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Locally AdSd−1 ×R uniform black strings (UBS) in the presence of a massless scalar field are believed
to avoid the onset of the Gregory-Laflamme (GL) instability in d ≥ 4 as no tachyonic modes exist in the
spectrum of the Laplace-Beltrami operator. We present analytic and numerical evidence of GL modes in the
Lichnerowicz spectrum indicating that AdSd−1 UBSs are classically and thermodynamically unstable at
the linear level in d > 4. In d ¼ 4, we confirm that uniform BTZ3 strings are indeed stable as previously
suggested. This supports that linear instabilities of black strings are triggered only if tachyonic modes exist
in the Lichnerowicz spectrum. At the end state of the instability, AdSd−1 UBSs of finite length may tunnel
to a SAdSd black hole or converge onto a novel nonuniform AdSd black string. We conjecture that weak
cosmic censorship is violated if the nonuniform solution is an exact AdSd black funnel and compute
entropy estimates in d > 4 as evidence.
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I. INTRODUCTION

Black objects with translationally invariant horizons
suffer from classical instabilities. A famous example is
the Gregory-Laflamme (GL) instability of Ricci-flat black
strings in d > 4, with horizon topologies Sd−3 × S1, where
tachyonic modes develop in the Lichnerowicz operator
spectrum ðΔLÞ under generic long wavelength perturba-
tions [1–4]. These classical instabilities persist to four
spacetime dimensions and higher [5–21] for black strings
with asymptotics that are conformal to AdSd−1 ×R. There
is strong numerical evidence that GL modes lead to the
horizon developing a finite time pinch-off—constituting a
violation of weak cosmic censorship [22]. For black strings
with nontrivial matter configurations, tachyonic modes are
also observed in the Laplace-Beltrami operator ð□Þ (see
[18–21]). It is generally believed that the spectra of scalar
operators on black string backgrounds are correlated. Thus,
finding tachyonic modes in the matter sector is a necessary
and sufficient condition for classical instability and indeed,
several numerical and analytic situations exist where such
instabilities were sourced from Specð□Þ only [19–21].
These linear instabilities are correlated to local thermo-

dynamic instabilities. In its modern form, correlated sta-
bility states, for black strings with mass M and conserved

charges QA, classical instabilities are triggered precisely
when a positive eigenvalue exists in the Hessian of the
microcanonical entropy SðM;QAÞ [19,20]. For unique
black strings with conserved charges, correlated stability
has demonstrated that tachyonic modes develop in the
spectrum of scalar operators precisely when the heat
capacity becomes negative [6–9,13,23–27] and enjoys a
general proof for asymptotically flat spacetimes [28].
Recently, a new class of locally AdSd−1 ×R uniform

black string (AdSd−1 UBS) solutions in the presence of a
massless scalar field has furnished two interesting ques-
tions [29,30]. First, no such tachyonic modes were iden-
tified in Specð□Þ leading to the conjecture that these
solutions are linearly stable in four spacetime dimensions
and higher [30]. This result is clearly in tension with earlier
studies, which have numerically and analytically confirmed
a tachyonic mode in ΔL for black strings that are locally
conformal to AdSd−1 ×R [3–18]. As the stability analysis
performed in [29,30] primarily focused on Specð□Þ, it is
natural to ask does a GL mode persist in SpecðΔLÞ in four
spacetime dimensions and higher?
Secondly, the AdSd−1 UBS is thermodynamically unsta-

ble when the radius of the string is sufficiently thin but
remains classically stable in this regime. It is well known
that nonunique black brane configurations with exotic
scalar charge are counterexamples to correlated stability
[12]. However, the AdSd−1 UBS is a unique configuration
without a conserved charge associated with the massless
scalar [29,30], naturally raising the question are these
solutions a new counterexample to the stronger form of
correlated stability?
In this paper, we present an analytic and numerical study

of the classical and thermodynamic instability of locally
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AdSd−1 × R uniform black strings coupled to a massless
scalar. In concordance with the study initiated in [30], we
confirm that no GL modes exist in the Specð□Þ. However,
we find evidence of tachyonic modes in SpecðΔLÞ in d > 4,
suggesting that the AdSd−1 ×R UBS is classically unsta-
ble. We also find a positive eigenvalue in Hess(S) which,
together with the GL modes in ΔL, is sufficient to rescue
correlated stability in d > 4. The reason the scalar operator
spectra are uncorrelated may be understood by performing
Kaluza-Klein (KK) compactifications along the flat direc-
tion. The resulting tower of masses for the scalar fluctua-
tions satisfy the Breitenlöhner-Freedman bound on the
locally AdSd−1 background [31,32]. Hence, deformations
from the matter sector do not grow sufficiently fast to
trigger an instability, whereas the same is not true for
propagating tensor modes in SpecðΔLÞ. To our knowledge,
this is the first example where the spectra of scalar
operators are uncorrelated for AdS black strings in the
presence of nontrivial matter. This suggests tachyonic
modes in Specð□Þ are sufficient, but not necessary as
previously thought, to generate classical instabilities, and it
supports earlier studies that linear black string instabilities
are triggered only if tachyonic modes exist in SpecðΔLÞ.

II. THE MODEL

We parameterize the AdSd−1 UBS solution by

S¼ 1

16πGd

Z �
R−2Λbulk−

1

2
ð∂σÞ2

� ffiffiffiffiffiffi
−g

p
ddx;

ds2¼ðd−2Þ
ðd−1Þ

L2
d

l2
d−1

�
dz2−VðrÞdt2þ dr2

VðrÞþr2ds2
Sd−3

�
;

VðrÞ¼1−mr4−dþr2l−2
d−1; σðzÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd−2Þ

p
ðz=ld−1Þ:

ð1Þ

The bulk and boundary AdS length scales are set via

Λbulk ¼ − ðd−1Þðd−2Þ
2L2

d
and Λbdy ¼ − ðd−2Þðd−3Þ

2l2d−1
. We consider a

finite string with z ∈ I ¼ ½−πLz=2; πLz=2� and restrict our
attention to d ≥ 4. The UBS is a solution to the equations,

Rab ¼
2Λbulk

d − 2
gab þ

1

2
∂aσ∂bσ □σ ¼ 0; ð2Þ

provided the massless scalar σ satisfies Neumann boundary
conditions. Clearly, the scalar modifies Λbulk along the z
direction and additional flat directions xi may be appended
at the expense of adding scalars σi with identical asymp-
totics. Henceforth, the volume of the space transverse to the
UBS horizon is unity, ð16πGdÞ−1

R
Sd−3×I

ffiffiffi
γ

p ¼ 1 [33].

III. CORRELATED STABILITY

On constant z hypersurfaces, the geometry describes an
SAdSd−1 BH where the largest positive root of VðrþÞ ¼ 0

designates the horizon. The mass and entropy may then be
directly computed using standard formulas on the codi-
mension one surface,

M ¼ ðd − 3Þrd−4þ

�
ESd−3 þ

r2þ
l2
d−1

�
; S ¼ 4πrd−3þ ; ð3Þ

where ESd−3 is the energy of the sphere, which vanishes in
d ¼ 4 and is unity otherwise. As noted in [30], there is no
conserved charge associated with the scalar. Hence, the
thermodynamic potential is simply S≡ SðMÞ in the micro-
canonical ensemble, and searching for positive eigenvalues
in HessðSÞ is equivalent to identifying a regime where
SðMÞ is convex. However, for AdS black objects, there is
no simple expression for the entropy [19,20]. Rather,
assuming strictly positive temperatures (which is reason-
able for SAdSd−1 black strings), the stability requirement
may be rephrased in terms of finding negative eigenvalues
in the Hessian of MðSÞ, which is simply the statement that
the heat capacity becomes negative. We find in d ¼ 4,
MðSÞ ¼ ðS=4πld−1Þ2 and in d > 4,

MðSÞ ¼ ðd − 3Þ
�
S
4π

�d−4
d−3
�
1þ ðS=4πÞ 2

d−3

l2
d−1

�
: ð4Þ

A routine computation of the heat capacity C ¼ Tð∂2
SMÞ−1

where T ¼ V 0ðrþÞ=4π, shows that MðSÞ is concave in
d > 4 for rþ < rcþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 4Þ=ðd − 2Þp

ld−1. Hence, suf-
ficiently thin UBSs with SðrþÞ < SðrcþÞ ¼ 4πrcþ are
thermodynamically unstable in d > 4. In d ¼ 4, the sol-
ution is a uniform BTZ3 string with a mass gap M ≥ 0
separating the black string from the AdS3 ðM ¼ −1Þ
background, which has a strictly positive heat capacity
[34,35]. Via correlated stability, this naively suggests
tachyonic modes condense in Specð□;ΔLÞ for horizons
rþ < rcþ in d > 4, whereas the BTZ3 UBS is stable
regardless of the horizon size. Hence, the GL instability
should have a lower critical dimension of d ¼ 5. Some
evidence of this is observed for BTZ3 black strings, which
are locally conformal to AdS3 ×R [7–9]. In 4 ≥ d,
Einstein − ðAÞdSd−1 gravity is topological. Thus, metric
perturbations will not contain propagating degrees of
freedom and should reduce to a pure gauge transformation.
We study these expectations analytically and numerically
shortly.

IV. LINEAR CLASSICAL STABILITY

We show that tachyonic modes in Specð□;ΔLÞ are
uncorrelated on the AdSd−1 UBS background, and the
BTZ3 UBS is stable. We consider perturbing the metric and
scalar field around the background Eq. (1),

gabðxaÞ ¼ ḡabðxaÞ þ ϵHabðxaÞ þOðϵ2Þ; ð5Þ

ADITYA DHUMUNTARAO and RAFID MAHBUB PHYS. REV. D 105, L041501 (2022)

L041501-2



σðxaÞ ¼ σ̄ðzÞ þ ϵΦðxaÞ þOðϵ2Þ; ð6Þ

where ðḡab; σ̄Þ satisfies the equations of motion (2). To
OðϵÞ, the perturbations on the AdSd−1 UBS background
satisfy

□Φ≡ −
1

V
∂2Φ
∂t2 þ 1

rd−3
∂
∂r

�
rd−3V

∂Φ
∂r

�
þ ∂2Φ

∂z2 ¼ 0; ð7Þ

ΔLHab ¼ −
4Λ
d − 2

Hab þ 2∂ðaσ̄∂bÞΦ; ð8Þ

where the Lichnerowicz operator in the transverse gauge is

ΔLHab ≡□Hab þ 2R̄acbdHcd − 2R̄c
ðaH

c
bÞc: ð9Þ

Now, identifying tachyonic modes in Specð□;ΔLÞ is
tantamount to finding regular solutions ðHab;ΦÞ, which
have a growing mode instability [1–5]. As the UBS
solution is spherically symmetric and has a Killing isom-
etry along the flat direction, we search for growing modes
in the s-wave gauge with the expansion,

ΦðxaÞ ¼ eimnzþΩtϕðrÞ; ð10Þ

HabðxaÞ ¼ eimnzþΩt

0
BBB@

htt htr htz 0

htr hrr hrz 0

htz hrz hzz 0

0 0 0 hij

1
CCCA: ð11Þ

Here, mn ¼ ðn=LzÞ, hijdθidθj ≡ KðrÞds2
Sd−3

, and hμν ≡
hμνðrÞ along the directions transverse to Sd−3. In the
presence of matter, we are allowed to work in the transverse
gauge Hab

;b ¼ 1
2
H;a, where H ¼ ḡabHab. Lastly, in order

for the initial value problem to be well posed, the domain of
dependence will includeIþ on the conformal boundary of
the SAdSd−1 BH when prescribing data [1,2,5].

V. MATTER PERTURBATIONS

It is straightforward to show that no tachyonic modes
may be found in Specð□Þ obeying regularity conditions
near horizon r ≈ rþ and asymptotically r → ∞ [30].
Evaluating Eq. (7) on the ansatz Eq. (11), one finds

Vϕ00 þ
�
d − 3

r
V þ V 0

�
ϕ0 −

�
m2

n þ
ω2

V

�
ϕ ¼ 0: ð12Þ

Regularity conditions enforce the behavior ϕ ∼ ðr − rþÞα
near horizon and ϕ ∼ r−β asymptotically with α; β ∈ Rþ
[36]. As a result, the only way to achieve this behavior is
if ϕðrÞ possesses a maximum at some radial position
r⋆ > rþ. At the turning point, ϕ0ðr⋆Þ ¼ 0, and hence, we
have

Vðr⋆Þϕ00ðr⋆Þ ¼
�
m2

n þ
ω2

Vðr⋆Þ
�
ϕðr⋆Þ: ð13Þ

However, for this to be a maximum, Vðr⋆Þϕ00ðr⋆Þ < 0, but
no maximum may exist as Vðr⋆Þ > 0 for r⋆ > rþ.
We generalize the stability argument given in [30] by

performing a KK compactification of the flat direction. One
would then find a tower of masses ð□SAdSd−1 −m2

nÞΦ ¼ 0
from which it is direct to see the Breitenlöhner-Freedman

stability condition m2
n ¼ ðn=LzÞ2 > − ðd−2Þ2

4l2d−1
is satisfied

[31,32]. Hence, the AdSd−1 UBS solution is indeed stable
to scalar perturbations in d ≥ 4 independent of the coor-
dinate gauge. As such, we eliminate this perturbation in our
search for an instability [2].

VI. METRIC PERTURBATIONS

The metric perturbations are quite involved.
Nonetheless, it is possible to present the salient arguments,
detailed in the Supplemental Material [37], which identify
the growing mode instability. As the scalar perturbation
decouples, the metric perturbations become trace free
ḡabHab ¼ 0. Then gauge conditions, in conjunction with
eliminating stable perturbations, can be used to reduce
Eq. (8) to a single ODE,

Amn;ΩðrÞh00trðrÞ þ Bmn;ΩðrÞh0trðrÞ þ Cmn;ΩðrÞhtrðrÞ ¼ 0:

ð14Þ

The conditions on the radial boundary and the horizon
are sensitive to the dimension and on Λbdy. The qualitative
difference between d ¼ 4 and d > 4 is best understood in
the limit ðΛbulk;ΛbdyÞ → 0, where one is supposed to
recover the instability of Schwarzschildd−1 uniform black
strings [38]. In d ¼ 4, no Schwarzschild3 UBS exists in the
spectrum of Einstein gravity, where as the same is not true
in d > 4. Next, the dependence of the regularity condition
on Λbdy may be inferred in terms of the control parameter
μþ ¼ rþ=ld−1. For μþ ≫ 1, the radius of the AdSd−1 UBS
is large and requires sharply growing regular perturbations
to destabilize the solution, whereas μþ ≪ 1 corresponds to
thin UBS solutions, which are easier to perturb. We perform
the parameter search in the latter regime in order to make
contact with correlated stability. The conditions on the
horizon and radial boundary may be found by solving
Eq. (14) on the various asymptotics. We find

r → rþ∶

(
A�ðmnÞðr − rþÞ−1�

rþΩ
d−4

ffiffiffiffiffiffi
1−ε

p
; d > 4

C�ðmnÞðr − rþÞ
−1�rþΩ

2μ2þ ; d ¼ 4;
ð15Þ

r → ∞∶

(
B�ðmnÞe�m2

nr=
ffiffiffiffiffiffiffiffiffiffiffi
m2

n−Ω2
p

; d > 4

D�ðmnÞe�im2
nr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þm

2
nþΩ2

p
; d ¼ 4;

ð16Þ
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where ε ¼ ðd−2Þ
ðd−4Þ μ

2þ. In d > 4, the near horizon condition

suggests a real regular solution exists provided ε < 1 and
Ω < ðd − 4Þ=rþ

ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
. The condition on ε is analytic

evidence of correlated stability as the control parameter is
bounded above precisely by the thermodynamic instability

μ2þ < ðd−4Þ
ðd−2Þ ≡ ðrcþ=ld−1Þ2. Near horizon, one recovers the

familiar Schwarzschildd−1 UBS behavior when μþ ¼ 0
[1,2]. In the far horizon, the solution differs due to the
conformal structure on the asymptotically AdSd−1 surface.
In d ¼ 4, it is evident the perturbation is pure gauge—the

asymptotic solutions are oscillatory rather than smoothly
damped. Near horizon, instabilities are exponentially
damped out from the spectrum as regular solutions require

Ω < 2μ2þ
rþ

≪ 1. We believe this behavior to be related to the

lack of propagating gravitational degrees of freedom in
lower dimensions. It is natural to understand this as analytic
evidence suggesting the classical stability of BTZ3 UBSs,
which agrees with the expectations provided from corre-
lated stability.
The goal is now to perform a parameter search on

ðmn;ΩÞ, which yields regular solutions, i.e., tachyonic
modes in SpecðΔLÞ. We numerically integrate Eq. (14) (see
the Supplemental Material [37]) to compute the instability
pairs ðmn;ΩÞ using an adaptive Runge-Kutta-Fehlberg
(RK45) routine in Mathematica. A backward integration
is carried out between r1 ¼ 200.0 and r2 ¼ rþ þ 10−5 with
the seed solution set by the decaying branch

htr ∼ e−m
2
nr=

ffiffiffiffiffiffiffiffiffiffiffi
m2

n−Ω2
p

. The existence of an instability is
detected with a sign change in the ratio R ¼ A−=Aþ
[1,2], where

R ¼ ðrþΩd−4

ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
− 1Þhtr − ðr − rþÞh0tr

ðrþΩd−4

ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
− 1Þhtr þ ðr − rþÞh0tr

ðr − rþÞ
2rþΩ
d−4

ffiffiffiffiffiffi
1−ε

p
:

ð17Þ

We confirm the AdSd−1 UBS solution is indeed unstable
in 10 ≥ d ≥ 5, and in d ¼ 10, we studied the threshold of
this instability for various control parameters. We found no
such instability in d ¼ 4 or beyond rcþ=ld−1; the results are
summarized in Fig. [1].

VII. COMMENTS ON WEAK COSMIC
CENSORSHIP VIOLATION

Naturally, one may ask which geometry arises at the end
state of this instability, an Schwarzschild − AdSd black
hole (SAdSd BH) or a novel nonuniform AdSd black string
(AdSd nUBS) configuration, and if a violation of weak
cosmic censorship occurs during the transition, especially
in d ¼ 4. As it turns out, the existence of a GL mode is
insufficient to provide a violation of weak cosmic censor-
ship [39] (see [14,15] where GL points exist, but a
tunneling event is not expected to occur). One is further
required to compute the entropy of the nUBS solution and
determine its dominance in the phase diagram. It is then
reasonable to conjecture that weak cosmic censorship is
violated if (i) a GL mode exists and ðiiÞ the nonuniform
solution has a subdominant entropy relative to the uniform
solution ðSnUBS < SUBSÞ.
In the absence of a dynamical scalar, a suggestive set of

nonuniform saddles can be constructed by foliating AdSd
in terms of AdSd−1 slices and then replacing each slice with
SAdSd−1 black holes. The resulting solutions to Eq. (1) are
exact AdSd black funnels (BF) [16,17],

ds2BF ¼
ðLd=ld−1Þ2
cosðz=ld−1Þ2

�
dz2 − Vðr̂Þdt̂2 þ dr̂2

Vðr̂Þ þ r̂2ds2Sd−3

�
;

Vðr̂Þ ¼ 1 − m̂r̂4−d − r̂2l2
d−1; σðzÞ ¼ σ0; ð18Þ

which are locally conformal to AdSd−1 ×R. The phase
diagram now contains at least [14] three black objects
with distinct horizon topologies H and scalar minima:

FIG. 1. Left: Plot of ðmn;ΩÞ with rþ ¼ 2.0 and l ¼ 50 for which the ratio R changes sign in 9 ≤ d ≤ 5. The points correspond to
values calculated numerically indicating an instability. The lines are up-to-quadratic polynomial fits to illustrate the trend. Right: The
instability in d ¼ 10 for various values of l. As μþ ∼ μcþ, the instability is terminated.
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SAdSd BH with ðσ ¼ σ0;H ¼ Sd−2Þ, AdSd BF with
ðσ ¼ σ0;H ¼ Ω2

zðSd−3 ×RÞÞ, and AdSd−1 UBS with
ðσ ∝ z;H ¼ Sd−3 ×RÞ. On thermodynamic grounds, tran-
sitions between these geometries is expected at a critical
pointM⋆ [14]. Clearly, a violation of weak cosmic censor-
ship is expected in any first order transition between black
string and black hole phases, whereas fragmentation does
not occur during transitions between black string phases
that share conformally equivalent horizon topologies. If the
BF phase is entropically dominant, then an energy barrier
will separate the UBS andBH phases. Hence, the statement
of weak cosmic censorship violation amounts to finding
regimes where SBF < SUBS so that transitions between
black strings and black holes occur. Such a regime will
depend on the control parameter μz ¼ Lz=ld−1. One should
expect that area difference of the UBS and BF strips, with
length z ∈ ½−πLz=2; πLz=2�, should be negative for suffi-
ciently small μz (see Fig. 2). We confirm this via entropy
estimates in d ≥ 5. The thermodynamics read

MBF ¼ ðd − 3Þr̂d−4þ

�
ESd−3 þ

r̂2þ
l2
d−1

�
IdðμzÞ; ð19Þ

SBF ¼ 4πr̂d−3þ IdðμzÞ; ð20Þ

where IdðμzÞ ¼ ð2πÞ−1ðd−1d−2Þðd−2Þ=2
R π=2
−π=2 cosðμzxÞ2−ddx,

which is convergent for μz < 1 [see Eq. (22)]. Along the
lineMBF ¼ MUBS, the entropy differencemay be estimated
in the stable regime ðμþ; μ̂þÞ ≫ ESd−3 via

ΔSðμzÞ ¼ SUBS − SBF ≈ SUBSð1 − IdðμzÞ 1
d−2Þ: ð21Þ

The UBS and BF phases exchange dominance when
IdðμczÞ ¼ 1. Under these conditions, it is reasonable to

conjecture that weak cosmic censorship is violated pro-
vided the nonuniform saddle corresponds to an exactAdSd
black funnel geometry.

VIII. CONCLUSIONS

We find the spectra of scalar operators on locally
AdSd−1 × R uniform black strings supported by a massless
scalar [29,30] are indeed uncorrelated in d ≥ 5, contrary to
prior expectations [18–21], and this solution falls into the
class of black strings covered by correlated stability in
d ≥ 4. Tachyonic modes in the Laplace-Beltrami spectrum
appear to be only sufficient to generate classical instabil-
ities. This suggests that black string instabilities are
triggered only if there exist tachyonic modes in
SpecðΔLÞ. Lastly, we have found a regime of intermediate
AdSd−1 UBS solutions, which are entropically favorable
over exact AdSd BF and compete directly with
Schwarzschild − AdSd BHs. Although a complete numeri-
cal study of the Einstein − Dilaton − AdSd model is needed
to elucidate if weak cosmic censorship is violated, the
thermodynamic argument presents some preliminary evi-
dence that the instability can tunnel a UBS to a BH. In
AdSd with a constant scalar, it is well known that additional
black objects, such as black droplets, exist in the thermo-
dynamic phase space [14]. These black objects do not
change the qualitative argument given here as the horizons
in such cases are partitioned, and hence, it is reasonable to
conjecture a violation of weak cosmic censorship in d ≥ 5.
It is of interest to understand which configuration the
AdSd−1 UBS will ultimately converge onto.
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FIG. 2. Left: Diagram of coincident UBS and BF geometries
within the strip z ∈ ½−πLz=2; πLz=2� at equal mass. Right: The
UBS is entropically dominant over the BF solution for μz < μcz.
The BH entropy is observed to follow the above trend.
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