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Growth of the J.-BPS index in 4d NV =4 supersymmetric Yang-Mills theory
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We study the microcanonical superconformal index of 11—6—supersymmetric operators in 4d N = 4 U(N)
super Yang-Mills (SYM) theory. We show, numerically for N < 10, that the large-charge asymptotics are
consistent with the entropy of supersymmetric black holes in the dual anti de Sitter space. We then prove,
using representation theory, that the index agrees precisely with the multigraviton index, when the charge is
less than 2(N + 1), and begins to deviate for larger values of charge. Thus the U(N) SYM index
interpolates between multigraviton values at small charges and black hole growth at large charges.
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I. INTRODUCTION

According to the AdS/CFT correspondence, a black
hole in asymptotically anti de Sitter space should be
interpreted in the dual conformal field theory as an
ensemble of states with the same conserved charges as
that of the black hole. A concrete setup to verify this
expectation in the context of the prototype duality relating
four-dimensional maximally supersymmetric U(N) super
Yang-Mills (V' =4 SYM) theory and five-dimensional
supergravity in AdSs space was proposed in [1-3].
Consider 1—16—supersymmetric, or Bogomol'nyi-Prasad-
Sommerfield (BPS), states in the SYM theory on
S3 x R', i.e., states annihilated by one supercharge Q of
the theory and its Hermitian conjugate. The AdS/CFT
correspondence predicts that at small values of charges the
number of such states should equal that of an ensemble of
supergravitons, while at large charges the statistical entropy
of the ensemble of such states should agree with the
thermodynamic entropy of 11—6—BPS black holes in the dual
AdSs theory. In this paper we show how the superconfor-
mal index counting 1—16-BPS states in SYM indeed inter-
polates between these two types of behaviors.

The scale of the gravitational theory, as set by the radius
of curvature of the asymptotic AdS; in five-dimensional
Planck units, corresponds to N'/* in the SYM theory.
The BPS black hole solution is then specified by four
independent charges—three R-charges labeling the
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representations of SU(4), and two angular momenta on
S3, constrained by one relation. In the N =4SYM theory,
%—BPS states are labeled by the charges that commute
with Q, these are the two angular momenta and two of the
three R—charges.1 The essential part of the problem can be
formulated in any A = 1 superconformal field theory with
a gravity dual, where one has a single R-charge Q and the
two angular momenta. In fact, in the simplest (and first to
be discovered) BPS black hole solution [6], only one
combination J of the two angular momenta is nonzero.
This is the simplest setting within which one can study the
problem of microscopic entropy of supersymmetric AdSs
black holes. In this setting the supercharge O can be
chosen such that the combination of charges that commutes
with it is 2J + Q. For N =4 SYM written in this
N = 1 language, the quantity n = 3(2J + Q) is quantized
so as to be an integer, this is the situation we discuss in
this paper.

The regime of validity of the black hole solution is
N — oo (classical gravity theory) and n/N? finite (large
horizon area). The thermodynamic entropy of these black
holes in supergravity [6] is given by

1
SBHEzAH:NZS(n/NZ), (1)

where

s(v) = 3+ o@W'?),

m
5 3178 v—oo. (2)

'"The nonlinear relation between the five charges in the
gravitational theory is not directly visible in the SYM theory,
and this is part of what makes this problem subtle. Unraveling this
issue was an important part of the recent progress [4,5].
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On the microscopic side, one considers the superconformal
index dy(n) defined as the trace of (1) over the subspace
of the Hilbert space of SYM with charge n,’

Iy(x) = Terhys(—l)Fe‘ﬂ{QQ}x” = ZdN(n)x”. (3)

The main question is whether its asymptotic behavior
agrees with the thermodynamic entropy of the black hole
in the large-N limit, i.e.,

1 Togdn(n) Ls(n/N?), @

as n, N = co, n/N? fixed and finite.

The authors of [7] (based on earlier work in [8,9])
showed how to construct the complete set of gauge-
invariant operators of the SYM theory in the regime of
small charges 4z — 0 as N — oo, where one can ignore all
trace relations among matrices. They showed, further, that
this set agrees exactly with the set of multigraviton states in
the gravitational theory. The initial failure to find the
exponential growth of states at large charges led to the
question of whether the Q-cohomology contains any other
states even at finite N. It is notable that the number of
multigraviton BPS states does not depend on N, so that
their corresponding growth as N — oo is much smaller than
that of the black hole entropy. Therefore, if the growth of
the index agrees with the black hole entropy, there must be
new states in the cohomology.

Recent work [4,5,10-21] has shown that the answer to
the question posed in (4) is yes. All the approaches start by
considering the index function, which can be calculated as
an integral over N X N unitary matrices [22,3],

Tr(x) = / DU exp@:%is(x-/‘mUfTr(Uf)f), (5)

=1

where ii(x) is the index trace as in (3) but taken over all
single “letters” of the gauge theory. Then, one estimates the
growth of states by using analytic properties of the relevant
special functions in (5). One important feature of all these
analyses is that one needs to consider complex values of
chemical potentials in order to see the growth.

In this paper we consider the problem from the micro-
canonical point of view by studying the matrix integral (5)
for finite values of N. Firstly, this leads to a direct (and
nontrivial) numerical verification, in terms of the micro-
canonical integers dy (n), of the recently obtained results in
the canonical ensemble quoted above. This result does not
rely on any particular value of the chemical potential and, in
particular, unlike the canonical ensemble, one does not

2We recall that only Q-invariant states contribute to (3), and it
is therefore independent of /.

need to complexify the chemical potentials in order to see
the growth. Secondly, we present an argument based on
representation theory that explains that the values of the
index correspond precisely to the index of multigravitons
for states with low-lying charge n < 2N + 1. For higher
values of charge n new states do begin to contribute, so that
as n reaches vN? there is an exponential growth of states.
The index dy(n) thus interpolates from the graviton
behavior at small charge to the black hole behavior at
large charge, which is the finite-N, microcanonical mani-
festation of the Hawking-Page transition.

II. THE INDEX AT INFINITE N AND AT FINITE N

Why is the superconformal index expected to have an
exponential growth of states equal to that of a black hole?
The cleanest reasoning is a formal argument involving the
Euclidean functional integral. The AdS/CFT conjecture
asserts the equality of the functional integrals of the
boundary SYM theory and the AdS space. In the CFT
the superconformal index can be interpreted as such a
functional integral with periodic boundary conditions by
the usual procedure. However, it is not clear whether the
Euclidean BPS black hole solution in AdSs contributes to
the corresponding AdS functional integral—even at the
classical level where the functional integral can be approxi-
mated by the exponential of the on-shell action.

The issue is one of regulating the infrared behavior of the
BPS black hole solution. This problem was addressed in [5]
where it was shown, by considering a supersymmetric
deformation of the BPS black hole (BH) away from
extremality, that there is a regulator consistent with
supersymmetry, and that the regulated on-shell action
equals the BPS BH entropy in the limit. One thus reaches
the conclusion that the BH contributes to the functional
integral and, therefore, the index should grow at least as fast
as the exponential of the BPS BH entropy at large N 34

The superconformal index is protected upon change of
coupling, for the same reason that the Witten index is
protected [29]. Therefore, assuming that there are no states
coming in from infinity, we can calculate the index as the
trace (3) over the Q-cohomology at weak or even zero
coupling.

An important development was the calculation of the
complete Q-cohomology at weak coupling at N = oo (i.e.,
ignoring all trace relations) in [7] following the earlier work

There are further possible corrections to this statement
coming from (a) quantum corrections to the BH entropy,
(b) the possible existence of other saddles in the AdS functional
integral, and (c) the possibility of wall crossing when one flows
from weak to strong coupling, (see [23-26] for a discussion of
these issues in BHs in asymptotically flat space), none of which
we will discuss here.

It would be interesting to have a more precise statement about
equality of the index and the black hole entropy along the lines of
[27,28].
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of [8,9]. It was shown there that the single-trace O-
cohomology is in one-to-one correspondence with the free
supergraviton states in the dual AdSs [30]. The value of the
trace (3) over this infinite-N Q-cohomology is

3x2 2x3
S

3 (6)

igrav (X> = 1—x

1—-x
The SYM operators making up the infinite-N Q cohomol-
ogy also exist at finite N. Following [7-9], we call them
“graviton operators in the SYM” and we use the notation
lgray(X) for their index.

The recent progress in this problem relies on a careful
study of the finite-N index (5). The Hamiltonian calculation
to reach this integral expression goes as follows [3,22]. One
first calculates the “single-letter index,” namely the trace
(3) taken over all operators made up of the elementary
fields of the theory and derivatives. In this calculation one
has to be careful about subtracting the constraints arising
from the equations of motion. The only fields (or con-
straints) contributing to the index are those which are
annihilated by the supercharge Q. The result of this
calculation is

B 3x2 — 3x* — 2x3 + 2x° -

is(x) = (=X =3x—-2x =3x* 4 -+~
B (1—X2)3
~ae "

One then projects the single-letter operators counted by (7)
to the gauge-invariant subspace. Upon doing so by inte-
grating over the gauge group using the Haar measure, we
reach the matrix model (5).

The single graviton operators in SYM and the single-
letter index at finite N are building blocks from which we
calculate multigraviton and multitrace indices, respectively,
by the operation of plethystic exponentiation [31]. At N =
oo one first projects to the space of gauge-invariant single
traces to obtain (6) and then exponentiates to produce
multitraces. This quantity has the multi-graviton-like small
growth. In the finite-N formula (5), in contrast, one first
exponentiates the states charged under the gauge group and
then projects on to gauge-invariant states. We proceed to
show that the integral (5), as a function of charge,
interpolates between the multigraviton answer and the
black hole answer.

III. LARGE CHARGE OPERATORS FORM THE
BLACK HOLE

The semiclassical entropy of the AdSs; BH in super-
gravity is given by the real part of the Legendre transform
of its regularized on-shell action [5] (with v = n/N?),
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FIG. 1. Comparison between microscopic entropy log |dy(n)]

and BH entropy Sgy(N, n) for N = 4, 10.

Spy = Re/ dr exp(N*&(7)),

2rit @2t +1)°
v— .
3 277°

&(r) = - (8)

Denoting by 7, = 7,.(v), the solution of the extremization
equation £'(z,.) = 0, we obtain at leading order in the large-
N saddle-point expansion,

Spu(N.n) = N?s(n/N?).  s(v) =Re&(r.(v)).  (9)

The asymptotic expression (2) is obtained by further
expanding in large v.

In the canonical ensemble, the analytic calculation of
log Z y(7) was done using two different methods. The first
method uses a rewriting of the integrand of (5) in terms of
the elliptic gamma function and estimating its behavior
[15,16,21,32,33]. The second method is to extend the
integrand of (5) to a doubly periodic function on the
complex plane and then take the 7 — 0 limit (see Sec. 4.5 in
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[20]). Both these methods lead to agreement with the on-
shell action £(z) in the Cardy-like limit 7 — 0,

Here we study the microcanonical data dy(n). We
computed these numbers by using the elliptic gamma
function representation for N =2, 3, 47 For higher
values of N we use the formula (18). In this method, the
computational bottleneck is to produce the characters of the
permutation group S;, which leads to the charge cutoff
n < 2d.° In Fig. 1 we present the comparison between the
microscopic log |dy(n)] and the expression (8) for the
BH entropy for N = 4, 10.

There are many points to note here. Firstly, we find
agreement as n — oo, as expected from the above dis-
cussion. For small charges, until 2N, the microscopic
degeneracies deviate from the BH curve. Instead, they
follow the graviton curve for these small charges as
explained below. After charge 2N, the degeneracies latch
on to the BH curve very soon [within O(N)] and exhibit
regular bumps of size N. In particular, the good agreement
of the microscopics with the BH when n and N are small is
remarkable. Although our numerics are not precise enough
to declare such a conclusion, they suggest the conjecture
that the simple expression (8) governs the perturbative
entropy even at finite N.

IV. SMALL CHARGE OPERATORS ARE
GRAVITONS

The index function of multigraviton states is the ple-
thystic exponential of the single-graviton index iy, given

in (0),
) = ngrav(n)
(1—x3
H L (1 —x2n

We see from this expression that the multigraviton index is
equivalent to a gas of three real bosonic oscillators of
frequencies 2n and one complex fermionic oscillator of
frequencies 3n, n = 1,2, .... Using the standard modular

A multi-grav (X

00 1 .
X" == exp (Z%lgrav(xk))
k=1

(10)

Il

=\
~—

(95}

>All these calculations were performed using PARI/GP [34] on
a MacBookPro 2017. The time taken to calculate dy increases
rapidly with N—after initialization, and putting a cutoff at
n = 100, it took 5 ms for N = 2 and 26 min for N = 4.

®The time taken to calculate the character tables from d = 1 to
20 was 4 seconds, while the final case dealt with here (d = 35)
alone took 20 hours. All the character tables were computed using
GAP [35]. Having obtained the characters, calculating the
coefficients dy is quite fast, e.g., the case N = 10, n < 70 took
14 min using PARI/GP.

The numbers dy(n) are integers in absolute value but
typically have a nonzero phase. This phase is the reflection of
the complexification of the chemical potential in the canonical
ensemble.

12000 N=10
10000
8000
N=4
6000 N=3
4000 N=2
2000
graviton gas
: 20000 40000 60000 80000 100000

FIG. 2. The gravitational black hole entropy Sgy =
N2s(n/N?) = a,(Nn)*3 + O(n'3) for N=2,3,...,10 and
the logarithm of the index of the graviton gas (dashed line).

properties of the Dedekind # function to estimate the
growth of states, we obtain

n—»ooﬂ' =
IOg dgrav() 3 5n, (11)

which is equivalent to an effective central charge of %.
In Fig. 2 we show the growth of log d,, (1) in comparison
to the BH entropy.

We now discuss the gauge theory index over the
whole range of charges. The pattern is as follows.® For
%n < N + 1, the gauge theory index dy and the multi-
graviton index d,,, agree exactly, as illustrated in Table I
and as we prove below. As we increase the charge n, dy
falls behind for a small interval before picking up and
dominating dy,,(n) at large n, as shown in Fig. 3. For very
large charges, dy agrees with the BH partition function, as
discussed in the previous section.

Our goal now is to prove that, when n < 2N + 1, dy(n)
as defined in (3), (5) agrees with d,,,(n) defined as the
coefficient of the multigraviton index (10). Using the
relation (7), we write the multigraviton index (10) as

9= Sl =T[5 oy (12

k=1 S

7z

multi-grav (

Expanding both the expressions (5), (12) in terms of
products of ii(x*) over different k, and recalling from
(7) that the index i,(x) starts with the power x?, we see that
this agreement is equivalent to the following assertion.
For 271:1 Jjk; <N,

/DUH

(TrUITe Uk =1, (13)
kil g

¥It seems to be important for the small charge observations
that we are considering U(N) and not SU(N). The multi-
graviton index under discussion thus includes the singleton
sector [36,37].
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TABLE L. The U(N) SYM index dy(n) equals dyy,,(n) for 1n < N4 1 and then starts to differ.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
d, 3 -2 9 —6 11 -6 9 14 =21 36 17 —-18 114 —194 258 —168
ds 3 -2 9 —6 21 —18 33 =22 36 6 -19 90 -99 138 -9 -210
dy 3 -2 9 -6 21 -18 48 —42 78 —66 107 -36 30 114 —165 390
ds 3 -2 9 -6 21 -18 48 42 99 96 172 -156 252 —-160 195 48
oray 3 -2 9 —6 21 —18 48 —42 99 -96 200 —198 381 -396 711 -750

which we now prove using some simple concepts from
representation theory of U(N). The ideas below have
appeared in closely related contexts in [38,39].

The basic idea is to expand the traces of powers of the
gauge field in terms of the U(N) group characters, which is
precisely the content of the Frobenius character formula
[40,41]. Recall that the representations of U(n) and those
of the symmetric group S, are both labeled by partitions A
of n. We denote the corresponding characters as 7, and y*,
respectively. Now note that the gauge theory operator in
(13) is uniquely associated with a cycle shape P through the
following bijection:

r=10)
Jj=1

We think of P as a partition of the integer |P|:= >, jkj,
labeling a conjugacy class in Sp|. Here |P| is called the
weight of the partition P, and the number £(P) = > "' | k;
is called the length or the number of parts of the partition P.
The Frobenius formula for U(N) states that

= Z i (U)*(P)
(=N

Using the formula (15) for Op(U) and using the first
orthogonality relation of the group characters of U(N), we
obtain

ki e f[(Tr Uk = Op(U).

J=1

(14)

(15)

loglds(n)] ~ +

loglds(n)| -

2 log|da(n)] log|dgrav(n)|

30

20}

e,
20 40 60 80 100

FIG. 3. Microscopic data dy(n) for N =2, 3, 4 VS dyyyy.

/DUOP(U Op(UT) = Z;( P2 (16)

Here we have used the fact that the characters of the
symmetric group are real (in fact, integers). When |P| < N,
any partition of |P| cannot have more than N parts, so that
the sum over A on the right-hand side of (16) runs over all
partitions of |P|. In this case we can use the second
orthogonality relation of the characters of the symmetric
group, i.e.,

S P =

Iy

[Tk% = (17)
j=1

Upon putting together Eqgs. (16) and (17), we obtain the
assertion (13). It is important in this argument that |P| < N;
this condition guarantees that the power of x in the index
(5) is less than 2(N +1). As long as this holds, the
coefficient dy is independent of N and agrees with
dgryy—which is manifestly independent of N.

In fact the Frobenius relation can also be used to write
down an explicit formula for the index (5). Upon expanding
the exponential in (5) and using the formula (16), we obtain

Zl X)P Z Pl

where i (x)p =[] is(x/)h.

We end with some brief comments.

(1) We propose that Egs. (3), (5), and (10), (12) should
be interpreted as the black hole transform of the
single-graviton index (6). The input single-graviton
index can be calculated using only the global
symmetries of the AdS theory, and the transform
dy informs us about large BH solutions. Using the
relation of the single-letter trace to the graviton
index, this transform is interpreted as a holographic
relation between the single-letter trace and the
black hole.

Is there a theory on the gravitational side which
directly captures the dynamics of ——BPS states, akin
to a topological theory? The mathematlcal context
used here—the Frobenius-Schur duality, which re-
lates the representations of U(N) and those of the

(18)

2
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symmetric group—has been used fruitfully in the
past to relate matrix models appearing in gauge
theories to string theories [42—46]. However, the
appearance of black holes—which we clearly see
in the matrix model here—is not seen in the usual
topological versions of AdS/CFT dualities [47,48].
This should be related to the fact that in this paper
we consider energies which scale as N2, while the
usual treatments took N — oo strictly.
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