
1

0

ðt − 1Þq ðφ0 − 1Þdt
1 − tþ tφ0

¼ −
1

ðφ0 − 1Þq
Z

1

φ0

du
u
ðu − φ0Þq:

ð21Þ

This form of the integral can be computed using the
binomial expansion of ðu − φ0Þq. All the terms in this
expansion will be polynomials in u that can be integrated
rationally, except the term ð−φ0Þq du

u . Since we are only
interested in the nonanalytic contributions, we drop all the
polynomial terms and obtain

fðφ0Þ ∼Upð1Þ
1

q!

dqVq

dtq
ð1Þφq

0 logφ0: ð22Þ

This is the leading nonanalytic behavior contributed to
FðsiÞ by each symbol term of the form in Eq. (14).
By connecting this result to the leading nonanalytic

behavior of a Feynman integral in one of its Landau limits,
we can place a bound on how close to the end of the symbol
the corresponding branch point can appear. For instance,
for Feynman integrals with generic masses, the contribu-
tions in Eq. (22) take the form predicted by Landau if we
identify q ¼ γ and C ¼ 1

q!Upð1Þ d
qVq

dtq ð1Þ. Equation (22)
therefore implies that the leading nonanalytic contributions
toFðsiÞ come from terms with the smallest q, namely, those
in which φ0 appears closest to the end of the symbol.
This result further allows us to derive a bound on the

transcendental weight of l-loop Feynman integrals with
generic masses in D dimensions (that is, the number of
letters appearing in each term of their symbol).3

Equation (22) implies that the Landau limits with the
largest integer Landau exponent γ describe the logarithmic
singularities that can appear furthest from the end of the
symbol. Recalling that γ ¼ 1

2
ðDl − n − 1Þ from Landau’s

analysis, we see the largest γ occurs when the number of
nonzero Feynman parameters n is minimized. Requiring
that γ is an integer (so the singularity is logarithmic) and
that at least one Feynman parameter is nonzero, we get

2Even in these integrals, it may be that multiple letters become
singular in individual terms of the symbol; however, Landau’s
argument tells us these contributions must be subleading.

3Transcendental weight has also been extended to elliptic
polylogarithms [21–23] and may generalize to more complicated
classes of integrals appearing in Feynman diagrams [24–30].
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γ ≤ bDl
2
c − 1. The transcendental weight of an l-loop

Feynman integral with generic masses in D dimensions
can be at most one larger than this maximum integer
Landau exponent, and is thus bounded by bDl

2
c.4

Note that the maximum transcendental weight of these
integrals increases differently with the loop order in even
and odd numbers of dimensions. In even dimensions, the
maximum weight increases by D

2
with each additional loop,

while in odd dimensions, the maximum transcendental
weight increments alternately by D−1

2
or Dþ1

2
as l increases.

For example, whenD ¼ 3, the maximum weight is 1 at one
loop, at two loops it is 3, at three loops it is 4, and so on.
It may also seem curious that the logarithmic singularity

that appears in the first entry of the symbol in even
dimensions is a subleading Landau singularity in which a
single Feynman parameter is nonzero. In particular, one
might have expected that these first entrieswould correspond
to bubble Landau diagrams. However, one can see from
Landau’s analysis that these bubble diagrams correspond to
square root singularities in this class of Feynman integrals.
We emphasize that we can use the result in Eq. (22) to

predict the position in the symbol at which the logarithmic
singularities associated with specific Landau diagrams are
expected to appear, by computing the associated Landau
exponent. While this procedure only identifies the locations
at which logarithmic singularities can appear at various
positions in the symbol, and not the symbol letters
themselves, it still provides a similar restriction to the first
and last entry conditions that restrict the letters that can
appear in certain positions in the symbol in planar N ¼ 4
supersymmetric Yang-Mills theory [31–37]. These types of
conditions have played a crucial role in bootstrapping
supersymmetric amplitudes [38], so the fact that similar
predictions can be made for individual Feynman integrals
at all positions in the symbol using Landau analysis is
highly encouraging.
In fact, it is possible to check that the Landau exponent

correctly predicts the position of the logarithmic singular-
ities that appear in the case of the one-loop all-mass
integrals studied in Refs. [39,40]. There, theD-gon integral
is considered in D dimensions, and its symbol can be
computed using the Schläfli formula [41]. This symbol has
transcendental weight bD

2
c (thus saturating the expected

bound), and the codimension-1 limits in which logarithmic
singularities can appear at each position in the symbol can
be explicitly identified. In particular, even D-gons have
logarithmic singularities associated with all odd q-gon
Landau diagrams for q < D, while odd D-gons have
logarithmic singularities associated with all even q-gon

Landau diagrams for q < D. These subleading singularities
all appear at the position in the symbol predicted by the
Landau exponent. More details can be found in Ref. [42].
Finally, let us consider the implications of integrability

for the symbols of Feynman integrals near a Landau locus.
In a codimension-1 Landau limit described by φ0 → 0, a
weight-2 symbol can be put in the form

X
i

φ0 ⊗ ai þ
X
j

bj ⊗ φ0 þ
X
k;l

ck ⊗ dl; ð23Þ

where we have pulled the coefficients in front of the symbol
terms into the exponents of the letters ai, bj, ck, and dl. At
order φ−1

0 , integrability implies

X
i

dφ0

φ0

∧ dai
ai

þ
X
j

dbj
bj

∧ dφ0

φ0

¼ 0; ð24Þ

which will only be satisfied if

lim
φ0→0

Q
iaiQ
jbj

¼ constant ð25Þ

for some nonvanishing constant that is independent of all
kinematics. Further relations are imposed by integrability at
higher orders in φ0, when the letters ai, bj, ck, and dl are
expanded beyond leading order. We will not write these
relations down in detail. All of these identities must also
hold in adjacent entries of symbols of higher weight.
In the simplest cases, when the symbol in Eq. (23) is just

that of a product of logarithms, the constraint in Eq. (25)
will be satisfied due to the fact that the product of letters in
the numerator and denominator will be identical. However,
one can more generally encounter examples in which these
sets of letters are different; in fact, it will often be the case
that the product over i or j is empty. For instance, we have
checked various Landau limits of the all-mass box, hex-
agon, and heptagon symbols from Refs. [39,40], where the
product over either i or j is empty, and have observed that
the remaining product becomes 1 as φ0 → 0. In such cases,
Eq. (25) provides a surprising and nontrivial constraint.
In this paper, we have introduced new methods for

deriving constraints on the symbol of Feynman integrals.
We have illustrated this method with the example of
Feynman integrals with generic masses and trivial numer-
ators, as these integrals fall within the scope of Landau’s
analysis and their leading nonanalytic behavior in Landau
limits is known.5 This implies, in particular, that they
involve only a single power of logφ0 near codimension-1

4The vanishing of a symbol entry cannot necessarily be
achieved with momenta in the physical region. There is never-
theless a correspondence with the singular behavior from
Landau’s analysis if one continues to complex momenta and
complex values of αi.

5Nontrivial numerators generically do not affect the Landau
equations [43] and only reduce the degree of divergence in
singular limits. Indeed, in certain approaches to computing
amplitude integrands, numerators are specifically chosen to
vanish on the support of certain Landau loci (see for instance
Refs. [44–50]).
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Landau limits. We have also restricted our attention to
polylogarithmic iterated integrals. However, we note that
these results also apply to Feynman integrals that have
subtopologies involving generic masses. The behavior of
such integrals near Landau limits that involve putting only
these propagators with generic masses on shell will also be
described by Eq. (7), allowing similar constraints to be
derived on the position of the corresponding branch points
in their symbols.
While a similar analysis of the behavior of more general

Feynman integrals near Landau loci will be more compli-
cated, we anticipate the same strategy can be used to derive
analogous results. For instance, it should be straightforward
to generalize to iterated integrals that are not of d log forms,
such as those containing elliptic integration kernels. Further
investigation into Feynman integrals with massless par-
ticles, noninteger dimensions, and behavior involving
higher powers of logφ0 in singular limits could lead to
additional insight into the structure of Feynman integrals.
It should be possible to derive results analogous to Eq. (7)
in each of these cases using the results of Ref. [19], which
would allow constraints to be derived on the symbols of
these integrals using Eq. (22) (or using the generalization of
this equation to iterated integrals involving kernels beyond
dlogs).
Recent advances in our understanding of the analytic

structure of scattering amplitudes have greatly facilitated
the computation of nontrivial amplitudes to high loop
orders. This has been most striking in bootstrap compu-
tations, where knowledge about the analytic structure of
amplitudes provides important constraints (see for instance

Refs. [51–54]). The additional structure that we have
observed here regarding the positions of logarithmic
singularities in the symbol of Feynman integrals and
nontrivial restrictions among products of symbol letters
near Landau limits should amplify the power of bootstrap
methods, applied both to amplitudes and individual
Feynman integrals (as done in Refs. [55–60]). In particular,
our results should help extend bootstrap methods to
amplitudes and Feynman integrals that involve internal
masses. For example, the constraints derived here, in
combination with integrability, may allow one to predict
the symbol letters that appear in the one-loop all-mass
integrals studied in Ref. [40]. With the help of the
hierarchical principle [61], one could then consider boot-
strapping these integrals and possibly even higher-loop all-
mass integrals, which have proven extremely resistant to
direct computation.
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