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We consider the theory of Rarita-Schwinger field interacting with a field with spin 1=2, in the case of
finite temperature, chemical potential and vorticity, and calculate the chiral vortical effect for spin 3=2. We
have clearly demonstrated the role of interaction with the spin 1=2 field, the contribution of the terms with
which to CVE is 6. Since the contribution from the Rarita-Schwinger field is −1, the overall coefficient in
CVE is 6 − 1 ¼ 5, which corresponds to the recent prediction of a gauge chiral anomaly for spin 3=2. The
obtained values for the coefficients μ2 and T2 are proportional to each other, but not proportional to the
spin, which indicates a possible new universality between the temperature-related and the chemical
potential-related vortical effects. The results obtained allow us to speculate about the relationship between
the gauge and gravitational chiral anomalies.
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I. INTRODUCTION

The Rarita-Schwinger spin 3=2 theory is an essential
element of supergravity theories [1] and grand unification
models [2], in which it is used for anomaly cancellation.
Rarita-Schwinger fields are also used to describe hadronic
resonances [3] and have applications in solid state physics
when describing Rarita-Schwinger-Weyl semimetals [4].
However, the Rarita-Schwinger theory of fields is char-

acterized by a number of pathologies [5–8], in particular, the
singular Dirac bracket turns out to be in the weak-field limit
and there is the discontinuity in the number of degrees of
freedom when an external field is present. These problems
were overcome in [7] by introducing a field with spin 1=2,
which ultimately made it possible to construct a consistent
quantum field perturbation theory and calculate the chiral
quantum anomaly. An interesting observation is that the

coefficient in the chiral anomaly turned out to be 5, which is
different from the previous calculations for spin 3=2.
The question that interests us in this work is the

manifestation of quantum anomalies in hydrodynamics.
In particular, it was shown in a number of works that the
chiral vortical effect (CVE) is directly related to the chiral
quantum anomaly [9–15]. Namely, the coefficient μ2 in the
mean value of the axial current in a medium with vorticity
corresponds to the coefficient in the chiral anomaly

CVE∶ hĵνAi ¼ ðAT2 þ Cμ2Þων;

Anomaly∶ h∂μĵ
μ
Ai ¼ −

C
8
εμναβFμνFαβ: ð1:1Þ

where ωμ ¼ 1
2
εμναβuν∂αuβ is the vorticity, uμ is the

4-velocity of the fluid, μ is the chemical potential and T
is the temperature. This relationship has been well studied
in the case of spin 1=2, for which

CVE∶ hĵνAi ¼
�
1

6
T2 þ 1

2π2
μ2
�
ων;

Anomaly∶ h∂μĵ
μ
Ai ¼ −

1

16π2
εμναβFμνFαβ: ð1:2Þ

Recently a test of the connection with the anomaly was
carried out for spin 3=2 for another phenomenon in an
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external magnetic field, the chiral separation effect (CSE)
[16]. The direct verification in the case of higher spins also
in the case of CVE (1.1) would be a reliable test of the
relationship between the CVE and the chiral anomaly.
In this work, we for the first time obtain the CVE for spin

3=2 within the framework of the theory [7]. We will
explicitly demonstrate its correspondence with the quantum
anomaly. However, as we will show, this correspondence is
achieved in a nontrivial way, in which an essential role is
played by the interaction with the additional field with
spin 1=2.
We use the notations gμν ¼ diagð1;−1;−1;−1Þ, ϵ0123 ¼

1, in the rest frame uμ ¼ ð1; 0; 0; 0Þ, and we use the system
of units e ¼ ℏ ¼ c ¼ kB ¼ 1.

II. THE THEORY OF RARITA-SCHWINGER
FIELD COUPLED TO A FIELD WITH SPIN 1=2

In this section, we present the main relations for the
theory of spin 3=2 field, interacting with spin 1=2 field [7]
(see also [8]). The action has the form

S ¼
Z

d4xð−ελρμνψ̄λγ5γμ∂νψρ þ iλ̄γμ∂μλ − imλ̄γμψμ

þ imψ̄μγ
μλÞ; ð2:1Þ

where ψμ is the Rarita-Schwinger field, λ is the field with
spin 1=2, m is the interaction constant.
To calculate the stress-energy tensor, it is necessary to go

to a curved space-time with an arbitrary metric gμν and vary
the action with respect to the metric.As a result, we obtain
[6,17]

Tμν ¼ 1

2
ελαβρψ̄λγ5ðγμδνα þ γνδμαÞ∂βψρ

þ 1

8
∂ηðελαβρψ̄ λγ5γαð½γη; γμ�δνβ þ ½γη; γν�δμβÞψρÞ

þ i
4
ðλ̄γν∂μλ − ∂μλ̄γνλþ λ̄γμ∂νλ − ∂νλ̄γμλÞ

þ i
2
mðψ̄μγνλ − λ̄γμψν þ ψ̄νγμλ − λ̄γνψμÞ: ð2:2Þ

Currents can be constructed from Noether’s theorem

jμ ¼ iελρνμψ̄ λγ5γνψρ þ λ̄γμλ;

jμA ¼ −iελρνμψ̄λγνψρ þ λ̄γμγ5λ: ð2:3Þ
It is easy to check that

∂μTμν ¼ 0; ∂μjμ ¼ 0; ∂μj
μ
A ¼ 0: ð2:4Þ

The conservation of the axial current is violated by the chiral
quantum anomaly, calculated in [7] in the limit m → ∞

h∂μĵ
μ
Ai ¼ −

5

16π2
εμναβFμνFαβ: ð2:5Þ

Note that the coefficient 5 recently found in [7] is different
from the previous evaluations, and is associated with the
interaction with the field λ. However, one can see, that it is
equal to the sum of the previously known contributions of a
nonghost part of free spin 3=2 and free spin 1=2 fields.
Propagators at finite temperature can be constructed

according to the standard procedure [18]. When passing to
the finite temperature T ¼ jβj−1, it is convenient to intro-
duce new notations

LEðτÞ ¼ −LMðt ¼ −iτÞ; γμ ¼ iδ0μ−1γ̃μ; γ̃5 ¼ γ5;

∂μ ¼ iδ0μ ∂̃μ; ψμ ¼ iδ0μ ψ̃μ; P�
μ ¼ ðp�

n ;−pÞ;
p�
n ¼ πð2nþ 1Þ=jβj � iμ ðn ¼ 0;�1;�2; � � �Þ;

Xμ ¼ ðτ;−xÞ;
XZ
P

¼ 1

jβj
X∞
n¼−∞

Z
d3p
ð2πÞ3 ;

=P ¼ Pμγ̃μ; ðPþÞ2 ¼ Pþ
μ Pþ

μ : ð2:6Þ
The propagators at finite temperature have a form similar
to the real-time form in [7]. Substituting the Fourier
transforms, we obtain the Euclidean action

SE ¼
XZ
P

ð ˜̄ψλðPÞ λ̃ðPÞ ÞM
�
ψ̃ρðPÞ
λ̃ðPÞ

�
;

M ¼
�
ϵλρμνγ5γ̃μiPþ

ν mγ̃λ

−mγ̃λ i=Pþ

�
: ð2:7Þ

The propagators are defined by the elements of the
inverse matrix N , for which MN ¼ ðδλη

0
0
1
Þ

hTτψ̃aμðX1Þ ˜̄ψbνðX2ÞiT ¼
XZ
P

eiP
þ
α ðX1−X2Þα i

2ðPþÞ2

×

�
γ̃ν=Pþγ̃μ þ 2

�
1

m2
−

2

ðPþÞ2
�
Pþ
μ Pþ

ν =Pþ
�

ab
;

hTτλaðX1Þ ˜̄ψbμðX2ÞiT ¼
XZ
P

eiP
þ
α ðX1−X2Þα Pþ

μ =P
þ
ab

mðPþÞ2 ;

hTτψ̃aμðX1Þλ̄bðX2ÞiT ¼
XZ
P

eiP
þ
α ðX1−X2Þα −P

þ
μ =P

þ
ab

mðPþÞ2 ;

hTτλaðX1Þλ̄bðX2ÞiT ¼ 0: ð2:8Þ

where μ, ν are Lorentz indices and a, b are bispinor
indices, and Tτ means ordering by the imaginary time τ.
When deriving (2.8), we assumed that the subsystems of
the fields with spin 3=2 and 1=2 are in equilibrium
and μψ ¼ μλ ¼ μ. Finally, we note that following [7,8],
the ghost fields should be considered nonpropagating
and noninteracting with the rest of the fields, due to
which ghosts do not contribute to the quantities we are
considering.
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III. CHIRAL VORTICAL EFFECT FOR SPIN 3=2

The properties of the medium in the state of global
thermodynamic equilibrium are described by the density
operator of Zubarev [19–22]

ρ̂ ¼ 1

Z
exp

�
−βμðxÞP̂μ þ 1

2
ϖμνĴ

μν
x þ ζQ̂

�
; ð3:1Þ

where ϖμν ¼ − 1
2
ð∂μβν − ∂νβμÞ is the thermal vorticity

tensor, ζ ¼ μ
T, P̂

μ is the 4-momentum operator, Q̂ is the
charge operator, and Ĵμνx are the Lorentz transformation
generators shifted by the vector xμ, which are expressed in
terms of the shifted operators of the stress-energy tensor

Ĵμνx ¼
Z

dΣλ½yμT̂λν
x ðyÞ − yνT̂λμ

x ðyÞ�: ð3:2Þ

where dΣλ is a volume element on an arbitrary spacelike
hypersurface (arbitrariness of the hypersurface follows from
the conditions of global thermodynamic equilibrium).
Density operator (3.1) provides a universal and fundamental
approach to the description of effects in a relativistic moving
and charged medium [21–27]. In particular, it was used to
find a lot of chiral effects [20,28], corrections to them [25],
and also to prove the Unruh effect from the point of view of
statistics as well as the duality between statistics and field
theory in a space with a conical singularity [21,23,29,30].
In a particular case of rigidly rotating medium, the

operator (3.1) can be transformed to the more well-known
form of the density operator for an equilibrium rotating
medium [31–33].
The mean value of the local operator ÔðxÞ can be

obtained using the perturbative expansion for (3.1)

hÔðxÞi ¼ hÔð0ÞiβðxÞ þ
X∞
N¼1

ϖN

2N jβjNN!

Z jβj

0

dτ1dτ2…dτN

× hTτĴ−iτ1u…Ĵ−iτNuÔð0ÞiβðxÞ;c; ð3:3Þ

where each tensor Ĵμν is convolved with one tensor ϖμν.
Connected correlators are taken, this fact is reflected in the
subscript c, and the subscript βðxÞ means that the mean
values are taken at ϖ ¼ 0.
For the axial current ĵμA in the first order of the

perturbation theory formulas (3.1)–(3.3) give (see
[20,25] for details)

hĵμAið1Þ ¼ Wωμ;W ¼ C023j1 − C013j2;

Cαβγji ¼
Z jβj

0

dτ
Z

d3xxihTτT̂
αβð−iτ;xÞĵγAð0ÞiT;c; ð3:4Þ

where the scalar coefficient W can be evaluated in the
rest frame βμ ¼ ðT−1; 0; 0; 0Þ, which is expressed by
the subscript T, and in the following we denote
T̂αβð−iτ;xÞ → T̂αβðτ;xÞ. Now the main goal is to find
the correlators of the form Cαβγji. To do this, let us
first split T̂μν and ĵμA into terms with a different set of
fields

T̂μν ¼ T̂μν
ψ̄ψ þ T̂μν

λ̄λ
þ T̂μν

ψ̄λ þ T̂μν
λ̄ψ
;

ĵμA ¼ ĵμAψ̄ψ þ ĵμ
Aλ̄λ

; ð3:5Þ

where the notation is obvious. Then we get that W is split
into 8 terms depending on the set of the fields

W ¼ Wψ̄ψψ̄ψ þWψ̄ψλ̄λ þW λ̄λψ̄ψ þW λ̄λλ̄λ þWψ̄λψ̄ψ

þWψ̄λλ̄λ þW λ̄ψψ̄ψ þW λ̄ψλ̄λ; ð3:6Þ

where the first two indices denote fields in T̂μν, and the
second two—in ĵμA. From the equality hλλ̄i ¼ 0 it is
obvious that W λ̄λλ̄λ ¼ W λ̄ψ λ̄λ ¼ Wψ̄λλ̄λ ¼ 0. Since we are
interested in the limit of m → ∞, it is also clear in
advance that Wψ̄ψλ̄λ;W λ̄λψ̄ψ → 0 at m → ∞. Thus, only
three terms remain W ¼ Wψ̄ψψ̄ψ þWψ̄λψ̄ψ þW λ̄ψψ̄ψ .
All operators are to be presented in split form. The term

Wψ̄ψψ̄ψ is expressed through the operators

T̂στ
ψ̄ψðXÞ ¼ lim

X1;X2→X
iδ0ηþδ0ξDστηξ

ðψ̄ψÞab ˜̄ψηaðX1Þψ̃ ξbðX2Þ;

Dστηξ
ðψ̄ψÞð∂X1

; ∂X2
Þ ¼ 1

2
i1−δ0σþδ0βεηξτβ

�
γ5γ̃σ∂̃X2

β

−
1

4
γ5γ̃β½γ̃ϑ; γ̃σ�ð∂̃X1

ϑ þ ∂̃X2

ϑ Þ
�
þ ðσ ↔ τÞ;

ĵσAψ̄ψðXÞ ¼ lim
X1;X2→X

iδ0ηþδ0ξJ σηξ
Aðψ̄ψÞab ˜̄ψηaðX1Þψ̃ ξbðX2Þ: ð3:7Þ

Using Wick’s theorem, the mean value of four fields can be
transformed into a product of two propagators Using the
propagators (2.8), we obtain

Cαβγji
ðψ̄ψψ̄ψÞ ¼

Z jβj

0

dτ
Z

d3xd3pd3q
ð2πÞ6 xi

1

jβj2
X

pn¼πð2nþ1Þ
ql¼πð2lþ1Þ

−1
4ðPþÞ2ðQ−Þ2 i

δ0ηþδ0ξþδ0ρþδ0λeiðpnþqlÞτe−iðpþqÞx

× tr

�
Dαβηξ

ðψ̄ψÞðiQ−; iPþÞ
�
γ̃ρ=Pþγ̃ξ þ 2

�
1

m2
−

2

ðPþÞ2
�
Pþ
ρ P

þ
ξ =P

þ
�
J γρλ

Aðψ̄ψÞ

�
γ̃η=Q−γ̃λ þ 2

�
1

m2
−

2

ðQ−Þ2
�
Q−

ηQ−
λ =Q

−
��

:

ð3:8Þ
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Summation over the Matsubara frequencies should be
made taking into account the poles ððpn � iμÞ2 þ E2Þ−r,
where r ¼ 1, 2, according to the formulas from
Appendix A.4 of [22],1 in particular, for the pole r ¼ 1

1

jβj
X
pn

ðpn � iμÞkeiðpn�iμÞτ

ðpn � iμÞ2 þ E2

¼ 1

2E

X
s¼�1

ð−isEÞkeτsE½θð−sτÞ − nFðE� sμÞ�; ð3:9Þ

where nFðEÞ ¼ ð1þ eE=TÞ−1 is the Fermi-Dirac distribu-
tion. The explicit dependence on the coordinate xi can be
absorbed into the derivative of the exponent. After that, the
integration and summation over one of the momenta is
removed by the delta function. Finally, integration over the
angles at d3p ¼ sinðϑÞp2dpdϕdϑ and integration over τ
and differentiation ∂

∂qi can be done directly. As a result, we

get that each of the coefficients is expressed as a combi-
nation of an infinite and a finite momentum integrals, for
example

Wψ̄ψψ̄ψ ¼ −
2

3π2

Z
∞

0

pdpþ
Z

∞

0

dp
π2T

×

�
−
2p3

3T
½nFðxÞ3 þ nFðyÞ3� þ

�
p3

T
−
p2

6

�
½nFðxÞ2

þ nFðyÞ2� þ
�
−
p3

3T
þ p2

6
þ 2pT

3

�
½nFðxÞ þ nFðyÞ�

�
;

ð3:10Þ

where x ¼ pþ μ; y ¼ p − μ. The finite parts can be found
analytically as they are expressed in terms of polynomial
combinations of polylogarithms [29,34]

Wψ̄ψψ̄ψ ¼ −
2

3π2

Z
∞

0

pdp −
T2

6
−

μ2

2π2
;

Wψ̄λψ̄ψ ¼ −
1

3π2

Z
∞

0

pdpþ T2

2
þ 3μ2

2π2
;

W λ̄ψψ̄ψ ¼ 1

π2

Z
∞

0

pdpþ T2

2
þ 3μ2

2π2
: ð3:11Þ

Despite the fact that each of the terms has an ultraviolet
divergence, the sum is finite. Thus, ultraviolet divergences
appear at intermediate stages of calculations, but mutually
cancel out between different contributions in the final
formula for the physical effect

Wψ̄ψψ̄ψþWψ̄λψ̄ψþW λ̄ψψ̄ψ ¼
5T2

6
þ5μ2

2π2
; ð3:12Þ

where nFðEÞ0 ¼ d
dE nFðEÞ. As a result, we obtain the

following expression for the axial current, which corre-
sponds exactly to the chiral anomaly (2.5)

hĵνAið1Þ ¼
�
5T2

6
þ 5μ2

2π2

�
ων: ð3:13Þ

In this case, the coefficients 5 in the terms T2 and μ2 were
obtained as a result of summation 6 − 1 ¼ 5, where 6 is the
contribution of the interaction terms, and −1 is the
contribution of the pure Rarita-Schwinger field. This
distinguishes the above calculation from the calculation
of the chiral anomaly and CSE in [7,16], where the
additional field did not contribute. Thus, the anomaly is
reconstructed, but in a qualitatively different way.

IV. DISCUSSION: QUANTUM ANOMALIES IN
HYDRODYNAMICS

We have shown an exact correspondence between
hydrodynamics and quantum field theory: the coefficient
in front of the chiral anomaly (2.5) corresponds to the
coefficient in CVE (3.13). Such a correspondence of the
two theories is not accidental and was predicted in a
number of papers [9,10]. Our result confirms the accuracy
of the predictions made not only in the case of spin 1=2, but
also for higher spins and demonstrates how this correspon-
dence is realized at the level of microscopic theory.
In particular, it was shown in [10,35] that hydrodynamics

can be considered as an effective field theory with addi-
tional interaction corresponding to the substitution

Aν → Aν þ μ · uν: ð4:1Þ
Using the well-known expression for the chiral anomaly,
but now for the effective field (4.1), one can clearly obtain a
number of chiral phenomena. It is necessary to use the
substitution (4.1) in the anomaly (1.1) and collect all the
additional terms into the divergence of the effective current

∂νðn5uν þ Cμ2ων þ CμBνÞ ¼ −
C
8
εμναβFμνFαβ: ð4:2Þ

The second term on the left-hand side of (4.2) corresponds
to CVE, and the third—to the CSE.
The same relationship was substantiated from the point

of view of the equations of relativistic hydrodynamics and
the second law of thermodynamics in [9]. Equation (2.5) is
to be included into the system of equations of hydro-
dynamics. From the condition of non-negativity of the
divergence of the entropy current it follows that the currents
arise, directly related to the anomaly.1G.P. thanks M. Buzzegoli for discussing this issue.
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Both [9,10] approaches deal with the μ2 term, while the
temperature term T2 and the coefficient A in (1.1) are
assumed to be associated with either the gravitational
anomaly [11–13,34,36] (see also [37,38] on transport phe-
nomena related to the gravitational anomaly) or the global
one [39]. In particular, [34] considers radiation from an
analogue of a rotating black hole, a quantum anomaly on the
horizon of which serves as a pump that creates an anomalous
axial current. Such a relationship between the T2 term and the
gravitational anomaly has been verified for the case of spin
1=2 [34], and recently for spin 1 [13].
Now we could hypothesize that the gravitational chiral

anomaly is also 5 times higher for system of interacting
spin 3=2 and spin 1=2 fields than for spin 1=2 and,
moreover, there is a sign of a possible relationship between
different types of chiral anomalies. An indication of the
possible existence of such a relationship between gravita-
tional and gauge anomalies was recently found in a
completely different context in [40]. However, the pecu-
liarities of the theory of higher spins may lead to a very
nontrivial realization of the gravitational anomaly in hydro-
dynamics, and it is possible, that there is no such a direct
relationship between the coefficients.
On the other hand, the comparison of (3.13) and (1.2)

indicates the existence of possible universality A ∼ C of the
vortical effects associated with temperature hĵνAi ¼
A · T2ων and with chemical potential hĵνAi ¼ C · μ2ων. A
similar proportionality of the two coefficients also follows
from the analysis of the semiclassical equations of motion
for free particles in a rotating frame and the chiral kinetic
theory [41]. In this approach the relation A ∼ C ∼ S follows
from the spin-vorticity effective coupling S⃗ · Ω⃗. Now we
see that the proportionality of the coefficients A ∼ C also
arises in a different context for a system of two interacting
quantum fields. Thus, the universality A ∼ C is probably a
more general phenomenon than A ∼ C ∼ S.
We also note that the result [41] for the CVE for arbitrary

spin is also in agreement with the quantum anomaly for free
fermions obtained in [42], where the coefficient in the
anomaly is also proportional to the spin.
In [16] another phenomenon, the CSE, was calculated in

the framework of the theory [7], and the result was

CSE∶hĵνAi ¼
5μ

2π2
Bν; ð4:3Þ

where Bμ is the magnetic field. Thus, the CSE also satisfies
the chiral anomaly (2.5). Technically the correspondence

between the CSE and the anomaly is clear, since both of them
can be described by the same diagrams, but with the
replacement of one of the fields in one of the vertices by
the chemical potential in the case of CSE. In the case of CVE,
similar reasoning cannot be used, since the operators of the
stress-energy tensor are located in the vertices instead of the
current operators.
The relationship between CSE and anomalies (2.5)

follows from [9,10] and also from the recent analysis in
[22]. The conditions of global thermodynamic equilibrium
fix the chemical potential

ζðxÞ ¼ ζ0 − βσFλσxλ þ
1

2
ϖσρxρFλσxλ; ð4:4Þ

where ζ ¼ μ
T. Using (4.4) for differentiating (4.3) results in

h∂νĵ
ν
Ai ¼

5

2π2
Tð∂νζðxÞÞBν ¼ −

5

16π2
εμναβFμνFαβ. ð4:5Þ

V. CONCLUSION

We consider the extended Rarita-Schwinger-Adler
theory [7] at finite temperature, finite chemical potential,
and nonzero vorticity. We calculated the chiral vortical
effect in this theory and verified that the coefficient in front
of the μ2 term corresponds to the coefficient 5 in the chiral
anomaly. This is achieved by summing of the contribution
of the interaction terms equal to 6, and the contribution
from only the Rarita-Schwinger field equal to −1. There is
a cancellation of ultraviolet divergences between different
contributions to CVE, each of which diverges separately.
We discussed the possible consequences for the gravita-
tional anomaly.
Comparison of the obtained formulas for CVE with the

case of spin 1=2 suggests the existence of a new univer-
sality between the coefficients A ∼ C of the vortical effects
associated with temperature and with chemical potential.
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