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Using the ambitwistor string, we complete the list of celestial operator product expansion (OPE)
coefficients for supersymmetric theories. This uses the ambitwistor string worldsheet conformal field
theory to dynamically generate the OPE coefficients for maximally supersymmetric gauge theory, as well
as gravity and Einstein-Yang-Mills theories, including all helicity and orientation configurations. This
extends previous purely bosonic results [T. Adamo et al., arXiv:2111.02279] to include supersymmetry and
provides explicit formulas which are, to the best of our knowledge, not in the literature. We also examine
how the supersymmetric infinite dimensional soft algebras behave compared to the purely bosonic cases.
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I. INTRODUCTION

By Mellin transforming dynamical observables such as
massless scattering amplitudes in a momentum basis, one
obtains scattering amplitudes in a conformal primary basis.
Since the action of the Lorentzian group on equal time
slices of .#, i.e., the celestial sphere, is the Mobius
transformation PSL(2, C), the Mellin transformed scatter-
ing amplitudes transform as correlation functions in con-
formal field theories on the celestial sphere [1-10].

A natural question one could ask is whether this is purely
coincidental or the scattering amplitudes in the conformal
primary basis can indeed be understood as correlators in a
special conformal field theory (CFT). For any ordinary
conformal field theory, the operator spectrum and operator
product expansion (OPE) are two of the most important
characteristics. The particle spectrum of the conjectured
celestial CFT (CCFT) consists of conformal primaries.
OPEs between such conformal primaries are universal
features that capture the singular behavior when two
operators are inserted close to each other, and the OPE
coefficients are crucial to determine dynamical properties
of CCFT. Some of the CCFT OPE coefficients have been
computed through Mellin transform or symmetries in the
literature [11-13].

Moreover, one also needs to consider how the properties
of the momentum basis scattering amplitudes in the bulk
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are interpreted in the CCFT framework, if this correspon-
dence were to be understood as a kind of holography. For
example, in the case of soft theorems [15-17], it was
observed that by reorganizing the CCFT OPEs, infinite
towers of soft symmetries can be expressed in terms of
infinite dimensional algebras. It is worth noting that the
universality of soft theorems is only valid up to a certain
order in soft expansion. Although one can associate such a
tower of symmetries with higher soft limits of tree-level
gravity amplitude, its physical meaning still requires
clarification. For gravity and Einstein-Yang-Mills (EYM)
theories, the governing algebra turns out to be the extension
of the Viraroso algebra, the w;_, , algebra [9,14,15]. Recent
literature also witnessed efforts to explore the quantum
extensions of this algebra, where self-dual Einstein gravity
one-loop amplitudes were considered [16,17].

Besides the purely bosonic cases, supersymmetric
celestial amplitudes have been explored in the literature
using similar Mellin transform methods [12,18-20].
Although celestial OPE coefficients in supersymmetric
theories have been explored [12,13], these studies have
been restricted to minimal supersymmetry (SUSY) or pure
N = 4 super Yang-Mills (SYM). To our knowledge, the
full list of celestial OPE coefficients for all maximally
supersymmetric four-dimensional (4D) theories has not yet
been determined. Besides this, the dynamical origin of the
SUSY celestial OPE coefficients is also unclear.

In [21-25], the authors made attempts to study the
dynamical origin of celestial OPEs and holographic sym-
metries using twistor theory. In particular, by using the
ambitwistor string worldsheet CFT to compute celestial
OPEs, the authors of [25] have successfully generated and
matched CCFT OPE coefficients with all SL(2,R)
descendants computed by Pate and collaborators [11].
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The results were presented in “master formulas” to include
all incoming-outgoing/outgoing-outgoing orientation con-
figurations, which contained the usual Euler-Beta functions
in integral form. However, all the OPEs there only con-
cerned gluons and gravitons. Hence the purpose of this
article is to generalize this mechanism to supersymmetric
cases and to calculate all possible celestial OPEs for
maximally supersymmetric theories in 4D. In the end we
provide a complete brochure of CCFT OPE coefficients in
the form of master formulas using the worldsheet CFTs of
the fully supersymmetric 4D ambitwistor strings. To make
the discussion more self-contained, we include all subtle-
ties in the purely bosonic cases as well as additional ones
present in the supersymmetric cases. It is worth noting that
other attempts to explore the dynamical origin of CCFT
have been carried out in the context of string theory [26];
however, the formalism there requires additional artificial
manipulations during the calculations, which contrast
with the naturalness of the ambitwistor string worldsheet
formalism.

The fully supersymmetric ambitwistor strings in 4D are
the =4 SYM and N =8 supergravity (SUGRA)
ambitwistor string theories [27,28]. Naturally one expects
that these two worldsheet CFTs should generate all the
N =4SYM and N/ = 8 SUGRA CCFT OPE coefficients;
however, for the N' =4 EYM theory, there are no N' = 4
EYM ambitwistor worldsheet theories. Nevertheless, we
are still able to compute the OPE coefficients using the
appropriate vertex operators from the SYM and SUGRA
ambitwistor strings. Unlike twistor string theories that are
chiral in the Grassman variables, the ambitwistor string
breaks the manifest SU(N') R-symmetry into SU(N/2) x
SU(N/2) and splits the spectrum into two halves. One half
lives on twistor space and the other half on dual twistor
space, which manifests the ambidextrous nature of the
theory.

As shown and stated in the purely bosonic calculations
[25], the ambitwistor string exhibits properties that allow it
to be a natural habitat for the interpretations of CCFT. For
example, without Mellin transforming scattering ampli-
tudes in the momentum basis, the OPEs between vertex
operators dynamically generate the OPE coefficients in the
conformal primary basis. Additionally, the worldsheet
integrals of ambitwistor strings inherently localize on the
boundary of the moduli space, constraining the computa-
tion precisely at the collinear region without any artificial
manipulation. Besides these, the infinite tower of organ-
izing principles for soft symmetries as well as the action of
soft conformal primaries on hard ones can be obtained
independently, without taking soft limits on the OPE
coefficients. We shall see these traits present throughout
the supersymmetric calculations as well.

Apart from the remarkable properties in the bosonic
cases, the supersymmetric ambitwistor string also provides
additional convenience. Because of the various helicities of

particles in the spectrum, one needs to be extra cautious
with the Mellin conformal scaling dimension. However, we
shall see that in the worldsheet theory, the number of
supersymmetry and the homogeneity of the vertex operator
in twistor/dual-twistor space cohomology will resolve such
subtleties automatically. As in the bosonic case, we are also
able to compute the supersymmetric holographic sym-
metries and action of soft particles on hard ones without
prior knowledge on the CCFT OPE coefficients; the w
algebra does not differ from the purely bosonic case, still
acting as a Poisson diffeomorphism on a plane in twistor
space [24]. This also matches recent results in [15].

The paper is organized as follows: Sec. II introduces
notations and basic knowledge of the ambitwistor string,
Sec. III gives a detailed procedure to compute all like
helicity OPEs, Sec. IV presents that for all mixed helicity
OPEs, and Sec. V concludes with the holographic sym-
metries and soft-hard OPEs.

II. SETUP

A. Kinematics

The study of the OPE coefficients of CCFT involves
examining celestial conformal primaries inserted on the
celestial sphere. It was observed that the OPE limit of
CCFT coincides with the collinear limit of the momentum
basis scattering amplitude. To make this observation, we
parametrize null four-momenta k* of massless particles in
the following way using the stereographic coordinates
(z,Z) on the celestial sphere:

(1+ |z =z -z, -i(z = 2), 1 = |z]?),

SIS

p' = (2.1)

where @ denotes the energy of the particle, which
when Mellin transformed becomes the conformal scal-
ing dimension A. Some simple algebra reveals
Pi(2i.%i) - Pju(2j.2j) & |z; — 2| suggesting that when
the two momenta become collinear as their corresponding
celestial coordinates (z;,Z;) = (z;.Z;). The point we shall
try to establish in this paper is that this clash of (z;,z;) —
(zj.Z;) naturally corresponds to the clash between inser-
tions o6; — o; of the vertex operator on the ambitwistor
string worldsheet. Here we remark that the limit (z;,z;) —
(zj,Z;) on the celestial sphere could be separately consid-
ered as the holomorphic limit z;; = z; —z; = 0 and the
antiholomorphic limit z;; = z; — Z; — 0. Since one could
only consider such chiral treatment when z; and z; are
independent, we complexify the celestial sphere to §? x §?
or employ the (2,2) signature celestial torus [29].
Besides this, we also need to capture the orientation
configuration of the particle using &, namely e =1 for
outgoing particles and &€ = —1 for incoming ones. This
includes an additional parameter in our parametrization
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ew . _ -
Pr=5 0tz -z-z-k-21-2).  (22)
Using spinor helicity notations, we have the following
identities for our null four-momenta:

o y 1
p“"za,‘j"p”:k“k“:e'a)< >(1 ), (23)
Z

which allows us to replace spinor helicity variables k* and
k* with holomorphic and antiholomorphic coordinates on
the celestial sphere. More precisely, we have

emva(') Eees(l) eo

Since the focus of this paper is to compute celestial OPEs
for maximally supersymmetric theories, it is convenient to
introduce Grassmann coordinates #* and their complex
conjugates 7, with designated helicities :I:% on the celestial
sphere, where A labels R-symmetry and runs from
A=1,2...,N. With this, we could write down the
supermultiplet containing all the particle content we wish
to use [30]:

Uk =Uo (k. k) + U 4 (k. k)

1 -
+§’1A713U2,A3(k7k) +e

! Al AN 2 ~
+(N/2)!;7 Uy g, (KK,

(2.5)

where we stop at the Uy, term to include half of the
particle content originating from the positive helicity
multiplet. The other half comes from the negative helicity
multiplet:

_ ~ _ ~ - ~ 1~ - ~
U(k,k,ﬂA):I/[O(k,k)‘l‘?’]AZ/[?(k,k)+§77A7131/{§\B(k,k)+

4k E). (26)

+W7M, Ty,

Note that this construction differs from the usual conven-
tion in the literature, where a single multiplet generates the
entire spectrum. By splitting the spectrum on two multip-
lets, we have chosen to break the manifest SU(N)
R-symmetry and opted for SU (%/) xSU (%f) where V' =4
or 8 for our purpose. Although such a construction is
unusual in the literature, the closest analog can be found in
[31-33]. We shall come back to this point again when we
introduce all the on-shell superfield ambitwistor vertex
operators in the next subsection, where (k, k,7,) will be
assigned as the supercoordinate system on the dual space.

Notice that as all particles have different helicities and

descend by % as one steps down the SUSY ladder, to

balance the helicities of the terms in (2.5), » shall be
designated to have helicity % Formally, we could define the
following helicity operator:
. Ta A

S 5 (—k Ope + k%0 + 1 a,,A). (2.7)
If the helicity of the first bosonic particle I/, in the multiplet
has helicity 4, the helicity operator ¥ assigns helicity £ to
the rest of the particles in the multiplet: h2/(k, k,n*) =
hd(k, k, ), where U(k, k,n*) represents any particle in
the positive helicity multiplet. Similarly, a helicity operator

can be defined for particles in the negative helicity
multiplet,

= (—ka()ka + /}da,}a + 77],4()7“), (2-8)

N[ =

which assigns helicity / to each particle originating from the
negative helicity multiplet: §74(k, k,7,) = hid(k. k,7j4).

B. Ambitwistor string

As mentioned before, we shall attempt to utilize the
worldsheet CFT of the ambitwistor string to generate CCFT
OPE coefficients. Hence we first introduce the tool of
ambitwistor string here [27,28,34].

Ambitwistor strings are holomorphic maps from closed
Riemann surfaces to the projective ambitwistor space PA,
i.e., the supersymmetric extension of the space of complex
null geodesics considered up to scale [35,36]. In four
dimensions, PA is parametrized by twistor and dual-twistor
variables ambidextrously. Together with SUSY, we have

zZ= (ludvﬁow)(A) € PT, (29)

W = (Jg. i 7*) € PT*, (2.10)
where Z represents the homogeneous coordinate on cp3W
and PT = {Z € CP*W|1, #0}. Similarly W denotes
the homogeneous coordinate on dual twistor space PT*.
x4 and 74 are fermionic, and A ranges from 1 to N label
R-symmetry. Ambitwistor space can then be represented as
a quadric

PA = {(Z,W) € PT x PT*|Z- W = 0}, (2.11)
with Z-W = i%4, + u®l; + ya7". Geometrically, since
ambitwistor space is the complexification of all null geo-
desics, PA can be represented by the complex null geo-
desics and their intersection with any Cauchy surface. In
the case of 4D Minkowski spacetime, [PA is equivalent to
the cotangent bundle of complexified null infinity PA =
P(T*.#) [35]. Furthermore, there exist nonlocal relations
between points in the supersymmetrized 4D Minkowski
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spacetime (x,6,0) and a quadric (1,1) € CP! x CP' in
PA:
H = i(x 4 10964%) 1,

X4 =05, (2.12)

A% = —i(x% — 10901, 70 =040, (2.13)
To define a worldsheet action governing holomorphic

maps from the worldsheet to PA, one uses the worldsheet
spinors Z,WeQ(KY?xC*), and a GL(1,C) Lagrange
multiplier a € Q%l enforcing the target space to be on the
quadric Z - W =0 [37]:

1 - -
S:2—/W'()Z—Z~0W+aZ-W+Smmer, (2.14)
T Jz

where S, .r 1S determined by the theory one tries to
describe using this action. For example, for Yang-Mills
theory, Spaer Will be the action for a worldsheet current
algebra j@ € Q)(Ky ® g) for a Lie algebra g. Note that the
worldsheet action is invariant under any holomorphic
reparametrization as well as gauge transformation associ-
ated with GL(1,C) Lagrange multiplier a. Gauge fixing
this redundancy using the Becchi-Rouet-Stora-Tyutin
quantization (BRST) procedure introduces Virasoro ghosts
into the system.

First, we shall consider supersymmetric Yang-Mills
theory. After gauge fixing and BRST quantization, the
BRST cohomology contains vertex operators of the follow-
ing form:

%&@m—/ﬁwdﬂﬂ%ﬁ@

z

=Lf@MW% (2.15)

where o; represents a local coordinate on the worldsheet
and j2 denotes the worldsheet current of conformal weight
(1, 0). a(2) € H*'(PT,O) and a(W) € H*'(PT*,0)
denote positive and negative helicity gluon wave functions
of homogeneity degree 0 on twistor and dual twistor space,
respectively. To recover spacetime free fields, we use the

supersymmetrized Penrose integral formula to transform
the wave functions a(Z) and a(W) [38]:

a(2)
aﬂday/f
Pa(Ww)
oo’

s

HO=i(xT4i0%0) Ay a=0% A

Fop(x,0,0) = /(Ad/w

’

ﬁa:_i(xm'z_igxé/\&)zd ’A;A :é/\[zz&
(2.16)

zwwamz/mm

where the explicit form of a(Z) and @()V) are representa-
tion agnostic. The expressions suggest that we are restrict-
ing ourselves to the supertwistor line enforced by the

incidence relations in (2.12) and (2.13). However, these are
not the only spacetime fields we could write down; as in
[38], one could choose y, or 7 to differentiate, which
gives us four other spacetime objects:

- - ?a(Z

P4(x.0.0) = / (Ad2) ‘;( ) ,
U’ oy 4 HO=1 (X410 0% A 4 =07 D

- ~ ~ *a(W

mMﬁwzﬂWij ,

OO | o =i —iu i), 7 =013,
(2.17)

N ~ *a(Z

FAB(x,0,0) = / (Ad2) a(2) :
a%AaIB M&:i(x(1[1+i929A[l)lu’l’A:eziu

FAB(x7€7é) :/[;1 ~]M

a)?A 0)?3 At =i (i A 3y A=A, '
(2.18

)

Together, they combine into the nonzero part of the
curvature on spacetime:

F(x,0,0) = deeaﬂdx“d N FAe,pdx® A KA

+ FABe,dos A 40y, (2.19)

F(x,0,0) = Faﬂedﬁdx“" A doafP FaAedﬁdx“é’ A oA

+ Fape, yd0* A do™. (2.20)

The complete tree-level S-matrix of 4D SYM can be
obtained by taking correlation functions of the vertex
operators in (2.15). There are three worldsheet OPEs that
need to be considered in the computations, namely the
worldsheet current OPE, the Z — W spinor OPE. First, the
worldsheet current OPE follows:

k§ab abc ;C( .
— do;do; + fij (G])
(O'l' - UJ) o; — O-j

ja(ﬁi)jb("j) ~ do;, (2.21)

where & is the level of the worldsheet current algebra, 62° is
the Killing form of the Lie group, and f2°° is the structure
constant. The double pole term here comes from gravita-
tionally mediated multitrace interactions, and here we
ignore such contributions and decouple gravitational
degrees of freedom by setting k — 0 [39—41]. From now
on, the worldsheet current OPE takes the following simple
form:
.a b faijC (Gj)
J2(0:))°(0)) N?d"i' (2.22)
i 0

Another OPE that needs to be accounted for is the
Z — W OPE between worldsheet spinors:
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&\ /do;do;
Zl("i)WJ(Gj) S

Gi—aj

(2.23)

Instead of SYM, one could also consider supergravity
described by our worldsheet action (2.14), which requires
an additional fermionic p — p system in the S, term,

A2
Vi (z.72,9) = />: [Z,%f)] +[)é’pﬁ%, (2.24)
N -
V_(z.%,7) = L <ﬂ, ah(gv)>+p“ﬁﬂ Z;,(;\?, (2.25)

where h(Z) € H*' (PT,O(2)) and A(W) e H*' (PT*,0(2))
are representatives of cohomology class of homogeneity
degree 2 on twistor and dual twistor space, respectively. Just
asinthe SYM case, we use the supersymmetric version of the
Penrose transform to obtain momentum eigenstates on
spacetime [38]. The correlation functions of these vertex
operators correctly produce the entire tree-level S-matrix of
Einstein supergravity. Besides the Z — }V OPE in (2.23) we
just introduced, an additional p —p OPE needs to be
accounted for in such computations:

6‘11 \/ dUide

Gi_aj

p'(6:)ps(0;) ~ (2.26)

C. Vertex operators in conformal primary basis

Now as we mentioned before, the vertex operators of our
worldsheet theory can be written in any basis; however, to
make contact with the existing literature in the celestial
holography community, we shall adopt the conformal
primary basis here.

We shall start with the gluon wave functions here [22]:

ds dr - ) o
a(Z) — / jﬂ52(2 _ sl(o))el.vls[}t(lf)z]+l.v\/;)(,\(6)r[A’
xR, S I

(2.27)

ds dr - T
a(W) = /C - ?Stﬂaz(ez—s/l(a))elsz<u<rr>z>+mﬁw<am,

(2.28)

where z, = (1,z) and Z, = (1,Z) as we have in the
kinematics section. The holomorphic delta functions or
the scattering equations are defined as follows [42,43]:

5 (2 — s2(0)) =<2ﬂ11)2 A a(z—sl/l(a)) (2.29)

a=0,1

One could check that it indeed acts as a delta function
enforcing the content inside its brackets to vanish. Notice
that the position of ¢ in the negative helicity wave function

is slightly different compared to the one used in [25].
Instead of placing it on the exponential, it sits in front
of z. Rigorously speaking, this would contribute an over-
all sign factor in front when fermions are involved in
the calculation. Since [25] only considered bosonic par-
ticles, this was not an issue there. However, for the
supersymmetric theories we consider, it is important to
place the orientation parameter ¢ in front of Z at all times.

As the expansion suggested by Eq. (2.5), to extract
individual vertex operators from the gluon wave functions
(2.27) and (2.28), we take derivatives with respect to # or 7

from the factors V7' (@0a or isVial@T' in the vertex
operators to obtain the desired number of # or 7,

ui,A(Z’Z”?A) = Oi.A(Z’ Z,h) + nAFi,A,A (z,2)

1 -
+ 50 Of 45(2.2), (2.30)
U \(2.2.714) = O y(2.2.h) + i1a T2 (2.2)
1~ ~ -
+ 57l ®3 " (2.2). (2.31)

2

We indeed see that all particles have the same conformal
weight since the Grassman variables have weight 0.
Because of the designated helicities of # and # being
:I:%, our particles also have the right helicity. However,
we notice that, unlike usual SUSY expansions, negative
helicity particles cannot be generated from the positive
helicity multiplet nor vice versa. This suggests that the
SU(4) R-symmetry is not manifest in ambitwistor space
PA, but it splits between twistor and dual twistor space,
reflecting the ambidextrous nature of our theory. Here we
summarize the particle content in ' = 4 SYM,

Particle o? 3 Dis
Helicity +1 +1 0

from the positive helicity supermultiplet (2.27), and

a,A q)a.AB

=

Particle 02
Helicity -1

0

B—

from the negative helicity supermultiplet (2.28). The first
particles we extract are the spin 1 gluons of both +
helicities:

. _ . ds dr -
00 = o) [T B sio)

x exp(iets[u(0)z]), (2.32)
0%%(z,2) = L J3(o) / " %%52(82—&(0))
x exp(its(fi(0)z)). (2.33)
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where we read off the term with zeroth power in # from
both positive and negative helicity multiplets and set
n =1 =20. Note that this is exactly the same vertex
operator we used in [25] to compute bosonic OPEs.
Similarly, if we extract the operators with first order in 7
or 77 and set 7 = 77 = 0, we have the spin % gluinos:

Fi,gA,A(Z’Z) :/z

xexp(iets|p(0)z]),
= [P [ SR er-slo)is7 (@)

x exp(its(fi(6)z)).

L B8 5 (2= 52(0)) (isza(0))

xR, St2

(2.34)

(2.35)

Notice that the power of ¢ differs from the gluon, this
reflects the helicity of the particle we are writing down, and
the Mellin conformal scaling dimension varies as the
helicity of the particle varies. This is taken care of by
the /7 factor on the exponential.

It is worth noting that the homogeneities of the corre-
sponding vertex operators are not the same, since factors of
s were brought down through differentiation. For example,
the positive helicity gluinos here are of homogeneity —1 on
twistor space and the negative helicity ones are of homo-
geneity —1 on dual twistor space.

The last particle in the N’ =4 SYM spectrum is the
scalar, which just amounts to taking the term with second
order in 5 or # and setting n =71 = 0,

(z2)= [ /ﬁﬂszz $4(0))

< (=s’xa(0)xp(0)) expietslu(o)z]).  (2.36)
0 (z2)= [ o /ﬁﬂaz ez—s1(0))
x (=5’ (0)7" (o)) exp(its(fi(0)z)). (2.37)

Notice that there are two different representations of the
scalar originating from either the positive or the negative
helicity gluon wave function. This precisely reflects the fact
that we are in ambitwistor space, where we have chosen to
break the manifest SU(4) symmetry of A’ =4 SYM into
SU(2) x SU(2). Hence the two representations each takes
half of the scalars. Equations (2.36) and (2.37) are related
by SU(4) transformation, which is not manifest in ambit-
wistor space. Later in the computations, we shall observe
that to obtain vertex operators with correct homogeneity,
one is forced to stay ambidextrous and use both of these
representations of the scalar when needed.

Next we write down vertex operators for particles in the
N = 8 supergravity multiplet. First, the wave functions
h(Z) and k(W) in (2.24) and (2.25) in the conformal
primary basis can be written as

ds dt
h(Z) :/ _§_52< /1) iets[p(c)Z]+isV/ixa (o)
C*xR, r

N

(2.38)

A ds dr - = 7 1\ is
h(W):/@xR O s 362 = sA(o)) B e

(2.39)

The power of s differs from the gluon multiplet as the
cohomological homogeneity degree of the graviton wave
function is 2 instead of 0. Notice that the position of € in the
negative helicity wave function also differs from that in
[25] for reasons we explained in the gluon case. Following
similar expansions as the SYM case, we have from the
positive helicity graviton supermultiplet (2.38):

Particle g ®A VAB EABC

Helicity +2 +3 +1 +1 0

I]ABCD

and from the negative helicity graviton supermultiplet
(2.39):

Particle g ot VAB EABC ABCP

Helicity ~— -2 -3 -1 -1 0

After substituting 2(Z) and 2(W) in (2.24) and (2.25),
extracting the terms with zeroth power in # or 7, and
setting n = i = 0, the spin 2 gravitons can be presented as
follows:

Laed) e [ G s ) - estlplo)plo)2)
x 8%(z — sA(o)) exp(iets[u(c)z]),
0: s(2.7) = [ 5 (4(0)2) = s1(p(0)2) p(0)2)

x & (ez — sA(0)) exp(its (fi(0)z)).

To go one step down the supermultiplets, we extract the
vertex operator with one power of 5 or 7] describing the spin
43 5 gravitinos, after setting n =7 =0,

(2.40)

(2.41)

O aa(2.2)
— e [ G 0] - estlp@)2)p(0)2) isea(o)
x 8%(z — sA(o)) exp(iets[u(c)z]), (2.42)
@i‘j‘A(Z, Z)
B /ds dr . ) L,
= | @iz (id()z) = s1(p(0)z)(p(0)2))(is7" (o))
x 82 (ez — sA(0)) exp(its{ji(c)z)). (2.43)

Similarly we could obtain the spin 1 gauge bosons
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Vi A AB(Z Z)

= [ st o P (- 2a (o)

x 6%(z—sA(c))exp(iets[u(c)z]), (2.44)
VSAB(Z Z)
ds dr . . YA/ \~B
—/ 28 1{A(0)2) =51(p(0)2) {p(0)2)) (=577 (0)7" (o))
x6*(ez2—sA(0))exp(its{ji(0)z)). (2.45)

and the spin § gauginos

SN ABC(Z Z)

:g/ds dr (i[A(0)z] —est[p(0)Z][p(0)Z])

§2 pA
(0))8° (2= sA(o)) exp(iets[u(o)z]),
(2.46)

x (—is*ya(o)xs(o)xc

:e ABC(Z Z)

_ / B (i(4(0)2) - st(3(0)2) p(0)2))

s 48
X (=is’7*(0)7"(0)7 (0))8 (e2 = sA(0) ) exp(its ((0)z)),
(2.47)

as well as the scalars

3 4pep(2:2)

—e [ 25 ) - estllo)plo)2)
x (sl e()) (2 = 51(6)
z

x exp(iets[u(o)Z]),

. ABCD
I

(2.48)

2,2)

x (s*74(0)7"(0)7(0)7"(0))5" (62 = 54(0))

x exp(its(fi(6)z)). (2.49)

Note that just as in SYM, we obtain two representations of
the gravity scalar from two origins. For the same reason as
in SYM, the SU(8) symmetry is manifestly broken into
SU(4) x SU(4) in ambitwistor space; hence (2.48) and
(2.49) each represents half of the gravity scalars.

In the following two sections, we demonstrate the
methodology of computing OPEs involving the gluinos,
the gravitinos, and their bosonic superpartners in different
helicity and orientation configurations. Since all other

OPE:s follow similar procedures, we simply list the results
in the Appendix.

III. LIKE HELICITY OPEs
A. Gluino-gluino OPE

Here we spell out the calculation explicitly for the like
helicity gluino-gluino OPE. The majority of the steps here
will follow through from the like helicity gluon-gluon
computation in [25], apart from the subtlety of the addi-
tional y — 7 fermionic OPE,

b.e; _
T2 (2 2T % 5(202))

/ 4o, L ) dsi dsy diy
I, xZ;x(C)* xR 7

X (isi)(A(Gi))(isj)(B<6j))52(Zi - 5'3(6'))32(@ - Sjﬂ(ﬁj))
x exp(ie;t;s;[u(0,)Z;] +iejt;s;[u(o;)z)]), 1

where we have already performed the j — j OPE given by
(2.22). The immediate feature of this OPE one could observe
is that in the limit 6; — 6; = 6;; — 0, the two delta functions
simultaneously enforce (z;z;) = z; —z; — 0. This simply
notes the fact that the collision of two vertex operator
insertions on the ambitwistor string worldsheet coincides
with the collision of insertion points on the celestial sphere.
With this understanding in place, we could begin manipu-
lating the expression to see the desired OPE appearing. In the
following we simply do some of the integrals here to make
the resulting vertex operator more manifest.

The first thing we need to do here is to perform the s;
integral against the first delta function. This sets s; =
(é2;)/(EA(0;)) for arbitrary reference spinor &, # z,,. For

simplicity we set &, =1, = (0,1), for which (iz;) = 1.
This gives us
a&‘t b,é‘j —
A, alzinZ i)F+.Aj,B(Zj’Zj)
f205%(e))  dry d
~ [ao =y i o)
j
X (=xa(01)x(0;))0° (2} = 5;4(0;))
- u(e)z] -
X exXp <1£,~t,~ (o) +ie;t;s;[u(0;)z;] ). (3.2)

Notice that the number of y remaining and the color current
j2(o;) already indicate that what we end up with on the
right-hand side should be the scalar in the gluon multiplet
®3,. The following computation will reveal whether the
homogeneity of the resulting expression matches that of a
scalar. Now we could use the definition of the holomorphic
delta function to integrate by parts to trade 5({z;4(s;))) with
the o;; pole, obtaining
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& _ b _
ri,gAi,A (i, Zi)r+2j,3(zjv Zj)

ic(c:) _ ; di;
. rabc d,J(GJ) Slo:)d ﬂ
! / 7 (zid(o})) (2)ds; z%_Ai t%._Aj
J

1

)
X (=xaloi)xs(o; ))(_52(1,/‘ - s5;A(0;))

X exp (ieiri["l ";)42"] + igjtjsjw(aj)zj]) (3.3)

Then we perform the o, integral with respect to the delta
function &(s;;) to get

£ _ b.e; _
Fi.Ai,A (zi. Zi)r+,Aj,B(Zj’ %)
Nfabc/ ]C(O'j) ds . dti dt
2]»><C*><[R%r <Zi/1(6j)> ! t% A t%._A/
x (—2a(0;)xp(0;))8 (2 = 5,4(0)))

[p(o;)zi]

xexp(ie, e ; lgjtjsj[ﬂ(a,-)z,-]). (3.4)

The remaining delta function enforces the following
relations:

(14(0})) B (125) 1 1 s;

(zdo)))  (zz) =z -

to obtain our pole IEIEm) Substitute these in our

zfl( D z,,
expression, which reads
|

b.e; _
FiSA A(ZI’Z )FJij,B(Zj’ Zj)

abc dr, dt;

~ /Jc(gj)dsjsjqfi(_)(A("j))(B(Gj))
%ij o
x 8%(zj = 5;4(0))) explieit;s (o))

lets,U4( J) ])

Note that the scalar @4, in the integral expression requires
ds;s; to have homogeneity —2, which in our expression is
given by the identities we just used.

To proceed from here, one needs to combine the expo-
nential terms. To do this, we notice that the first term in the
exponential requires an additional 7; factor to match the
content of the second term; hence we rescale #; — 1;1; to get

(3.6)

. b i}
Fi’Zi.A(zi, Zi)FJij.B(Zj’ Zj)
abe dy; dr
~ /Jc(f’j)dsjsjﬁm(—)(A(Uj))(B(Gj))
“ij Y '
x 0%(z; — s;A(0;)) explie;;t;s[u(0;)z]
—+ 1£Jt]s][;4(6])zj])

From here, some algebra on the exponential leads us to
it;s;(eitilu(o;)zi] + €jlu(e;)z;])
. & &l - -
:lsjtj 1+—'ti 1+ﬁt‘[/l(6j)zij]+8j[ﬂ(0'j)zj'] ,
gt

(3.7)

€j

where Z;j4 = Zjg — Zjoa- Now we need to get rid of the
dependence of #; on the exponential, which could be
achieved by rescaling 7; = #;|1 4 21,],

N 7

A3
det;" 2 dr;

a.e; — \ P - fabc
A Zi)r+,A‘,-‘B(Zj’ zj) ~ z

ij

J(o;)ds;s M +ézt|A+A 1;2 AJA (=xa(0))xn(0))5(z; = 5,4(0)))

(3.9)

. gty _ _
senp 1821 (o) + sentes + el )|

where sgn denotes the sign function. We notice that all ¢; dependence on the exponential is now bundled together with a
factor of z;;, which vanishes in the OPE limit. To make the form of the integral more transparent, we rearrange to get

fabc ‘
)~ Zij [Ra+|1+€lt|AJrA 1/ /*X[R+ jt A+A 1)( sixa(0)))(is;x5(0;))0% (zj=5;4(0;))

Y A(zi,ZJFiZ (2%
X EXp [itjs] <|1 +élt |[/4( )zl +sgn(e;+€t; )DI(GJ)Z]])] (3.10)

Now we just Taylor expand in the first term on the exponential to get
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abc 1

A =3
dr;t;" ?

b.e; _
T az Zi)r+z,-,3(zj’zj) ~
Zij m=0

Jren L5

x explit;

It is now evident that the last three integrals give us a scalar

c.sgn(ej+e;t;)

vertex operator ®, 7\ 7\ 45 at (z;,Z;). All together, we
i j »

have a master formula including all SL(2, R) descendants
of the OPE with an arbitrary orientation configuration,

a.e; b, _
F+€A A(Zl’ Zi)F‘F.AI,B(Zj’ Zj)
[ 1 dg;r

17
~ o T [AtA T
ml Jo, [T+ 2 A8

Zij =0
% (E‘iZ[j) am
€j

To see the Beta function coefficients as appearing in the
literature, first we recall two different integral representa-
tions of the Euler Beta function:

ngn(e+et)( ' Z)
/’ J

A+A-—l AB (312)

s;sgn(e; + Sili)[ﬂ(ﬂj)zjﬂ-

—+m —
Z_ ili EiZij \"
m! R, ‘1 4 ﬁ,ti|Ai+Aj_l+m £

AJA__1> (isj24(0))) (is,25(0)))3(2; = 5,2(0))

(3.11)

B(X,y):Aoo(l_l:ﬁdtzlltx_l(l—l)y_ldl. (313)

Now we start with the case when both gluinos are
incoming or outgoing, namely ¢; =¢; = ¢, and the ;
integral immediately gives

s 5 \TP 5
Fi,EA,-.A (zi, Zi)r-&-:gA‘/-.B(Zj’ zj)
fie & 7k 1 1
ZUB(A, -~ A ——
Zij r;)m' im 27772

Am AR CE -
X 07 q)A,-+A,—1,AB(Zj’ Zj)-

~

(3.14)

We see that when m = 0, our coefficient just gives the Beta
function in the literature [13].

Now for the mixed incoming/outgoing case ¢; = —¢; = €.
We will need to use the alternative expression of the Beta
function to split the integral into

bc o A;+m—
fa C L 1 dtt 2 (_?“)mamq)c,—s (Z' E)
Zij m:Om! 0 (1 _ti)A itA+m—1 1 J T AAHA=LAB\C ) <)
s . . Aj+m—
fabc (_I)A,+AJ 0 dl t 3 B I . .
+ Zi0 z m! (1= ) AT (Zu)ma"q"i +A; —148(2:Zj), (3.15)
I m=0 :
where the first integral just straightforwardly gives
fabc ® 1 1 N
Zii ZﬁB<A" o _5’2 —Ai—4;- m)( Ziy)" 07 @Y Fa-1.48(25:Z5)- (3.16)
U om=0""
For the second integral, we just need to reparametrize ¢; > ,l which gives
3
0 & (—1>A'“’/1 it e ]
mgm e L7
Zi5 mzo m! o (1 _t)A A i (2;)"0] A;+A,—1,AB(ZJ Zj)
_fabc o) (Z 1 _ . )
Z U Bl A - 572 —Ai—Aj-m a;'nq)z,:»Aj—l,AB(Zj’Zj)’ (3.17)

where (—1)2i+4; flips the orientation of the gluino and gives an overall minus sign.
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Combine everything to get
a, — \yb,— _
5,40 Zi)r+,Ai,B(Zj, z;)

_fabc ® (7 ym _ 1
~f—z(z’1) am[B<Aj——,2—A,-—A,-—m)
= m! 2 '

Zij

X (I)%ingAj—l,AB(Zj’zj)

1
—(—1)"1B<A,.+m—§,2—A,.—Aj—m>

X q)cA,[_-:A‘/-—l,AB(Zj’ Zj)} . (3.18)

Here we see that the mixed orientation OPE coefficients are
also contained in the master formula. From now on we shall
just write down master formulas containing both orienta-
tion configurations and all SL(2, R) descendants for all the
other cases, leaving the reader to work out the individual
Beta functions.

Now that we have an explicit procedure to compute the
like helicity gluino-gluino OPE, we could use this to do other
OPEs with a slight change in coefficients, for example, the
like helicity gluon-gluino OPE 0% A (202 ')F&Z,. NEIRNDE

& D.g; _
Oa (Zl’ i)r+,Aj,A (Zj’ Zj)
N/dg faijC(Uj) dsi de dti dt]

Here we shall give the master formula directly after manipu-
lating the integrals following the same procedure as the
gluino-gluino case

dl‘,- tiA,-—2+m

+ §ti|Ai+A,—%+m
j

Eizij " my-C-sgn(e;+€;1;) _
x < ) 0 F+A+A 4(2.2))

(3.20)

where one could check the coefficients against the literature

[12,13] for the m = 0, &; = ¢; = € case.

B. Gravitino-gravitino OPE

Next up we consider the like helicity gravitino-gravitino
OPE, where the difference compared with the gluino-
gluino case is that we no longer have the worldsheet
current OPE. Instead, we have Z — W OPEs and p —p
OPEs given by (2.23) and (2.26). More specifically, we
only use the bosonic part of the Z — W OPE,

- 52\ / dGide .

i S;i St 2 .ud(ai) (G) = (321)
J ) J . BT o, — Gj
x 8% (z; = 5iA(0:))8 (2 = s4(0)))
x exp(ie;t;si[u(o:)Z] + ie;t;s;lu(o;)Z;]) (3-19) First, write down the OPE in integral form:
|
& _ £; _ ds; ds dt; d[ .
®+I.A,.,A(Zi7Zi>®+.Aj,B(Zj’Zj) Neigj/ 2 _2] A A daz(131)(A(Uz))<15j)(3(0j)>
MR
x (i[A(01)zi] = essitilp(0:)zi]p(01)2]) (i[A(0))z)] = €55,1;lp(0))Z,1[p(0)Z,])
x 0%(z; — 5;4(0,))0%(z; — 5;4(0;)) explie;ts;[u(o,)Z] + ie;t;s,[u(0;)Z)]). (3.22)
Now we take all possible Wick contractions to get a slightly more involved expression:
¢ - dt; ds; ds;
®+I,A,-.A<Zi7zi)®+A 5(2:2)) / / .—m 2j i
I XE; [2 A Sl t J Sj
x 8 (zi = siﬂ(al))52( — 5;A(0;))elstselnlo)i i oN sl sy 4 (07) (is p(o)))
72 72 7.2.1[A(c:)z;: 7216z,
(glgjtlt3s iy [Zzzzj] 518]t1t3s 5 [lezj] _ isititz»si [lej][ (Jz)zl] _ l€jl2-Sj [ZJZIH (GJ)ZJ]
J Uij J Gij Gij J Gji
+€l [121‘7 12 [Z iZ; }LD(G,’)Z,‘HP(O'OZ[] + 8?[?5? [Zsz][p(GJ)Zj}LD 61) ] + Sjé‘ill 5.8
Gij O-ij
y z:2;1[p(01)zZi][p(0))Z;] +ejetitisis; [Z/zz][ﬁ(ﬁj)zj“ﬂ(ai)zz]) (3.23)
aij Gjl'
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where we have rescaled #; — #;¢;. One notices that double The master formula in this case reads
poles appeared but nicely cancel out leaving only simple
poles in the OPE, which is rather miraculous in its own

right since there were no extra constraints required; the XN A(@-,Z,-)@i A/_’B(zj,zj)
structure of the ambitwistor string vertex operators dictate ' Atim
the simple pole. €i€Zij o | drr;"*
Since the structures of the holomorphic functions are Zij Om! R, il +§[i|Af+Aj-1+m
exactly the same as in the gluino-gluino case, the expres- ’
sion still localizes on z;; = 0 or 6;; = 0 on the ambitwistor % (filij> " n sgn(e;+e;l;) (2.7 (3.24)
string worldsheet. The roadmap for computing these €; A ABRE S

integrals follows directly from the gluino-gluino case.

Hence we perform the s; integral first against the first

holomorphic delta function, integrate by parts to extract ~ One could check against the literature for the case with
residue at o;; = 0, and then use the identities enforced by =~ m =0,&; = ¢;, where they match up to R-symmetry
the remaining delta function to write the pole in a desired ~ and the spin 1 graviphoton V, which the authors of [13]
form. Since we have already rescaled f; — t;t;, we just  consider to be the N =1 case.

Following very similar steps, one could go up the ladder

need to rescale #; —> — and expand around Z;; to obtain . : i
“* ol in one of the supersymmetric multiplets and compute the
the entire SL(2, R) tower of all orientation configurations. like helicity graviton-gravitino OPE
|
, ds;ds; df; di;
€ = £ = j
Gy a2 20)07 5 a2, 2)) ~ gigj/ 2 2 2 1A vd
i Si L

x (isxa(0))([A(0:)z] — ei5:1ip(0:)Z:[P(0:)2:)) ([A(0)Z;] — €5551,1p(0)Z,][p(0;)Z,])
x 6%(z; — s,»ﬂ(a,-))Sz(zj s;A(0;)) exp(ie;t;s;[u(0;)Z;] +ie;t;5,[u(0;)z;]).- (3.25)

Here we just give the master formula after evaluating the integrals

- o) A, —2+m =
) _ ) _ &;€;Z;; 1 de;t;’ €iZij \ M=, ~sen(e;+eit;) _
G 5 (20 2)O § 4(z7;.7) ~ 1Y T — l L) or@ T (2:,7)). (3.26)
AN\ L) A AN L ; HA 3 +AFAA N2
, S Zij A e L+ S| ArAmm ey ) '
J

C. Gravitino-gluino OPE

In this subsection, we consider the mixing OPEs between super Yang-Mills and Einstein supergravity. First, write down
the gravitino-gluino OPE

£ _ aE; _ dS dS dt dl . .
O (a0 20T ol 2 ~ e [ ST (o) isa(o)isitaler)

e Sj tz t2

x (i[A(0,)zi] — €i5itilp(0:)Zi] [P(0:)2:]) 0% (z; — 5,4(0:))8* (2} — s,4(0;))
 expliests (o)) + iestys, o)), (327)

Once again, just as the two previous cases, there is no mixing between the two holomorphic delta functions, which suggests
that the methodology for this should not differ too much from the other like helicity cases. However, we notice that the OPE
we need to consider here is slightly different. The only possible contraction comes from i[l(o-,-)zl-] and the exponential
eteitsile)z] | which just gives us

dS[de dt[ dtj Ja(Uj)

1 3
S; §; a8 574
P S Ee

X (isj)(B(Gj))Sz(Zi - Sifl(ﬂi))52(1j —Sjl(dj))exp(igifisi[ﬂ(ﬁi)zi} +igjtjsj[/‘(6j)zj])7 (3.28)

. _ a.e; _ . .
G):i,A[,A(Zi’zi)r—o—Z,-,B(Zj’Zj)NlZij/ (isixa(o))

Gij
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where Z;; := [Z;Z;]. We notice that the simple pole emerged
in front of the expression, which allows us to integrate by
parts to obtain &(c;;) just as before. Here we simply follow
exactly the same steps as in Sec. III A to obtain the final
expression containing all SL(2,R) descendants:

. _ a,€; -
®i,A,~,A(Zi’ Zi)r+,i,,3(zj’ )
i 2+m

slejzlj dtt '
St it

Zij m=0

€iZij \" 5y csenleten) -
X < e ) RN (zj:2)-

(3.29)

Similarly, we could go back up the SUSY hierarchy in
either multiplet and compute the graviton-gluino OPE and
the gravitino-gluon OPE, namely G/ A (@i, zi)l“i’z/qA(zj, Zj)
and ©F , A(z,,z)O+A (zj.Z;). Here we just give their
corresponding master formulas

. e .
gi,A[ (Zi’ Zi>F+TA.’Y,A (Zj, Zj)
dg,

=
8i€jZijZ 1 / il;

.. | i i
Zj o™ IR |1 5l

gizii m_m a.sgn(e;+e;t;) _
X<_ T ada (222)),

€j

1
jtm

(3.30)

) _ ae: ~
®i,A,.A (Zh ZI)OJrzj (Zj, Zj)

_ Aj—3+m
N&'i&'jzijii/ dtiti 2

. | & ;
Zij =™ R+|1+g i

8,’2,']' m_m a.sgn(e;+;1;) _
X<— W araa (252))-

€j

j=5tm
(3.31)

One can check against the literature [13] for the case
m=0,¢=¢ it

We note here that since the highest possible number of
supersymmetry one could have in Einstein-Yang-Mills
theories in 4D is 4, we would only be able to compute
OPEs between any particle from the gluon multiplet and the
graviton, the gravitino, and the vector in the graviton
supermultiplet. Indeed, if one attempts to compute, for
example, the OPE between a gluon and the scalar in the
graviton multiplet, the homogeneity mismatches with the
number of supersymmetry in the resulting vertex operator.

IV. MIXED HELICITY OPEs

In all the like helicity computations, we demonstrated
how to extract a single vertex operator out of the integrals
and obtain the desired Euler Beta functions by rescaling
certain parameters. One would naively expect a similar
procedure to work for the mixed helicity OPEs. However, it

turns out that the most fundamental observation we made
for the like helicity OPEs does not hold anymore, namely
the holomorphic delta functions enforcing worldsheet
OPEs and celestial OPEs to coincide. The new scattering
equations here complexify dramatically, which quickly
hinders the steps we developed for the like helicity cases.
This is because the new scattering equations now localize
the computation in a region in the moduli space where the
vertex operators are ill-defined. Hence we would perform
certain reparametrization on the affine coordinates s; and s;
to move to an appropriate patch in the moduli space, where
the majority of the steps we developed for the like helicity
cases would follow through.

The majority of the calculations in this section follow
directly from the mixed helicity section of [25], with an
additional subtlety in the fermionic y — 7 OPE. Moreover,
we notice that in the negative helicity operators we
introduced in Sec. IIC, the positions of the orientation
parameter ¢ differ from the ones in [25]. To avoid the sign
ambiguity that could occur, we adopt the more rigorous
positioning of &, which makes a slight adaptation to the
pure bosonic calculations.

A. Gluino-gluino OPE
The key difference between mixed helicity OPEs and the
like helicity ones is the structure of the holomorphic delta
functions. Here we zoom in on the general structure of all
mixed helicity OPEs:

52(z; — s:A(0y))eieisiboDaI5 (g7 — 5,30, )it Hlana)

(4.1)

The first thing we notice is that, due to the Z — )V OPE
(2.23), one could have contractions between A(c;) in the
first delta function and ji(c;) on the exponential. Similarly
there could be contractions between A(c;) and u(c;). To
compute such OPEs, we half-Fourier transform the hol-
omorphic delta functions,

d?m . .
silo)) = | et

em
52 _ /1 = 1gj[mz/-]—1sj[m/1((rj)],
(e2; - s,i(c;)) = /@(zﬂ)ze

52(21‘ -
(4.2)

and use the following rule from Polchinski [44]:

eigitis[[”(af)zi]e_is_/'[rﬁz(af)]

t; -

~exp ( ﬂ[mz ]) ie;1;5:[u(0;)z ]e_lsj[n”L ‘7])] (43)
U

where :(---): indicates normal ordering.
After properly attending the OPEs above, one could
write the mixed helicity gluino-gluino OPE as follows:
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b B,
I3z z)T ,Zj (z.2))

B rabc ;c
dt; dt;
N—/dai f 2 (6) J

ds d
62 tz—Ai t%_Aj

ij
5 1;8;8;2;\ < _ ~ &:1:8:8:7:
x &2 (zi —s;A(0;) —%> 52 (gjzj —5;4(c)) +M>

ij
xexp(ie;t;s;[u(o:)z] +it;s;(i(e;)z;)),
where we have performed the y,(6;)7%(c;) OPE sitting in

front of the expression according to the fermionic part of
the Z — W OPE (2.23):

5ABw/dO'l'dO'j

Ui_aj

xalo) (O'j) ~ (4.5)

At first sight this expression seems hopeless as we have a
double pole 62; - appearing. However, as we mentioned earlier,
this expressmn is ill-defined on the current affine coordinate
patch, and it requires certain appropriately chosen rescaling to
appear regular. Apart from the double pole, we also observe
that the third term in each delta function becomes singular
when 6;; — 0, unless either s; or s; goes to 0 at the same rate.

Now that we have identified the standing difficulties with
the current parametrization of the expression, we notice that
a viable rescaling could be either s; > s5;0;; or 5; > 5;0;;.
These two rescalings will correspond to the holomorphic
and antiholomorphic limits on the celestial sphere, respec-
tively, as we mentioned in Sec. I A. Also notice that either
of these rescalings would bring an overall factor of o;;,
which reduces the power of the o;; pole to 1. Hence we
solved both problems 51mu1taneously using these rescal-
ings. Without loss of generality, we shall begin with the

holomorphic rescaling s; > s;6;;,

=b.e;.B _
Fisi A(Z,,Z,)F ,Zj (Zj,Zj)

Bfabc C(G) ti dt
N—/doi dsidsj s
Gij tz [2
x 8% (z;—5,01A(0;) —1;5,5;2;)0%(€;2,—5,(0}) +€i;5;5,Z;)

xexpl(ie;t;s;0,;[u(0,)Z;] +it;s;(i(0;)z;)). (4.6)

Following the roadmap described in the like helicity cases,
first we shall perform the s; integral using the first delta
function and get

£ =b.e;.B _
FiA A(Z,,Z,)F_’AJ_ (Zj’zj)
B rabc ;c

; de; dt;

N—/dGiAf ](U])dsj3t3j

Gij g
x8(0i(zid(07)) +1;5(2i2;))8 (62— 5,4(0;) + €157, Z:)
sioijlu(en)z] +it;s;(fi(e;)z))), (4.7)

x exp(ig;t;

where s7 = Now we rescale 7; — 1;7; and

1
0;;(tA(0;))+1;5;°
integrate by parts to extract residue at ¢;; = 0,

& _\=be B,
Fi,eA,-,A(Zi’ZOF—,EAIJ (z).2))
_/5ABfabCJC(GJ)dS dt dtj

3-A; —4;
Zij Sj 2N

x 8% (e;2;—s5;A(0;) + 1,2 exp(it;s; (i(o))z;)).  (4.8)
Notice that we did not need the identities enforced by the
remaining delta function as in the like helicity cases; the z;;
pole came out automatically. Another feature of the mixed
helicity configuration is that the holomorphic part of the
exponential was eliminated straight away, and instead the
complexity has been shifted to the holomorphic delta
function. Now notice that there is still dependence on ¢;
inside the remaining delta function, and to get rid of it, we
rewrite the delta function through some algebra,

£z — 5o )+stz,

J

Now we just need to rescale s; > s;(1 4 £ ¢;) to move all 7,
J

dependence inside the delta function to the z;; term which
we shall Taylor expand around 0. However, to ensure
our exponential to be invariant, we also need to rescale

t =

i + e After these two rescalings we have

=b,e:,B —
S WNCR) wi D)

A —3
N_(SABfabc/ dtl"z
z;j R+|1+€’I|A+

ds; d -
713 A, A52< J_sjl(gj)
J t]

x exp(isgn(e; + &;1;)t;

/ J(o))
ZixC* xRy

sigj[i _ >
+ Zij
Ej + giti
si(i(o))z;)). (4.10)

where we recognize the last three integrals represent a negative
helicity gluon vertex operator. In the end to get all the
SL(2, R) descendants to appear in our expression, we simply
need to Taylor expand the remaining delta function around
Z;; = Oto obtain the master formula in the mixed helicity case:

a.e; =b.e;.B -
F+A A(Zl’zi)r—,Ajj (Zjvzj)
A =3
8548120 &1 1 dri; "

N m! i g |AFA;
T —L R+|l+ t.tt| R

6',-8-2_-- csn/;«(»&t)
J= m g >
X | — O . ZiyZi).
(e‘j—l—eitl) AitA-1 (] j)

~

(4.11)
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Similarly, if we rescale s; — s;0;;, we would obtain a

positive helicity gluon in the end. Combining the holo-
morphic part and the antiholomorphic part we have

a,g; _ \&b.ei.B _
F+,A,.A<Zivzi>r_,Ajj (zj.2;)
A3
5ABfabc ® dtiti i—3t+m
Zij m! Jr, |1 +%ti|Af+Aj

m=0
e.7.. m
() por
6']' =+ 8iti : . 7
Ai—3+m
B rabc )
5451 1 dz;t; ( €j€iZji \"
E; . .
m! Jo, |1+ 2455 \e; + €515

(zj,Z;)

_|_

Zji m=0

C,sgn(e;+e;t; —
x OOy (et ’>(Zini),

(4.12)

which essentially flips holomorphicity and interchanges i
and j.
Using practically the same procedure, we could also
compute the mixed helicity gluon-gluino OPE:
|

L& _ \=bej A _
OifAi(zini)F_Zj (zj.2;)
N/da'fabcjc(ﬁj)dsidsj dr; dt;

l

oA
is; ;
Oij  Si Sj t?_Ait%._Af( A1)

J

_ 1:8;8:2;\ = _ ~
X 62 (z,- —s;A(0;) —M> &5 <sjzj —s;A(0})

Silisis'Z'
J&t
_|’_4
Uij (2

xexp(ie;t;s;[u(0;)Z;] +itjsj</~4("j)zj>)~ (4.13)

Note that in this case we could only rescale s; as rescaling

s; cancels the ¢;; pole and the OPE becomes nonsingular.

Here we write down the master formula obtained:

& _\=be A,
0%, @ 2)I2Y (27.7)
fabc © 1
m! Jr. |1 +§;i|—%+Ai+Aj
J

dtitiA,-—Zer

Zij m=0

SmiC.sgn(e;teit;),A

8‘8'2“ m
x [ /=LY ) g
gj+8iti

7 —A+A—L (zj.Z;).  (4.14)

One could check against the literature [12,13] for the

case m = 0,¢; = ¢;.

B. Gravitino-gravitino OPE

Now we compute the mixed helicity gravitino-gravitino OPE. After treating all the Z — )}V OPEs, we have the same

holomorphic delta functions as before:

e —\AEB _ dSidS' df,‘ dz; e _ 1~ _
®+I,Ai,A(Zi’Zi)®;,Aj(Zj7Zj> ~E; ?s—zj A, %_i_do'i(l[ (0:)Zi] — eisitilp(0:)Zi][p(0:)Zi])
i Cjt e
J

. s . . . % 1j8i8;%;

x (i(4(05)zj) = 5,t;p(0;)2j) (p(0))2))) (isixa(e:)) (is77(6)))0° | zi = sidloy) ==
ij

= _ ~ 8itisisjzi . _ . -

x 6% £;z; — s;M(0;) + ———— | exp(ie;t;s;[u(0;)Z;] +it;5;(fi(0;)z;))- (4.15)
ij

However, notice that when we perform the y —7 OPE
(isixa(o:))(is;7%(c;)), we will have a simple o;; pole,
following the strategy developed in Sec. IV A, and we need
to rescale either s; = s5;0;; or s; > 5;0;; to make the
holomorphic delta function appear normal as in the like
helicity cases again. However, to keep the simple pole in
front, we need to ensure that the rescaling does not change

the power of our pole. After combining all s; and s; in our

. . . ds,
expression, we see that the s integrals read fw)z@l

s;p8;°
which certainly does not affect the pole when rescaled.
From here we simply follow the computation in Sec. IV A,
which should give us the holomorphic part and the
antiholomorphic part at the same time when we choose

to rescale s; or s;.

The master formula we obtain for this can be written as

) .\ =e:.B ~
®i,A,-,A (Zi’ Zi>®g_j.Aj (Zj, Zj)
;—%-‘rm

. _ A
NleiéABZiji: 1 / dtiti
i ¢ |2+A;+A;
Z‘]‘ m:Om! R+|1+g_jti| /

i
% 81‘8}'2,‘]‘ ma’?’gsgn(ngrgili)(Z' : )
Ej + Eiti J 7= A+, ] %]

Aj=3+m
d;t; €€Zji \"
E; . .

m! Ju, [1+Z P08 e + g5t

: B
+18i5A Zji =1
m=0

<o GEN " (7). (4.16)
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Analogously, we could also compute the graviton-gravitino mixed helicity OPE:

N _\AEA B ds;ds; dt; dt; o R B
gi.A,.(Zi,Zi)@_,Aj(Zj’Zj) ~€i/—2—zjﬂTijd0i(1[/1(0i)Zi] —e5;tilp(0,)Z][p(0;)Z])

< , 8
eSSt

< 0y)2) =51 0,)2) ol )2 i )3 (2= s - L2222 )

€itisisjzi> eXp(iEil‘iSi[/l(O'i)Zi] + itjsj<ﬂ(0'j)2j>)- (4.17)

i
Notice that there is no longer any o;; pole generated by the y — 7 OPE. However, when we attempt to regularize the
holomorphic delta functions by rescaling s; — s;0;;, we see that the homogeneity of s; here generates a Gi pole for us for
y i
free. Note that one could only rescale s; here since rescaling s; would lead to us having a nonsingular OPE. Here we just
give the resulting master formula

. L =eA _
giA,. (2, Zi)®é_],A (2j,2;) ~

.z © A;—2+m =

1€;Z;; 1 dtili ! ( Ei€;Zjj )m_m ~sen(e;+eit;).A
; & 3 ) )

J zij o e |1 +;jfi|2+A’+A’

e tef, O ata " (2pZ)  (418)

One could check against the literature [13] for the case m = 0, ¢; = ¢; except for the R-symmetry factor.

C. Gravitino-gluino OPE

Now we have both mixed helicity OPEs for SYM and SUGRA, and just as in the like helicity section, we compute the
mixed helicity EYM OPEs. We begin with the gravitino-gluino mixed helicity OPE

£ — \a.€.B _ dSidS' dti dr; .
®¥,Ai.A(Zi7Zi)F_‘Aj (zj.%j) ~ & —2—] Y é_i_f"(o'j)do'i
S Sjg e
. .~ e — R = [.sl.s.z.
x (is;xa(0:))(is ;75 (0,))(i[A(0,)z:] — €;8itilp(0:)Z][P(07)Z,]) 6> (zi — s5;AM(0;) — %)
ij
o - 5 €i1;8;8,Z; . L ~
x 67| €;Z; — 5;A(0)) + ———— | exp(ie;t;s;[u(0;)Z] +it;5;(fi(0;)z;)). (4.19)
ij

Here we have the y — 7 OPE giving us a simple pole; however, we notice that we could only rescale s; here to maintain the
simple o;; pole. Hence one ends up with only the antiholomorphic part. To get the holomorphic part describing a positive

helicity gluon, we will need the opposite helicity configuration (:)‘3“2_ (zis Zl-)l"iz_ 5(2;,Z;). The master formula we obtain is
A A,

. B= 0 Ai—%Jrin —
. _ . -a.e.B _ —18,'5,4 Zjj 1 d[il‘- Ei€Z;j m_ a.sgn(e;+e¢;t;) _
0% 5 (e 220 (2 2)) ~ A Ty L i FrOBEE) (L 2y (420)
+. 0, AR L)L A K & € 4 [1+AFA; J T =A+A; ) ’

/ Zij mzom! R+‘1+?jti| +4; 8j+8i[i J

Now we could follow the same steps to compute two other OPEs, namely the graviton-gluino OPE and the gravitino-gluon
OPE. First, the graviton-gluino OPE

£ _ \aELA _ dsi de dli dt]
g+.A,' (Zi’ Zi)r—,A/j (Z]’ Zj) ~E T 2-A;, 3_A
S5 Sj ti tj' J

ja(aj)ddi

l

x (is,7(07)) (i[A(0:)21] - ersitilp(o;) 2 [P(0)7i])3° (zi ~ si(o) - ’G—Z)
€i1;8;S;Z;

x32<€ij—sj/~1(Gj)+ pu

) expliestysilu(y)2] + itys{(0,)2,)). (4.21)

ij

Observe that we could only rescale s; here as rescaling s; gives nonsingular OPE. The master formula can be written as
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v _aei A ie;Z; o 1 dp g2t €i€iZij "=, ~asen(e +eit;)
G a2 2 T2 (2 2) ~— 2 T — SN (2 7)), 422
+,Al( ) A ( J J) Zij m:Om! R, |1 +i_;ti|%+A,-+A, €+ &t N NEY <J J) ( )
with the gravitino-gluon OPE
X _ a.e; _ dst dt dt .
®i,A,-.A(Zi’Zi)O—,A]/(Zj’Zj) Nfi/S—gl . ti_At t2 A j2(6;)do;
i P
: 50 S N\ 1j8i8;%)
x (isiza(0:))([2(0))zi] = esitilp(0)z[p(0:)2)) 0% 2i = si(0)) = ===
ij
= _ = €;1;5;8;Z; . _ . -
X & 8ij — Sjl(dj) -+ T eXp(leitisi[/t(U,»)zi] + ltjsj<//l(6])zj>) (423)
ij
|
Notice that no matter whether we rescale s; or s;, the  First, take two scalars originated from the positive helicity

expression refuses to give us any o;; pole. This means that
the OPE between a gravitino and a gluon is always regular,
which agrees with the statement in the literature [13]. This
comes from the fact that there is no Lorentz invariant
3-vertex for such a configuration. This can also be checked
by BCFW methods in [9].

D. Scalar OPE

Here we address the discussion we had in Sec. II about
splitting our spectrum between twistor space and dual
twistor space. We mentioned that the only ambiguity is with
the scalars in AV =4 SYM and N = 8 SUGRA, where
half of the scalars originate from the positive helicity
multiplet and half from the negative one. We shall see
that both of the representations are needed to compute the
scalar-scalar OPEs. To keep things simple and illustrate our
point, we demonstrate the calculation for the gluon scalars.

abC ;C( . )
f205%ey) (ot

multiplet:

b.e; _
(DaAS'AB(ZnZi)q)A-glcz)(Zj’Zj)
f2)%(o)) ds;ds; dr; di;
~ [ do; -4, 1-4;
O-U S Sj tl tj J
X (_SZZA(Gi))(B<O'i>)(_S§ZC( o;)xp(o ))52(21 siA(0}))
x 8%(z; — s;A(0;)) exp(ie;t;s;[u(0;)Z;]) +ie;t;5;[u(0,)z;]).
(4.24)
From the number of fermionic indices on the right-hand
side, it is straightforward to deduce whether the resulting
vertex operator should carry 4R-symmetry indices with
homogeneity —4 on twistor space. However, there is no
such particle present in the spectrum. If one were to ignore

this and proceed with the computation naively as in
Sec. III A, one would end up with

dt;

b.e; _
q)iS‘AB(ZwZi)q)AjE,jCD(Zijj)N/ . IR
13 i

x exp(ie;;s;[u(o;)z:] +

tlA
J

ie;1;5;[u(0;)z)]),

(xale j))(B( ))(c( ))(D( ))Sz(zj—sjﬂ(dj))

(4.25)

where the resulting expression has homogeneity —2 on twistor space, which disagrees with the number of y it contains. As
the OPE between two scalars of negative helicity origin is very similar, we proceed to consider the remaining option,
namely the scalar-scalar OPE with opposite helicity origin:

, B f2cj%(c;)ds,ds; dr, dt;
¢a€: 2% q)b’f‘:./'CD 7:,7:) ~ J/ TR ! J
AAB( ) A, (2),2;) oi; Iy t}—A, tjl_—Aj
2 25C(~ \&D ) 1jSiS;Z;
X(_SiZA(Ui)){B(O'i))(_Sj)( (6;)7° ()0 Zi_sil(ai)_—an
1

_ €;1:5:S,Z;
<€jzj - 5;A(0;) + B

ij

)expaeirisi[u(o,-)ziwns<ﬂ< Da)). (426)
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First, the order of o;; pole we have after computing the
x — 7 OPEs is 3; however, notice that by rescaling s; >

5;0;; Or s; > 5;0;;, the pole becomes a—_ Proceed with

ij J ijs »
rescaling s; > s;0;;, and we see that after performing the s;
integral and integrating by parts

be,CD,_ -
DY p(2in 2@y (2):2))

/fabcjc(dj)E'ABCD de dti dtj

Zjj S; t.”

’) explit5; (;)23))-
(4.27)

where the s; integral provided us with the number of s;
needed to obtain homogeneity 0, which agrees perfectly with
the number of y remaining. Indeed, we see that a negative
helicity gluon vertex operator is a few steps away from the
expression on the right-hand side. If we were to proceed with
rescaling on s; instead of s;, a positive helicity gluon vertex
operator will appear on the right-hand side. The OPE for the
N = 8 scalar-scalar is very similar, and we summarize the
master formulas in Egs. (A5) and (A21) in the Appendix.

V. SUPERSYMMETRIC HOLOGRAPHIC
SYMMETRY

Following the steps in Sec. 5 in [25], one could obtain
the soft algebra of gluino-gluon, gravitino-graviton, grav-
iton-gluino, and gravitino-gluon by shifting and relabeling
the indices. We shall see that the algebras remain invariant
as the purely nonsupersymmetric cases, which agrees with
the recent discovery in the literature [15].

A. SYM soft symmetries

Since we have explicit representations of the vertex
operators of all particle content in our framework, to see
soft symmetries one just needs to take residues at certain
values of the conformal scaling dimension A and then
perform the OPE. For demonstration purposes, we start
with the like helicity gluon-gluino both outgoing scenario.
It turns out that the most convenient way of expressing our
vertex operator here is the integrated form of (2.27),

1A(c))A2
a9 =1 [ Ao U0

(F)Ar(A - )
lu(o)z]*

where the s-integral and the 7-integral have been performed.
The soft gluinos are defined to be the residues at half
integer values A = k + % where k € {0,-1,-2,...},

8((A(0)z))

| (5.1)

Li,k+%.A (z.2) =Resy_; 1% 1 4(2.2)

:;%«w*ﬁ@mwm*mww
wf TR Gl

x4(0).
(5.2)

Notice that the soft gluino vertex operator here is similar
compared to the soft gluon vertex operator; hence by

relabeling k = 3 — 2p and binomial expanding [u(6)z] =
w0 +zu! in Z,
B g

L(p—m—=Hr(p+m-1)

Lj—,%—Zp,A(Z’ 7) = , (5.3)

m=:

le

—p

where gb(6) = (u°)P*™=3 (! )?="=3, p runs from m3,2,
and

l\)lm

2 [ Po)sh(o)

Suia(2) = 27i f{<z,1(a)>21’-3</1(a)z>“(6)'

(5.4)

Here we also take the expression for soft gluons from [25],

q- sq—n— ISa CI( )
4
R? .
3242 ;qr T(q+n)° (5.5)
where
2q—-2 a ~q
29y =1 7{ / (‘2’)_93”(6) . (5.6)
i
with gl (0) = (u0)a+n=1(y1)a-n- "andgrunsfrom1,3,2, ...

Using techniques to compute like helicity gluino-gluino
OPEs in Sec. III A, we have for gluon-gluino

abc
f SC,])+(1—1 (Z])

. b,
Silp(zi)sn,z (Zj) ~ m+n,A (57)

ij

B. SUGRA soft symmetries

Next up we consider the like helicity outgoing-outgoing
graviton-gravitino soft OPE. To do this, first we write the
outgoing positive helicity gravitino vertex operator in the
following integrated form:

A(e))At
®+.A,A(Z,Z):i/<,1" —+p pﬁaﬂfzﬂﬂ>x (0)%
xS((g(G)mw (5.8)

[u(o)z]A

The soft gravitinos 7, 14(z,Z) are defined to be the
residues at half integer values A = k+%, where
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ke {1,0,—1,...}. Although this is not the conventional
way to label the indices, it is of importance during the
computation, and we shall see that we could unwind such
strange labeling toward the end of the calculation,

I a1a(2.2) = Resy 10, 4 4(2.2)

1 s 0 . 0
L f(r e P )
27 < ou” oo

N Lo e

(1 -k)!(4(0)z)

This is similar compared to the soft graviton vertex operator
excluding supersymmetry and weight in (). To expand
I+‘k+%’A(z,Z) in soft modes, we relabel k =4 —2p and

(5.9)

binomial expand [u(0)z] = 10+ zul in z,

p—

[N18)

Zp_m_%wgl,A (Z)

C(p—m=3)0(p+m=-3)

I+’%_2p’A(Z,Z) = , (510)

where ¢h (o) = (ﬂé)mm—%(ﬂi)l’—m—% just as in the SYM

case with p € {3,2.3, ...} and the soft modes w/ ,(z) are

defined as
i2r <. ogh(o) _. 0gh(c
wh o (z) = —]{ l“% +p"’pﬁ#
2xa(0)
X . 5.11
@) o)) S
Together with soft graviton modes from [25],
12q . a~g o 02~Z
Wi(e) = 2 ]f 7 91(0) g @ Glo)
27T1 a//[a aﬂaaﬂﬁ
1
(5.12)

X 9
(12(0))*(A(0)z)

where §(c) = (u0)7 1 (41)"1 and ¢ runs from

1, % ,2,.... We obtain the soft graviton-gravitino OPE

2<m(q - 1) —n(p _%)) p+q—2

WSLA (Zl'>W;]1(Zj) ~ Zi Wintn,A (Zj)’
ij
(5.13)
where we have used the fact that
. dgh, oG
{gh, 5} = e 2050
ou” o
3 p+q-2
=2{mlg=1)=n{p=5) )gmin - (5.14)

Because of the convention we have chosen, the index p
begins at % instead of 1. To make algebra look just as the usual
infinite dimensional symmetry algebra introduced in [14],
we simply relabel p by p + % The algebra we obtain is

2(m(qg—1) —n(p —
Z,’j

1)) p+q—2(z_>.

WZ.A (Z,’)WZ (Zj> ~ m+n,A

(5.15)

Notice that the soft expansion and binomial expansion we
consider here do not differ from the pure bosonic case, only
carrying an extra factor of y 4 (¢) which is not present in the
bosonic case. Hence the w algebra here is still the diffeo-
morphism of the u® plane. However, one could consider
doing the soft and binomial expansion on the entire super-
multiplet and then take the OPE, in which case the fermionic
coordinate y4(c) on twistor space will also need to be
expanded. Then we see that the algebra we obtain is a SUSY
extension of the diffeomorphism of the u% plane and the
diffeomorphism of the u% — y hypersurface.

It is straightforward to consider the supersymmetric soft
Einstein-Yang-Mills OPEs, namely graviton-gluino and
gluon-gravitino. To do this we simply take binomial expan-
sions of the corresponding soft particles and take their OPE.
We still consider the outgoing-outgoing like helicity con-
figuration. Here we just present the results, which stay
invariant as the purely bosonic soft gluon-graviton algebra,

Wh(a)Sta(z) ~ A=D1 D g

(5.16)

for the graviton-gluino and

_2Am(g=1) —n(p-1)) §PHI2( )

an.A (Zl)SZ(ZJ) Zi m-+n,A
Ly

(5.17)

for the gravitino-gluon.

C. Soft-hard OPE

So far we have seen hard-hard and soft-soft OPEs in
maximally supersymmetric theories, and it is worthwhile to
consider the action of a soft particle acting on a hard one.
One essentially just follows the steps in Sec. Vin [25]. Here
we simply state the results. A soft gluino acting on a hard
gluon yields

- b.e _
Li,k_%,A(Zii Zi)OJ’Z(ij Zj)

k=1 fabc 1-k _ _
~ T (29— 2k 4 1)
(1=K)! z; r[[l Y

x %€

J=sgn(J)/2.A+k=3.A (>2)), (5.18)
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where k € {1,0,—1, ...}, J = %1 denotes helicity of the
gluon, sgn(J) = =£1 is the sign of J, and & = (A —J)/2.

If the order is reversed, a soft gluon acting as a hard
gluino gives us

_ \b, _
Ri,k(ziv Zi)FJ,Z,A (Zj, Zj)
k—1 fabc 1-k

: I1 0

(1=K 2y

~

=20+ 151425 2)),

(5.19)

where now k € {1,0,-1,...},J =+ % denotes the helicity
of the gluino, and 7 = (A —J)/2.

For the gravitino-graviton soft-hard OPE, we have for a
soft gravitino acting on a hard graviton

Iy ia (2i:20)97.4(2). Z))
Kk = 1-k

—£ Z;
Ni(l_k)vzjll(z” ; —2h—1+7)
*Zij vl

X ©F

Tsen 2. k3 (8 2)- (5.20)

where k € {2, 1,0, ...}, J = £2 denotes the helicity of the
graviton, and 1 = (A —J)/2.

The OPE with the reversed order, namely a soft graviton
acting on a hard gravitino reads

H+,k(zi’ Zi)G?A A(Zj, Zj)

-1k
—gk Zij

(20, — 20 — 1 +
(l—k)'z,jr I

)95.A+k.A (Zj’ Zj)v

(5.21)
where k € {2,1,0,...}, J = i% now denotes the helicity
of the gravitino, and h = (A —J)/2.

Similarly, we could consider the action of a soft gravitino
on a hard gluon:

Iy gaa(zi z)O0%4(2. 2))

ek 3 1k
~ >y (Zi‘a'_zﬁ—l—f—r)
(l_k)!zijr:] )
x5z “senls 1)/2,A+k=4A (2j:2)), (5.22)

where k € {2,1,0, ...}, J = %1 denotes the helicity of the
gluon, and 7 = (A —J)/2.

The other super EYM OPE we could consider is a soft
graviton acting on a hard gluino:

H_ (2,205 24(2), Z))

= 1-k
—{:‘k Zij

(1 - k)'Z,/ 1

~

(Zu J ~2h—1+ r)r7:€A+k‘A(Zj’Zj)’

(5.23)

where k € {2,1,0, ...}, J = &1 denotes the helicity of the
gluino, and /1 = (A —J)/2.

One could also expand the product acting on the vertex
operators into a sum, where it essentially follows the
identity

»

Z;i0; —2h — 1+ r)Uy(z,. Z))

:l

1-k k+lk (2/714») l_lu(zz)
,Olv 1— —I)IT(2h + k + 1) 4O
(5.24)
k=1 1-k B _
(2ij0j = 2h + r)Ua(z;.Z))
<1_k)!r:1 77 J2 %]

1-k

( 1)k+l 1 kl (Zh) _l
= - AU, (2.
IZ“(l k=D TQh+k+1—1) 4% al2):2)),

(5.25)

where U/, denotes either a gluino or a gravitino. Substituting
these identities in our expressions, we see that they match
results from [9,10].

VI. CONCLUSION

The maximally supersymmetric ambitwistor string
worldsheet theory provides an explicit realization for the
putative celestial CFT on the celestial sphere for maximally
supersymmetric Yang-Mills, Einstein gravity, and Einstein-
Yang-Mills theories. In [25], the bosonic version has already
been worked out in detail. After adding supersymmetry to
the entire construction, the identification of the worldsheet
OPE limit and the momentum space collinear limit enforced
by the scattering equation is still valid. Beyond this, the
present paper demonstrated how homogeneity on twistor
space elegantly organizes the supermultiplets and automati-
cally implements physical constraints.

For future development, it would be interesting to further
explore the approach of using worldsheet theories to
compute celestial OPEs. At the moment, explorations in
the area of asymptotically flat holography has been focus-
ing on 4D. One could use the Ramond-Neveu-Schwarz
formalism (RNS) ambitwistor string which exists in an
arbitrary dimension to compute analogous OPEs, and it
would be interesting to see whether the flat holography
constructions are unique to 4D. Similarly, one could
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speculate how the infinite dimensional soft algebras will
change in higher dimensions.

Besides this, it would also be worthwhile to demonstrate
the effectiveness of the 4D ambitwistor string worldsheet
theory in calculating celestial OPEs by computing higher
order subleading OPEs. For this purpose, simple off-shell
OPE calculations would not be enough, and some infor-
mation about the helicity configuration of the correlator
would have to be invoked.
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APPENDIX: SUMMARY OF ALL OPEs

From here on we list all singular collinear OPEs comput-
able within our framework in the form of master equations.
The roadmap from the master equation to obtain the Euler
Beta functions for different orientation configurations is laid
out in Sec. III A. The literature on this [12,13] have focused
on the leading order and incoming-incoming or outgoing-
outgoing configuration where &; = ¢;. One could easily
extract the Euler Beta function coefficients from the follow-
ing master formulas and check against the existing ones in the
literature, where we see that they match up to R-symmetry
and scalars. For the rest of the OPEs, to the best of our
knowledge, we believe this is the first time they have been
written down, which we list here for future references.
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