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We present a calculation of the full set of next-to-next-to-leading-order QED corrections to unpolarized
Møller scattering. This encompasses photonic, leptonic, and nonperturbative hadronic corrections and
includes electron mass effects as well as hard photon radiation. The corresponding matrix elements are
implemented in the Monte Carlo framework MCMULE allowing for the computation of fully differential
observables. As a first application we show results tailored to the kinematics and detector design of the
PRad II experiment where a high-precision theory prediction for Møller scattering is required to achieve the
targeted precision. We observe that the corrections become essential to reliably calculate the corresponding
differential distributions especially in regions where the leading-order contribution is absent.
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I. INTRODUCTION

Recent developments at the low-energy precision fron-
tier have renewed interest in high-precision calculations in
QED. In order to meet the experimental accuracy when
using state-of-the-art lepton beams, next-to-leading-order
(NLO) or even next-to-next-to-leading-order (NNLO) cor-
rections in QED have become highly desirable.
Electron-electron or Møller scattering is a prime example

where a high-precision theory prediction has become
important. As it is a ubiquitous process at electron beam
lines, it has been investigated in connection with luminosity
measurements [1,2] and background studies [3], including
a recent dedicated measurement at very low energies to
study electron mass effects [4]. Precise knowledge of QED
effects might also be useful for the MOLLER experiment
[5] that searches for parity violation as an indication toward
new physics. The main motivation, however, is given by
PRad [6,7] to which we turn below.
All of these experiments rely on Standard Model theory

predictions for Møller scattering. Since at low energies the
corresponding radiative corrections are QED-dominated, a
high-precision theory calculation is feasible. To account for
nontrivial detector geometries and acceptances these

experiments rely on Monte Carlo event generators that
combine matrix elements to physical observables. At NLO
accuracy in QED such Monte Carlo codes have been
developed [8–10]. While for most experiments this level
of precision is sufficient, the situation is different for the
planned PRad II experiment [7], the upgraded version of its
predecessor PRad [6].
Both experiments measure the elastic scattering of

electrons and protons to extract the proton charge radius.
These efforts were triggered after a recent high-precision
spectroscopy experiment using muonic hydrogen at the
Paul Scherrer Institute [11,12] had measured a significantly
smaller value for the proton charge radius compared to
earlier results [13]. The PRad and PRad II experiments
therefore play an important role in the resolution of this
“proton radius puzzle.”
A key feature of the PRad experiments is the suppression

of systematic uncertainties by normalizing to a simulta-
neous measurement of Møller scattering. To be precise, the
differential cross section for electron-proton scattering
ðdσ=dθÞexpep is extracted from the measured events Nexp

and the theoretical prediction for the Møller cross section
ðdσ=dθÞthee via [14]

�
dσ
dθ

�
exp

ep
¼

�
Nexpðe−p → e−pÞ
Nexpðe−e− → e−e−Þ

��
dσ
dθ

�
th

ee
: ð1Þ

It is therefore essential that the theory prediction for Møller
scattering matches the experimental precision.
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As alluded to before, the existing NLO Monte Carlo
event generators were sufficient for PRad. This, however, is
not the case for PRad II that aims at improving the
experimental precision significantly. It is therefore
expected that missing higher-order QED corrections
become the dominant source of systematic uncertainty [7].
We have therefore calculated the full set of NNLO QED

corrections to Møller scattering. This includes not only
photonic and leptonic corrections but also nonperturbative
hadronic contributions. The corresponding matrix elements
were implemented in theMCMULE framework, aMonteCarlo
for muons and other leptons [15]. This allows for the
computation of arbitrary fully differential observables.
This paper is organized as follows: we begin by briefly

summarizing our calculational methods in Sec. II. Next, we
present results tailored to the kinematics and detector design
of the PRad II experiment in Sec. III and conclude in Sec. IV.

II. CALCULATION

We have calculated the full set of NNLO QED correc-
tions to the process

e−ðp1Þe−ðp2Þ → e−ðp3Þe−ðp4Þfγðp5Þγðp6Þg ð2Þ

including effects due to the nonvanishing electron mass.
These corrections are composed of three parts, as illustrated
in Fig. 1. First, double-real corrections are obtained by

integrating the tree-level matrix element (squared) with two
additional photons in the final sate over the photon phase
space. Second, real-virtual corrections require the interfer-
ence of the one-loop amplitude and tree-level amplitude
with one additional photon. Finally, the double-virtual
corrections involve the interference of the two-loop ampli-
tude for ee → ee with its tree-level amplitude as well as the
corresponding one-loop amplitude squared. These three
individual parts are physically indistinguishable for soft
photons and are infrared divergent. Only the combination
of all contributions leads to a finite, physical result.
The corrections can be split into purely photonic con-

tributions and fermionic ones that are due to vacuum
polarization (VP). The fermionic part takes into account
all three lepton flavors as well as nonperturbative hadronic
effects, indicated by the grey blob in Fig. 1(b). The
corresponding method will be presented in the second part
of this section after discussing our approach toward
photonic corrections first. The double-real contribution
of the fermionic part, shown top left in Fig. 1(b) corre-
sponds to the process

e−ðp1Þe−ðp2Þ → e−ðp3Þe−ðp4Þlþðp5Þl−ðp6Þ ð3Þ

with additional leptons (or hadrons) in the final state. Since
this is a final state with a measurable difference it can be
disentangled fromMøller scattering. It is separately finite if
fermion masses are not neglected. Hence, we have chosen
not to include the double-real fermionic part in our results
presented below.
The matrix elements are regularized in d ¼ 4 − 2ϵ

dimensions and renormalized in the on-shell scheme.
They are implemented in the parton-level integrator
MCMULE that is based on FKSl [16], a QED extension
of the FKS subtraction scheme [17,18] beyond NLO.
MCMULE allows to consistently perform the phase-space
integration in the presence of soft singularities and to
calculate physical observables in a fully differential way.

A. Photonic corrections

All tree-level and one-loop photonic matrix elements
were calculated analytically with the full dependence on the
electron mass. The diagrams were generated with QGraf
[19] and calculated with theMathematica code PACKAGE-X
[20]. While for most of the obtained expressions a
sufficiently stable and efficient implementation was pos-
sible, a different approach had to be taken in the case of the
numerically delicate real-virtual matrix element. In this
case next-to-soft stabilization, previously developed in the
context of Bhabha scattering [21], was used. This method is
based on the observation that the numerical instabilities are
strongly enhanced when the emitted photon becomes
soft. We have therefore expanded the real-virtual matrix
element for small photon energies including the nonuni-
versal next-to-soft contribution. This allows us to rely on

(a)

(b)

FIG. 1. Representative contributions to the squared amplitude,
double-real (top left), real-virtual (top right), and double-virtual
involving the two-loop amplitude (bottom left) and one-loop
amplitude squared (bottom right). (a) Examples of photonic correc-
tions at NNLO and (b) examples of fermionic corrections at NNLO.
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OpenLoops [22,23] in its standard mode for the bulk of the
phase space and otherwise to switch to the next-to-soft
approximation. This approach therefore yields a stable
and fast implementation of the problematic real-virtual
contribution.
The two-loop matrix element for Møller scattering can

be derived from corresponding Bhabha results via the
crossing relation p2 ↔ −p4. However, even though
Bhabha scattering is one of the best studied processes in
particle physics, the exact two-loop contribution is cur-
rently not known. The approximation where the electron
mass m is set to zero was calculated some time ago [24].
Building upon this result it was later possible to determine
the leading mass effects based on the universal factorizing
structure of collinear divergences [25–27]. In this approxi-
mation power suppressed terms ofOðm2=q2Þ are neglected
with q2 corresponding to any of the Mandelstam invariants
s ¼ ðp1 þ p2Þ2, t ¼ ðp1 − p3Þ2, and u ¼ ðp1 − p4Þ2.
Even for low-energy observables this approximation is
well justified due to the small electron mass. This massi-
fication therefore allows us to straightforwardly calculate
both the logarithmically enhanced and the constant mass
terms based on the massless result. Recently, this procedure
was extended to processes that include a heavy mass [28].
In this more general approach a factorization anomaly
[29,30] was discovered in fermionic contributions resulting
in the breaking of naive factorization. This in turn explains
the occurrence of additional powers of large logarithms that
result in a larger massification error. We have therefore only
used the massification procedure for the photonic two-loop
contribution and followed a different approach in the
fermionic case.
The analytic continuation that has to be performed after

crossing is nontrivial. Fortunately, this step was de facto
already performed in the case of the massless two-loop
matrix element [24] as it was calculated for all three
possible kinematic channels for 2 → 2 processes. It was
therefore straightforward to construct the massless two-
loop matrix element for Møller scattering based on this. We
then massified the corresponding expression ourselves
arriving at the desired result.
We have verified the nonradiative part of our calculation

at NLO by comparing to corresponding results in [31] and
found exact agreement. We have further compared to full
NLO results provided by [32] using the Monte Carlo code
from [10]. On account of this code being an event generator
and not a full dedicated integrator, we found agreement, up
to Monte Carlo errors, at the level of precision achieved. To
still allow for a robust check of our calculation we have
implemented all photonic matrix elements in MCMULE such
that they can directly be crossed to Bhabha scattering. This
then allows us to verify our calculation indirectly by
comparing to the much richer literature of Bhabha scatter-
ing. In particular, we have compared to the state-of-the-art
Monte Carlo generator BABAYAGA that is based on a

parton shower algorithm matched to the exact NLO result
[33]. As presented in [21], we have found exact agreement
at NLO and a deviation at the level of 17% for the NNLO
correction, consistent with the expected precision of the
logarithmic approximation from the parton shower.

B. Fermionic corrections

As mentioned above it is not sensible to apply the
methods used for photonic corrections to the fermionic
contributions because of the occurrence of the factorization
anomaly in the massification procedure. Moreover, at low
energies nonperturbative hadronic contributions become
relevant. Fortunately, all leptonic and hadronic contribu-
tions to Møller scattering are due to VP insertions. We can
therefore calculate all of them simultaneously by including
all contributions in the VP

Π ¼ Πe þ Πμ þ Πτ þ Πhad: ð4Þ

The one-loop contribution to the leptonic VP can be
calculated trivially and the two-loop result can be extracted
from [34]. For the nonperturbative hadronic VP, on the
other hand, we rely on the Fortran library alphaQED
[35–37] that calculates Πhad based on experimental data.
The full photon propagator

−igμν

q2ð1 − Πðq2ÞÞ ¼
−igμν

q2
ð1þ Πðq2Þ þ Π2ðq2Þ þ � � �Þ ð5Þ

automatically resums VP insertions to all orders in pertur-
bation theory. In this paper, however, we take a strict fixed-
order approach for all contributions. In what follows we
therefore use the expanded version of the photon propagator
given on the right-hand side of (5). The impact of missing
higher-order effects—together with resummation of soft and
collinear photon emission—is left for future studies.
For a large class of diagrams, such as the two diagrams

on the right of Fig. 1(b), the VP contributions factorize and
can thus be calculated straightforwardly based on photonic
NLO matrix elements. The verification of the photonic
corrections described in Sec. II A therefore also presents a
strong check in this case. The calculation of the non-
factorizable vertex and box diagrams, however, is more
involved. Traditionally these contributions are calculated
dispersively, see e.g., [38]. In our case we have instead used
the hyperspherical formalism [39,40] where it was possible
to reuse many of the results of the analogous calculation in
muon-electron scattering [41]. In this approach the non-
factorizable two-loop contribution is written as an integral
over the radial part of the Wick-rotated loop momentum

Mnon−fac
VP ¼

Z
∞

0

dQ2Πð−Q2ÞKðQ2; s; t; uÞ ð6Þ

which can be performed numerically. The kernel function
K results from the analytic integration over the solid angle
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of the loop momentum. In the case of triangles this
integration can be elegantly performed after writing the
propagators in terms of Gegenbauer polynomials and
making use of the corresponding orthogonality relation.
For box integrals, however, this method does not work and
the corresponding calculation is therefore more compli-
cated. In this case the general result can be found in [42].
The main advantage of the hyperspherical approach

compared to the dispersive calculation is that the VP is
integrated over spacelike momenta avoiding hadronic
resonances. Furthermore, the threshold singularities are
transformed into logarithmic divergences in the kernel
functions through the angular integration. Nevertheless,
the numerical integration overQ2 has to be performed with
care. Since large cancellations can occur in the kernel
functions, they have to be expanded in these problematic
regions. In particular, this is the case for Q2 → 0,Q2 → ∞,
and around threshold singularities.
We have verified our calculation of the nonfactorizable

fermionic contributions by comparing to corresponding
crossed results for Bhabha scattering. First of all, we have
obtained complete agreement in the case of closed electron
loops with the exact analytic calculation in [43].
Furthermore, we have compared the muon and the tau
contributions to approximate results from [44] that neglect
terms ofOðm2

f=q
2Þwithmf the mass of any of the fermions

and q2 ∈ fs; t; ug. As expected we do not find exact
agreement but instead observe the correct converging
behavior when the energy scale q2 is increased.

III. RESULTS

With the contributions discussed in the previous section
implemented in MCMULE we can compute any infrared safe
observable of Møller scattering at NNLO in QED.
To illustrate this, as a first application we use a kinematic

set up tailored to the PRad II experiment. We consider an
electron beam with energy Eb ¼ 1.4 GeV incident on a
target electron at rest. We refer to the outgoing electron
with the smaller (larger) scattering angle as the “narrow”
(“wide”) electron. The corresponding scattering angles are
denoted by θn and θw, respectively. We further define the
inelasticity η ¼ Eb þm − En − Ew and the coplanarity ζ ¼
j180° − jϕn − ϕwjj with Ei and ϕi the energy and azimuth
of the narrow and wide electrons. Both quantities are zero
for elastic events and can therefore be used to restrict hard
photon emission. We approximate the experimental design
with the cuts

0.5°< θn; θw < 6.5°; η< 3.5σE; ζ< 3.5σϕ; ð7Þ

with σE ¼ 37.7 MeV and σϕ ¼ 2.1° the expected detector
resolutions for the considered beam energy [45]. In
addition to this fiducial observable we also consider a
simpler version that does not restrict hard photon radiation.
To this end we convert the angular cuts in (7) to

corresponding restrictions for the t- and u-channel momen-
tum transfers using the kinematic relations for elastic
scattering. The corresponding cuts for this simplified
scenario then read

−1295 MeV2 ≲ t; u≲ −135 MeV2: ð8Þ
The order-by-order contributions, σðiÞ, to the integrated

cross section, σ2 ¼ σð0Þ þ σð1Þ þ σð2Þ, for both the fiducial
and the simplified cuts are presented in Table I. The
photonic and fermionic corrections are given separately

and are denoted by σðiÞγ and σðiÞVP, respectively. Additionally,
we show the corresponding K factors defined as

KðiÞ ¼ 1þ δKðiÞ ¼ σi
σi−1

: ð9Þ

As expected, the results for the fiducial and the simple cuts

agree for the elastic corrections σð0Þ and σð1ÞVP. We further
observe large NLO contributions compared to the naive
counting of the expansion parameter α=π. The NNLO K
factors, on the other hand, are much smaller and in
agreement with the naive prediction. For the total cross
section we can thus conclude that the NNLO result yields a
robust prediction for the considered observable with miss-
ing higher-order corrections well under control. Comparing
the fiducial and simple results reveals that the inelasticity
and coplanarity cut have a noticeable impact on the higher-
order corrections. If hard photon emission was even more
severely restricted, the NNLO corrections, too, would
become large and the resummation of corresponding large
logarithms would be required.
For the more realistic fiducial observable we present

differential distributions in Fig. 2. Figure 2(a) shows the
corresponding results with respect to the energy of the
“narrow” electron. The angular distributions for both
the narrow and wide electron are given in Fig. 2(b). For
both figures the differential cross section is displayed in the
upper panel. In addition, the middle panel shows the
differential version of the K factor defined in (9).
In regions where the LO cross section is zero the NNLO

TABLE I. The integrated cross section for the fiducial and the
simplified cuts at LO, NLO, and NNLO. All digits are significant
compared to the numerical integration error.

σ=μb δKðiÞ=%

Fiducial Simple Fiducial Simple

σð0Þ 2291.02 2291.02

σð1Þγ
−148.36 78.23 −6.476 3.415

σð1ÞVP
19.33 19.33 0.844 0.844

σð2Þγ
2.82 −0.17 0.131 −0.007

σð2ÞVP
−1.31 −0.06 −0.061 −0.002

σ2 2163.50 2388.35
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contribution effectively corresponds to a NLO correction
resulting in a large K factor. For this reason the lower panel
zooms into the other region where the NNLO K factor is
small. In this case we observe a similar behavior as for the
total cross section with large NLO and small NNLO
corrections. Contrary to the integrated case, however, the
NNLO calculation is indispensable for distributions in
order to obtain a reliable prediction also in the region
where the LO contribution is zero.
We have presented integrated and differential cross

sections for only one possible scenario for PRad II.
Other configurations of interest to PRad and PRad II will
be studied in the future and made available on https://mule-
tools.gitlab.io/user-library.
The data that enter the results presented in this section

can also be found there.

IV. CONCLUSION

We have calculated the full set of NNLO QED correc-
tions to Møller scattering including photonic, leptonic, and

nonperturbative hadronic corrections. The fermionic part
was calculated with a seminumerical approach using the
hyperspherical formalism without any approximation. The
photonic two-loop matrix element, on the other hand, was
computed based on the crossed massless Bhabha result via
massification resulting in a parametrically small error of
Oðα2m2=q2Þ relative to LO. Apart from the calculation of
the two-loop matrix element, the main challenge in the
computation of the photonic corrections is the numerical
stability of the real-virtual matrix element. We have
obtained a fast and stable implementation of this delicate
contribution using a combination of OpenLoops and the next-
to-soft stabilization method recently developed in the
context of Bhabha scattering.
All matrix elements were implemented in the parton-

level Monte Carlo integrator MCMULE. While not an event
generator, this framework allows us to compute arbitrary
fully differential observables by consistently removing soft
divergences originating in the phase-space integration. As a
first application of our NNLO calculation we have gen-
erated integrated and differential cross sections relevant for
the planned PRad II experiment. For the total cross section
we obtain large NLO and small NNLO corrections ensuring
a high-precision prediction. In the case of differential
distributions the situation is more subtle. In the absence
of a LO contribution the NNLO correction becomes
essential to achieve a moderate precision of about 10%.
To improve this theory accuracy further, missing higher-
order corrections could be approximated with a parton
shower.
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FIG. 2. Differential cross section for the fiducial observable
defined in (7). (a) Energy distribution of the “narrow” electron and
(b) angular distribution of the “narrow” and the “wide” electron.
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