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Using 6.32 fb~! of ete™ collision data recorded by the BESIII detector at center-of-mass energies
between 4.178 to 4.226 GeV, we present the first measurement of the decay Dy — f(980)e*v,,
£0(980) — 7°2°. The product branching fraction of D — f,(980)e"v,, f;(980) — #°2° is measured to
be (7.9 £ L4y, £ 0.44,4) ¥ 10~#, with a statistical significance of 7.8¢. Furthermore, the upper limits on
the product branching fractions of Di — f,(500)e*v, with f,(500) — #°z° and the branching fraction of
D — K%K%e v, are settobe 7.3 x 107* and 3.8 x 10~ at 90% confidence level, respectively. Our results
provide valuable inputs to the understanding of the structures of light scalar mesons.

DOI: 10.1103/PhysRevD.105.L031101

The constituent quark model has been strikingly
successful, but the nontrivial quark structures of scalar

mesons below 1 GeV, £,(500), f,(980), and a,(980)%*)

(briefly denoted with o, f(, and ag(i), respectively), are not
completely classified [1]. Many theoretical hypotheses,
such as the tetraquark states [2—13], and two-meson bound
states [14—18], have been proposed for these light scalar
mesons but with controversial results. Identifying the
correct hypothesis is key to exploring chiral-symmetry-
breaking mechanisms of nonperturbative QCD in low-
energy region [3]. Therefore, conclusive experimental
results are required to interpret these states.

Semileptonic charm meson decays provide a clean
environment to study scalar mesons [19-25]. Experi-
mentally, the BESIII collaboration has reported the mea-
surements of D) — aa<0)e+ve, and D' — f,/cet,
with fy/c — ntn~ [26,27], and the search of D —
a8e+ye [28]. The CLEO collaboration has also reported
the measurement of DY — fyetv, with f, — 27z~ [29].
On the other hand, theoretical studies of neutral channels
(fo = 7°2%) are rare compared to those of charged
channels. Like charged channels, the branching fractions
(BFs) of the semileptonic D} decays into light scalar
mesons in their decay to neutral channels and the 7°z°
invariant mass spectrum aid in understanding the non-
trivial nature of light scalar mesons [4,11,20,25]. However,
unlike charged channels, there is no background from
p(770)° — ztz~, thereby providing an ideal environment
to study f,/o. Therefore, it is of great interest to study this
kind of decays in experiment.

In addition, the BABAR collaboration claimed that a
possible f, - K™K~ contribution is found under the
dominant decay D} — ¢eTv, in the study of D —
K*tK~e'v, [30]. On the contrary, no other collaboration
reported significant f, » KK~ signal in the same decay
[1]. We report the first search for the neutral channel
Dy — K%K%e*tv,, associated with f, — K$KY9, avoiding
heavy contamination from ¢p — KK~ decays. Throughout
this paper, charge conjugate channels are always implied.

The BESIII detector [31,32] records symmetric e*e™
collisions provided by the BEPCII storage ring [33]. The
cylindrical core of the BESIII detector covers 93% of the
full solid angle and consists of a helium-based multilayer

drift chamber (MDC), a plastic scintillator time-of-flight
system (TOF), and a CsI(Tl) electromagnetic calorimeter
(EMC), which are all enclosed in a superconducting
solenoidal magnet providing a 1.0 T magnetic field. The
charged-particle momentum resolution at 1 GeV/c is
0.5%, and the dE/dx resolution is 6% for electrons from
Bhabha scattering. The EMC measures photon energies
with a resolution of 2.5% (5%) at 1 GeV in the barrel (end
cap) region. The time resolution in the TOF barrel region is
68 ps, while that in the end cap region is 110 ps. The end
cap TOF system was upgraded in 2015 using multi-gap
resistive plate chamber technology, providing a time
resolution of 60 ps [34].

The analysis is performed based on data samples corres-
ponding to an integrated luminosity of 6.32 fb~! at \/s =
4.178, 4.189, 4.199, 4.209, 4.219, and 4.226 GeV [35].
The signal events are selected from the process ete™ —
D:*DJ — yD¥D;. A GEANT4-based [36] Monte Carlo
(MC) simulation sample is used to determine detection
efficiencies and to estimate background processes. The
simulation models the beam energy spread and initial state
radiation (ISR) in the e™ e~ annihilations with the generator
KKMC [37]. The inclusive MC sample includes the pro-
duction of open charm processes, the ISR production of
vector charmonium(like) states, and the continuum proc-
esses incorporated in KKMC [37]. The known decay modes
are modeled with EvtGen [38] using BFs taken from the
Particle Data Group [1], and the remaining unknown
charmonium decays are modeled with LundCharm [39].
Final state radiation (FSR) from charged final state particles
is incorporated using PHOTOS [40]. The signal detection
efficiencies and signal shapes are obtained from signal MC
samples. In the signal MC sample, the Dy decays generi-
cally and the signal D} decays to 7°z%*v, or KSKSet v,
according to the generators described below. The form
factor FF is parametrized as [41,42]

A
FF = PhadMp, ) 7 (1)

3 |&
PN

where ¢ is the invariant mass squared of e v, system, pp.q
is magnitude of the three-momentum of the 7°z°/K3K?
system in the D7 rest frame, the pole mass m, is expected
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to be mp  ~2.5 GeV/c? [1], and mp_is the nominal Dy
mass [1]. The amplitude A for the f;(980) resonance is
parametrized by the Flatte formula with parameters fixed to
the LHCb measurement [43], that for the o resonance is
described by the Bugg lineshape [44], and that in D] —
K9KY%etv, signal MC sample is set to be one.

The signal process et e~ = D" Dy + c.c. » yDI D7 +
c.c. allows studying semileptonic Dy decays with a tag
technique [45,46] since the neutrino is the only one particle
undetected. There are two types of samples used in the tag
technique: single tag (ST) and double tag (DT). In the ST
sample, a Dy meson is reconstructed through a particular
hadronic decay without any requirement on the remaining
measured charged tracks and EMC showers. In the DT
sample, a D7, designated as “tag,” is reconstructed through
a hadronic decay mode first, and then a D], designated as
the “signal,” and the transition photon from the Di* —
yD¥ decay are reconstructed with the remaining tracks and
EMC showers. The BF of the signal decay is given by [28]

NDT
B.. total , (2)
sig = B Za zNST DT/GST

a,l (ll

where a represents various tag modes, i denotes different

Vo e
cies, B, represents the BF of D; — yDj, NDT, is the signal
yield for all six data sets, and N,” is the ST yields for
various tag modes. The tag candldates are reconstructed
with charged K and 7z, z°, "), and KO mesons in nine tag
modes, Dy — K%K~, K+K- T, KOK‘no K*K-na°,
KYK-—nnt, KSK*n~n~, o=~ zt, 27y, and K ntn.
Requirements on the recoiling mass are applied to the
tag candidates in order to identify the process
ete” —» D:*DJ. If there are multiple candidates for a
tag mode, the one with recoiling mass closest to the
nominal D}* mass [1] is chosen. A detailed description
of the requirements on the mass and the recoiling mass of
tagged D7, and the selection criteria for charged and neutral
particle candidates is provided in Ref. [28]. The ST yields
of data for tag modes NST are determined from fitting to the
tag Dy invariant mass (Mtag) distributions [47]. The signal
shape is modeled with the MC-simulated shape convolved
with a Gaussian function, and the background is para-
meterized as a second-order Chebyshev function. The
efficiencies e for ST are obtained from the inclusive MC
samples [47].

After a tag Dy is identified, the signal decays are selected
recoiling against the tag side, requiring that there is no track
other than those accounted for in the tagged D;, the
positron, and the semileptonic-side hadrons (NG2* = 0).
A joint kinematic fit, in which four-momentum of the
missing neutrino needs to be determined, is performed
to select the best transition photon candidate from

T denotes the DT (ST) reconstruction efficien-

D:* — yD¥. The fit includes: The total four-momentum
of reconstructed particles and the missing neutrino is
constrained to the four-momentum of e*e~ system; invari-
ant masses of the two 7°/ K candidates, the Dy tag, the D
signal, and the yD¥ are constrained to the correspon-
ding nominal masses [1]. The transition photon candidate
leading to the minimum y? of the joint kinematic fit is
chosen. Furthermore, the largest energy of the remai-
ning EMC showers that are not used to in the event
reconstruction, E;Yr,, is required to be less than
0.2 GeV to suppress backgrounds with photon(s). The
square of the recoil mass against the transition photon and
the Dy tag (MZ.) is expected to peak at the nominal Df
meson mass-squared before the kinematic fit for signal
D:*DY events. Therefore, MZ. is required to satisfy
3.75 GeV?/c* < MZ%, < 4.05 GeV?/c* to suppress the
backgrounds from non-D Dj processes. The missing
neutrino is inferred by the missing mass squared (MM?),
defined as

1

MM? :?(pcm_ptag_phad_pe_py)zv (3)
where p., is the four-momentum of the eTe~ center-of-
mass system, p, for the tag DY, ppaq() for the semi-
leptonic-side hadrons (positron), and p, for the transition
photon from the Di* decay. To partially recover the energy
lost due to FSR and bremsstrahlung, the four-momenta of
photon(s) within 5° of the initial positron direction are
added to the positron four-momentum measured by the
MDC. The invariant mass distributions of semileptonic-
side hadrons of the selected candidates for DY — 7z°z%* v,

and D} — K%K%e*v, are shown in Fig. 1. Notable f,
signals are found in the 7°2° mass distribution while no
significant signals of ¢ — 7%2° and fy, — K9K$ are
observed. The background is mostly caused by miscella-
neous backgrounds with multiple photons.

R

1.6
K o0 (GeV/cz)

{ Data
—— fyetv, MC (@)
-~ getv, MC
— Background MC

(b)

)
=1
T

Events / (20 MeV/c?)
SH.

Events / (30 MeV/c?)

=3

05

M, (GeVic?)
FIG. 1. Invariant mass distributions of semileptonic-side
hadrons of the selected candidates for (a) D — 7%2% ", and
(b) Df - K%K%e"v,. The points with error bars are data. The blue
solid lines are the MC-simulated backgrounds. The peak around
0.5 GeV/c?in (a)is caused by the decay D — K%(— 7°7%)e*v,.
The red dashed and brown dotted lines are signal MC samples of
D} — fy(980)ety, and Dy — oetv,, respectively, which are
normalized arbitrarily for visualization purposes. A cut on missing
mass squared, |[MM?| < 0.15 GeV?/c*, is applied.
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FIG. 2. Projection on (a) MM? and (b) M, of the two-
dimensional fit to the selected candidates for D} — z%z%%v,.
The data are represented by points with error bars, the total fit
result by blue solid lines, signal by red dashed lines, and
background by violet long-dashed lines.

A two-dimensional unbinned maximum likelihood fit
to the MM? versus M, distribution is performed to
extract the DT yield of D — foetv,, fo = 7°2°. The
signal and background components are described by the
simulated shape from the signal and inclusive MC samples,
respectively, using a kernel estimation method [48] imple-
mented in RooFit [49]. The fit result is shown in Fig. 2.
The obtained signal yields is NPT =548 +10.1 with
a statistical significance of 7.8¢. Using the DT effi-
ciencies from the signal MC samples (see Ref. [47]),
and B,, the resulting B(Dy — foe'v,, fo — n°7°) is
(7.9 & 14y £0.4) ¥ 107*. The second uncertainty is
systematic, which are described in the following.

Since no significant signals are observed for the decays
D} — cetv, with 6 — 72°2° and D} — K9K%e'v,, the
upper limits of the BFs for these decays are determined.
The candidate events for the former decay are required
to satisfy Mo,0 < 0.66 GeV/c?. A veto 0.458 < M o,0 <
0.520 GeV/c? is applied to suppress the background from
Dy — K%(— 7°2°)e*v,. Unbinned maximum-likelihood
fits are performed to the corresponding MM? distributions
The signal and background are modeled by the simulated
shapes obtained from the signal and inclusive MC samples,
respectively. The MM? distributions and the likelihoods of
fit results as functions of assumed BFs are presented in
Fig. 3. The upper limits, set at 90% C.L., of the BFs of
Df — oetv,, 0 —» 7°2° and Df — K3K%e v, are 7.3 x
10~* and 3.8 x 107#, respectively. The method to incor-
porate systematic uncertainty is discussed in the following.

The sources of the systematic uncertainties for the BF
measurement of DI — fyeTv,, as summarized in Table I,
are described below. Note that most systematic uncertain-
ties on the tag side cancel due to the DT technique. Any
residual effects are negligible.

The uncertainty in the total number of the ST Dy mesons
is assigned to be 0.4% by examining the changes of the fit
yields when varying the signal shape, background shape,
and taking into account the background fluctuation in the
fit. The uncertainty from the quoted BF of D} — yD; is
0.7% [1]. The systematic uncertainties from tracking and
PID efficiencies of e™ are assigned as 1.0% for each by

o

@ } Tt
% 40r 4 Data % 6F { Data 1
= [ —-ocetv,MC = | =K%y, MC
8 — Background MC 8 4} — Background MC —
PR | 1 = M
= 2
£ | = of I 7
o o ||
> | e >
= 0 Lt T = = 0 - 1
0.1 0 0.1 0.1 0 0.1
MM? (GeV?/c*) MM? (GeV?/c*)
1+ 4 i
(© ()
é — Nominal — Nominal
=
.y — Upper limit — Upper limit
Ol L g L ! L
0 10 5 10
B(D!—6e*,, 6—mn°) (x 10°%) B(DI—>K(KSetv,) (x 10%)
FIG. 3. (top) MM? distributions and (bottom) likelihood dis-

tributions versus BF for (left) D} — ce*v,, 6 — 7°2° and (right)
Dy — K9K%e*tv,. The points with error bars are data, the blue
solid lines are the MC-simulated backgrounds, and the red dashed
lines show the MC-simulated signal shapes in (a, b). The signal
shapes are normalized using an appropriate scaling factor chosen
to visualize the shape and position of the signal. The red dashed
lines in (c, d) are the likelihood curves for the nominal fit models,
while the blue solid lines represent the likelihood curves that
gives the upper limits after incorporating the systematic uncer-
tainties. The black arrows indicate the results corresponding to
90% C.L.

using radiative Bhabha events. The systematic uncertainties
from reconstruction efficiencies of y and z° are studied by
using control samples of the decay J/y — n* 72~ 7" [50,51]
and the process ete™ — KK ntn~n°, respectively. A
conservative 2%(1%) systematic uncertainty is assigned
for each n° (the transition photon) in the analysis of
D} — ce'v,, since no significant signal is available to
check the data-MC consistency. As for the analysis of

TABLE 1. The systematic uncertainties (%) in the BF mea-
surements. Uncertainties associated with background shapes for
cetv, and KYK%e" v, are additive in the upper limit measure-
ments and not listed in this table.

Source foetv, cety, KKSet,
D7 yield 0.4 0.4 0.4
B(D** — yD**) 0.7 0.7 0.7
e™ tracking efficiency 1.0 1.0 1.0
e PID efficiency 1.0 1.0 1.0

y and z° reconstruction 2.6 5.0 1.0
KY reconstruction e e 3.0
EXm <02 GeV 0.7 0.7 0.5
NET = 0.8 0.8 0.9
MC statistics 0.5 0.5 0.5
Signal model 1.3 33 8.8
Background shape 3.0 See text See text
Total 4.7 6.3 9.5
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D} — fye'v,, amomentum-weighted correction factor for
each 7° is calculated to be 99.4% and the residual
uncertainty of 0.8% is assigned as the corresponding
systematic uncertainty along with a 1% systematic uncer-
tainty for the transition photon. The uncertainties of

the Ejfa < 0.2 GeV and NG =0 requirements are

assigned as 0.7% and 0.8%, respectively, by analyzing
DT hadronic events of z*z%. The uncertainty due to

the limited MC statistics is obtained by /> ,( a%)z,

where f, is the tag yield fraction in data, and ¢, and §, are
the signal efficiency and the corresponding uncertainty of
tag mode «a, respectively. The systematic uncertainty
associated with signal models is studied by replacing the
parameters of f, from LHCb [43] by those from BES [52]
in generating the signal MC sample. The difference of the
measured BFs, where the effects of the signal efficiencies
and the two-dimensional signal shape have been taken into
account, is assigned as the associated systematic uncer-
tainty. The background shape is altered by varying the
relative fractions of major backgrounds from ete™ — gg
and non-DT D open-charm processes within 30% accord-
ing to the uncertainties of their input crossing section in the
inclusive MC sample. The effects caused by the smoothing
parameter of the kernel estimation method [48,49] is
negligible. The largest change is taken as the corresponding
systematic uncertainty.

The sources of systematic uncertainties on the upper
limit measurements are classified into two types: additive
(0,,) and multiplicative (o).

Additive uncertainty is dominated by the background
shape description. The systematic uncertainty is studied by
altering the nominal MC background shape with two
methods. First, alternative simulated shapes are used,
where the relative fractions of the dominant backgrounds
from e*e™ — g and non-D*D{ open-charm processes
are varied within 30% according to the uncertainties of
their input crossing section in the inclusive MC sample.
Second, the alternative background shapes are obtained
from the inclusive MC sample using the kernel estimation
method [48,49] with the smoothing parameter varied to be
0, 1, and 2.

Multiplicative uncertainties, as summarized in Table I,
are related to the efficiency determination and the
quoted BFs. All systematic uncertainties are the same
as those for D] — fyeTv, except for the following. The
uncertainty for the Kg reconstruction efficiency is
assigned as 1.5% per Kg using control samples of J/y —
KYK*7¥ and pKOK*x ¥ decays. The uncertainties of the

Efax <02 GeV and NG =0 requirements in the

Df — K%K%etv, study are assigned as 0.5% and 0.9%,
respectively, by analyzing DT hadronic events of D} —
K*K~n* and K}K*. The systematic uncertainty of the ¢
modeling is considered by replacing the lineshape of ¢ in
the signal MC sample with a conventional relativistic

Breit-Wigner function with the mass and width fixed to
the BES measurements [53]. The systematic uncertainty
related to the K9K%e"v, model is estimated by replacing
the nominal model in the signal MC sample by a uniform
distribution in phase space.

The additive uncertainty is taken into account by
extracting likelihood distributions using different alterna-
tive background shapes and the one resulting the most
conservative upper limit is chosen. Then, the multiplicative
systematic uncertainty is incorporated in the calculation of
the upper limit via [54,55]

2
L(B) « /1 L<B£> exp [7(6/60 D ]de, (4)
0 €o 2(0.)?
where L(B) is the likelihood distribution as a function
of BF; € is the expected efficiency and ¢, is the averaged
MC-estimated efficiency.

In summary, the first BF measurement of D} —
foetv,, fo = n°z° and searches for D} — setv,, o —
°7° and D} - K0K%e'v, are performed using
6.32 fb~! of data taken at /s = 4.178-4.226 GeV with
the BESIII detector.

The BF of D} — foetv,, fo — n°z° is determined to be
(7.9 £ L4y £ 0.44) x 107, According to isospin sym-
B(fo—n'n")
B(fo—z"n")
with the measurement of Dj — foev, with fo — ztn~
by the CLEO collaboration [29]. An upper limit on the
BF of D} — ce*v,,6 — 7°2° is set to be 7.3 x 10™* at
90% C.L. This upper limit is an overestimation due
to omitting the non-c contribution in the region of
M0 < 0.66 GeV/c?. Our results agree with the state-
ment that the s5 — o transition is negligibly small in
comparison with that of ss — f, given by Refs. [20,23],
which follow the four-quark structure or mesonmeson
interaction hypothesis for f; and o mesons. Further-
more, the upper limit on B(Dy — K%K%etv,) is set to
be 3.8 x 107* at 90% C.L., indicating that contribution
from B(f, — KK) is not comparable to B(f, — zz) in
semileptonic Dy decays. Assuming B(f, — #°z") con-
tributes one third of the f, decays, our results leads to
B(Df = foetv,) = (2.4 +0.4) x 1073, which is consis-
tent with the prediction given by Refs. [23,24] when
assuming f, to be the admixture of s5 and other light
quark-antiquark pairs.

metry expectation = 0.5, our result is consistent
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