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Motivated, on the one hand, by recent results on isochronous dynamical systems, and on the other, by
quantum gravity applications of complex metrics, we show that, if such an enlarged class of metrics is
considered, one can easily obtain periodic or bouncing complex solutions of Einstein’s equations. It is
found that, for any given solution gμν of the Einstein’s equations, by means of a complex periodic change of
time, one can construct infinitely many periodic or bouncing complex solutions ĝμν that are physically
indistinguishable from gμν over an arbitrarily long time interval. These results, which are based on the use
of complex diffeomorphisms, point out an unacceptable arbitrariness in the theory. As we will show, a
condition on the class of physically meaningful complex metrics proposed in [M. Kontsevich and G. B.
Segal, Q. J. Math. 72, 673 (2021)] and discussed in [E. Witten, arXiv:2111.06514] solves this problem,
restricting the family of admissible complex diffeomorphisms. We conclude by arguing that this condition
can be viewed as a quantum-gravity generalization of the equivalence principle to complex space-times.
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The study of isochronous dynamical systems (namely,
dynamical systems that admit only periodic solutions with
the same period) has taken a significant step forward when
it has been shown that, given a nonrelativistic autonomous
dynamical systemD, other autonomous dynamical systems
D̂ can be manufactured, featuring two additional arbitrary
positive parameters T and T̂ with T > T̂ having the
following two properties: (i) For the same variables of
the original dynamical systemD the new dynamical system
D̂ yields, over the time interval T̂, hence for an arbitrarily
long time, a dynamical evolution which mimics arbitrarily
closely that yielded by the original system D; up to
corrections of order t=T̂, or possibly even identically.
(ii) The system D̃ is isochronous; see [1–8] for review.
Among other things, this result implies that isochronous
systems are not rare. Moreover, it also entails the unpleas-
ant fact that, for any dynamical system, it is possible to
build infinite dynamical systems which cannot be distin-
guished experimentally by means of any experiment that
lasts a finite time.
As this result is valid for nonrelativistic dynamical

systems, including the case of N-body systems with an
arbitrarily large number of bodies, the question of whether
it could be extended to the cosmological context arises
quite naturally. This issue has been studied in a series of
papers [9–11] where it has been shown that, for any given
real solution gμν of Einstein’s equations, one can construct

real periodic (with an arbitrarily long period T) solutions ĝμν
that are degenerate on a countable infinite set of times tn and
diffeomorphic to gμν elsewhere, and are thus physically
indistinguishable from gμν at any time t ≠ tn, whose physical
interpretation can be given in terms of a version of general
relativity in which the equivalence principle is lost.
The trick used for obtaining the nonrelativistic isochronous

systems D̂ is based on the introduction of a periodic change of
time t → τðtÞwith τðtÞ periodic with arbitrary period T, such
that τðtÞ ≃ t for any t in an interval ½t0 − T̂=2; t0 þ T̂=2�. If
one tries to extend this trick to general relativity, one
immediately realizes that a real periodic change of time
τðtÞ leads to periodic solutions of Einstein’s equations
that are degenerate at the numerable inversion times tn, where
τ0ðtnÞ ¼ 0. However, the equivalence principle implies
that physically acceptable spacetimes must be locally
Minkowskian. Indeed, the method used for manufacturing
the isochronous dynamical systems D̂ does not work for
general relativity, as the equivalenceprinciple forbids periodic
changes of time, avoiding the unpleasant implications that
occur for nonrelativistic systems.
In this paper we point out that, if the class of admissible

spacetimes is enlarged to include complex metrics, one has
to face the same issues encountered in the case of non-
relativistic systems. In fact, one could consider a complex
and periodic change of time t → τðtÞ with τ0ðtÞ ≠ 0. For
instance, considering the function

τðtÞ ¼ Tðiþ exp ½iðt=T − π=2Þ�Þ ð1Þ*fabio.briscese@math.unipd.it, briscese.phys@gmail.com
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plotted in Fig. 1, and a real Fiedmann-Robertson-Walker
(FRW) spacetime

ds2 ¼ dt2 þ aðtÞ2dx⃗2; ð2Þ

one obtains a metric

ds2 ¼ τ0ðtÞ2dt2 þ aðτðtÞÞ2dx⃗2: ð3Þ

The metric (3) is nondegenerate because τ0ðtÞ ≠ 0 at any
time, and it is diffeomorphic to (2); indeed all the curvature
invariants of (3) can be calculated from those of the real
metric (2), provided that τðtÞ ∈ C3. Moreover, at any time
jtj ≪ T, (2) and (3) will be the same up to corrections
∼Oðt=TÞ. This implies that, since T is arbitrary, the two
metrics (2) and (3) will be physically indistinguishable over
an arbitrarily long time interval, albeit being globally
inequivalent, since (3) is periodic (we will discuss this
point and the equivalence between diffeomorphic complex
metrics in what follows).
This result can be generalized to state that, by means of a

complex periodic change of time, for any solution gμν of
Einstein’s equations one can easily obtain nondegenerate
but complex and periodic metrics ĝμν that are indistinguish-
able from gμν over an arbitrarily long time interval. What is
more, we will show that one can also build bouncing
solutions corresponding to an arbitrary inversion of the
arrow of time, as well as (periodic or bouncing) solutions
that avoid the big-bang cosmological singularity. We
should probably emphasize that these results do not depend
on the fact that the starting metric gμν is real. The key
observation is that, as long as complex diffeomorphisms are
allowed, one can write down periodic changes of coor-
dinates that are locally invertible everywhere, leading to
nondegenerate periodic metrics ĝμν that solve Einstein’s
equations everywhere (except at most at the singularities
of gμν). The same conclusions are valid also for bouncing
spacetimes, i.e., for time inversion.
Of course, the implications of these findings are prob-

lematic, as it would be impossible to make an experiment
lasting a finite amount of time which is able to discern

between a periodic and nonperiodic universe, or between a
universe facing a big-bang singularity and another which is
singularity free. In the case of real spacetimes, the equiv-
alence principle prevents the occurrence of these issues,
since it forbids periodic diffeomorphisms. However, as
long as one considers complex metrics, the equivalence
principle does not exclude complex periodic changes of
time, and we do not have any other criterion capable of
doing so in the context of classical gravitation.
The interest in complex spacetimes, which also moti-

vates this paper, stays in the fact that they are widely used in
the framework of quantum field theory on curved space-
times and in quantum gravity. One of the first attempts to
make sense of complex metrics dates back to the late 1970s
[12], when it has been noted that the Kerr metric, unlike the
Schwarzschild spacetime, becomes complex after a Wick
rotation. It has been also observed that a complex metric
could be useful to provide a positive-defined quantum-
gravity action, in order to give convergent path integrals
[13]. Without aiming to be exhaustive, we just mention that
complex metrics have been considered in the study of the
Hartle-Hawking no-boundary proposal for the wave func-
tion of the Universe [14] and of the topology-changing
processes [15]. For more recent applications of complex
spacetimes for the definition of the Euclidean path integral
of general relativity see [16–37].
Very recently, in [16] a criterion for defining the allowed

class of complex metrics has been proposed. Such criterion
is based on the request that a quantum field theory can be
consistently defined in the corresponding spacetime. This
proposal has been discussed further in [17] in the context of
quantum gravity. Namely, a physically acceptable complex
metric gμν must be such that, writing gμν in a orthogonal
basis as gμν ¼ δμνλμ, the condition

λμ ≠ 0;
X4
μ¼1

jArgðλμÞj < π; ð4Þ

is satisfied, where ArgðzÞ ∈ ½−π; π� is the argument of
z ∈ C. We direct the reader to [16,17] for the derivation
of this condition, since here we are only interested in
its implications on the construction of isochronous
spacetimes.
As we will show below, the condition (4) plays a role

analogous to that played by the equivalence principle in
the case of general relativity: it forbids the use of periodic
complex changes of time (and complex time inversion),
preventing the occurrence of the issues related to the
construction of isochronous and bouncing metrics.
Indeed, this criterion can be viewed as a generalization
of the equivalence principle for complex spacetimes.
In what follows we will first give an illustration of the

method used for finding nonrelativistic isochronous systems
based on N-body Hamiltonians. Then we will discuss the
generalization of this method to spacetime metrics and the

FIG. 1. We plot the periodic change of time τðtÞ¼
Tðiþ exp ½iðt=T − π=2Þ�Þ. One has τ0ðtÞ ≠ 0 and τ ≃ t for jtj≪T.
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issues related to the construction of isochronous and
bouncing solutions of Einstein’s equations. Finally, we will
discuss the implications of the condition (4) and show that it
forbids the class of complex and periodic changes of times
used for finding the isochronous metrics. This motivates our
conclusion that (4) can be viewed as a quantum-gravity
generalization of the equivalence principle.
As stated before, the method used for finding the

isochronous systems D̂ from an autonomous dynamical
system D is based on the introduction of a periodic change
of time t → τðtÞ with τðtÞ periodic with an arbitrary period
T, such that τðtÞ ≃ t for t ∈ ½t0 − T̂=2; t0 þ T̂=2�. For
instance, one can start from an N-body Hamiltonian

Hðp; qÞ ¼ 1

2

X3N
n¼1

ðp2
nÞ þ VðqÞ ð5Þ

with a translation-invariant potential Vðqþ aÞ ¼ VðqÞ
and solutions qðtÞ, pðtÞ. Then, one switches to the
center-of-mass reference system defining the coordinates
xn ¼ qn −QðqÞ, yn ¼ pn − PðpÞ=N, where QðqÞ ¼P

N
n¼1 qn=N and PðpÞ ¼ P

N
n¼1 pn are the coordinates of

the center-of-mass and the total momentum, so that

Hðp; qÞ ¼ ½PðpÞ�2
2N

þ hðy; xÞ; ð6Þ

where

hðy; xÞ ¼ 1

2

XN
n¼1

ðy2nÞ þ VðxÞ; ð7Þ

and VðxÞ ¼ VðqÞ thanks to the assumed translation invari-
ance of VðqÞ. It can be shown [1–8] that the following

isochronous Hamiltonian H̃ðp; q;TÞ

Ĥðp̂;q̂;TÞ¼1

2

�
½P̂ðp̂Þþhðŷ; x̂Þ�2þ

�
2π

T

�
½Q̂ðq̂Þ�2

�
ð8Þ

entails an isochronous evolution, with arbitrary period T, of
the center-of-mass Q̂ðq̂Þ ¼ P

N
n¼1 q̂n=N, the total momen-

tum P̂ðp̂Þ ¼ P
N
n¼1 p̂n, and all the coordinates

x̃ðtÞ ¼ xðτðtÞÞ; ỹðtÞ ¼ yðτðtÞÞ; ð9Þ

where the “periodic time” τðtÞ is given by

τðtÞ ¼ A sin

�
2πðt − t0Þ

T

�
; ð10Þ

with A and t0, constant parameters that are functions of
the initial values Qð0Þ and Pð0Þ, and of the conserved
Hamiltonian H̃ðp; q;TÞ.

We should emphasize that, having for any jtj ≪ T,

τðtÞ ¼ 2πA
ðt − t0Þ

T
þO

��
t − t0
T

�
2
�
; ð11Þ

the time evolution given by the isochronous Hamiltonian Ĥ
approximates that of H up to a constant shift and rescaling
of time, hence up to corrections that remain small as long as
t is in an assigned interval ½t0 − T̃=2; t0 þ T̃=2�, where
T̃ ≪ T, with T arbitrary. Moreover, different Hamiltonians
Ĥ can be built corresponding to different periodic changes
of time and, if one requires that τðtÞ ∈ C2 in order to be
compatible with second order dynamical equations, τðtÞ
can be chosen to coincide with t ∈ ½t0 − T̂=2; t0 þ T̂=2�,
while being a periodic function of t with period T > T̂. In
this case, the dynamics given by Ĥ will be identical to that
of the system H for any time t ∈ ½t0 − T̂=2; t0 þ T̂=2�.
These results can be straightforwardly extended to

general relativity. Let us start with a metric gμνðyÞ given by

ds2 ¼ gμνðyÞdyμdyν; ð12Þ

which is a solution of Einstein’s equations in vacuum [38]

RμνðyÞ −
1

2
RðyÞgμνðyÞ ¼ 0; ð13Þ

where RμνðyÞ and RðyÞ are the Ricci and scalar curvature
tensors constructed with the metric gμνðyÞ. Let us consider
the metric ĝμνðxÞ in the coordinate system x defined by the
complex periodic change of time

y0 ¼ τðx0Þ; y⃗ ¼ x⃗ ð14Þ

where τðx0Þ ¼ τðx0 þ TÞ ∈ C3 is a periodic function with
period T ∈ R, so that

ds̃2 ¼ τ0ðx0Þ2g00ðyðxÞÞðdx0Þ2
þ 2τ0ðx0Þg0kðyðxÞÞdx0dxk þ gkhðyðxÞÞdxkdxh

≡ ĝμνðxÞdxμdxν; ð15Þ

where gαβðyðxÞÞ ¼ gαβðy0 ¼ τðx0Þ; yk ¼ xkÞ. Indeed,
ĝμνðxÞ will be a solution of Einstein’s equations in vacuum,
which is degenerate at the hypersurfaces τ0ðx0Þ ¼ 0. What
is more, since y0ðx0Þ is a periodic function of x0, the metric
ĝμνðxÞ is periodic in time.
Thus, considering a real periodic change of time τðtÞ, in

principle, one obtains periodic in time (in fact isochronous)
but degenerate solutions of Einstein’s equations. However,
remaining in the framework of general relativity, such
spacetimes are physically unacceptable, since they are not
locally Minkowskian. Indeed, we conclude that the
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equivalence principle forbids the use of periodic changes of
time and the construction of isochronous universes.
However, if the class of admissible spacetimes is enlarged

to include complex metrics, one has to enlarge the class of
admissible diffeomorphisms to complex ones. Indeed, by
means of a complex change of time, starting from any real
solution gμν of Einstein’s equations, one can easily obtain
nondegenerate but complex and periodic metrics ĝμν that
approximate gμν with arbitrary accuracy over an arbitrarily
long time interval. For instance, choosing

τðtÞ ¼ t0 þ T sin

�
t − t0
T

�
þ iμ

�
1 − cos

�
t − t0
T

��
ð16Þ

for t ∈ R, corresponding to the closed curve of the complex
τ plane plotted in Fig. 2, one has τ ≃ t, and thus y0 ≃ x0 as
long as jx − t0j=T ≪ 1. Therefore, since T is arbitrary, the
metrics ĝμν and gμν are arbitrarily close over an arbitrarily
long time interval, even though ĝμν is periodic in the time x0.
Moreover, ĝμν and gμν are diffeomorphic; indeed all the
curvature invariants of ĝμν can be calculated from those
of gμν.
Let see what happens to the geodesics of the two

spacetimes. Let us suppose that the geodesics associated
with the metric gμν are given by

Y ¼ ½λ; Y⃗ðλÞ�; ð17Þ

where the parameter λ coincides with the time y0 along the
geodesics. It is easy to show (see [9–11]) that the geodesics
associated with the periodic metric ĝμν are given by the
analogous formula

X ¼ ½μ; Y⃗ðτðμÞÞ� ð18Þ

and in this case the parameter μ coincides with the time
x0 ¼ t. These geodesics are open spiraling curves in
spacetime, with the space coordinates evolving periodically
as functions of the time coordinate x0 ¼ μ.
It is worth noting that, choosing the function τðtÞ

properly, one can avoid some of the singularities of the
spacetime gμν. For instance, if gμν is a FRW spacetime with
a scale factor aðy0Þ

ds2 ¼ ðdy0Þ2 − aðy0Þ2dy⃗2 ð19Þ

which is a solution of the Einstein’s equations in the
presence of a perfect fluid with equation of state p ¼ ωρ,
and with p and ρ, the pressure and energy density of the
fluid, one has

aðy0Þ ¼ a0

�
1þ

ffiffiffiffiffiffiffi
3ρ0
4

r
ðωþ 1Þðy0 − y00Þ

� 2
3ðωþ1Þ

;

ρ ¼ ρ0

�
að0Þ
aðy0Þ

�
−3ðωþ1Þ

: ð20Þ

The spacetime (19) has a big-bang singularity at the time
y0¼y00−2=

ffiffiffiffiffiffiffi
3ρ0

p ðωþ1Þ≡τs, where aðy0Þ ¼ 0. Imposing
that the periodic change of time is such that τðtÞ ≠ τs for
any t, so that y0ðx0Þ ≠ τs for any time x0, the periodic
solution ĝμν given by (15) will evade the big-bang singu-
larity. That means that the spacetime ĝμν will be geodesi-
cally complete, so that the geodesics (18) will be future and
past extendible. Moreover, ĝμν can be set to be arbitrarily
close to gμν for an arbitrarily large time interval, since
corrections scale as ∼T−1 and the period T is arbitrary. In
the case of the complex change of variables (16), a
nonsingular periodic universe ĝμν is obtained if t0 ≠ τs.
Moreover, ĝμν mimics the dynamics of gμν up to corrections
∼jt − t0j=T for any t such that jt − t0j=T ≪ 1.
One might argue that, although arbitrarily close and

connected by a (complex) diffeomorphism, the two evo-
lutions enclosed in the spacetimes gμν and ĝμν are physi-
cally inequivalent, as the time y0 acquires a complex part
ℑfy0g. This might be acceptable for infinitesimal ℑfy0g.
For instance, in QFT it is commonly accepted that the time
variable has a small complex part, usually parametrized by
the change of time t → ð1 − iϵÞt with ϵ infinitesimal, in
order to ensure the convergence of path integrals. However,
in general, the complex component of τðtÞ can be non-
negligible, as in (16) for large μ. Moreover, one can object
that the space components of the geodesics (18) acquire a
complex part as well, and it can be difficult to give a
meaningful physical interpretation of this fact.
To circumvent these issues, we can thus look at periodic

changes of time such that τðtÞ≡ t for t in some time
interval, say t ∈ ½−T̂=2; T̂=2�. In this case, the two metrics
gμν and ĝμν will be identical over the arbitrary time interval
½−T̂=2; T̂=2�, while ĝμν will be periodic with an arbitrary
period. For instance, one can consider the following
complex function:

τðtÞ ¼
(
t − nT for − T̂

2
þ nT ≤ t ≤ T̂

2
þ nT

Zðt − nTÞ for T̂
2
þ nT ≤ t ≤ − T̂

2
þ ðnþ 1ÞT

ð21Þ

FIG. 2. We plot the complex change of time τðtÞ in (16) as a
function of real t. If the spacetime gμν has a big-bang singularity
at y0 ¼ τs, the periodic spacetime ĝμν will be nonsingular, as
y0ðx0Þ ≠ τs at any time x0.
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with n integer, t; T; T̂ ∈ R, T > T̂, and ZðtÞ ∈ C3, as we
want the periodic metric ĝμν to be a solution of second order
Einstein’s equations.
Since τðtÞ is periodic, ZðtÞ must be a complex function

ZðtÞ ¼ AðtÞ þ iBðtÞ with AðtÞ and BðtÞ real functions such
that AðT̂Þ ¼ T̂, AðT − T̂Þ ¼ −T̂, A0ðT̂Þ ¼ A0ðT − T̂Þ ¼ 1,
A00ðT̂Þ¼A00ðT− T̂Þ¼A000ðT̂Þ¼A000ðT− T̂Þ¼0, and BðT̂Þ ¼
BðT − T̂Þ ¼ B0ðT̂Þ ¼ B0ðT − T̂Þ ¼ B00ðT̂Þ ¼ B00ðT − T̂Þ ¼
B000ðT̂Þ ¼ B000ðT − T̂Þ ¼ 0 [39]. The function τðtÞ in (21) is
such that τðtÞ≡ t for −T̂=2 < t < T̂=2, while it is periodic
with arbitrary period T > T̂. An example of such a complex
function τðtÞ is plotted in Fig. 3. Therefore, the metric ĝμν
will be diffeomorphic to the metric gμν, and it will be
identical to gμν for −T̂ < t < T̂. Indeed, ĝμν and gμν yield
an identical evolution over an arbitrary time interval t ∈
½−T̂; T̂�, where they are physically indistinguishable, while
ĝμν is periodic with a period T that is also arbitrary.
Finally, we note that, with a proper choice of τðtÞ, one

can also construct bouncing universes, and, in general,
spacetimes with an inversion of the arrow of time. For
instance, for the FRW metric (19) and the function τðtÞ
plotted in Fig. 4, one has a contracting universe that reaches
a minimum size corresponding to a minimum of jaðτðx0ÞÞj,

and then expands forever. As τðtÞ ≃ t for large t, this
universe converges to (19) at late times.
The construction of isochronous and bouncing space-

times, which leads to the unpleasant implications described
before, is based on the use of periodic diffeomorphisms,
which are allowed if one considers complex metrics. In the
case of real metrics, this construction was forbidden by
the equivalence principle, which imposes that a physical
acceptable spacetime must be locally Minkowskian, indeed
nondegenerate.
In the framework of classical general relativity, there is

no first principle capable of forbidding periodic complex
diffeomorphisms, and the issues related to their use.
However, condition (4), which has been introduced in
[16] following from the request that one can construct a
physically meaningful quantum field theory over a complex
spacetime, does the job. For instance, considering the FRW
metric (2) and its complex periodic extension (3), the
requirement (4) implies that it must be jArgðτ0ðtÞÞj < π=2
for physically acceptable spacetimes (3). This prevents the
use of complex periodic changes of time and complex time
inversions, since for these time transformations one nec-
essarily hasRfτ0ðtÞg ¼ 0 at some time. This argument can
be extended to more general complex isochronous space-
times as those in Eq. (15), so that one concludes that (4)
excludes complex periodic diffeomorphisms from the class
of physically acceptable changes of coordinates.
In conclusion, we have shown that, if complex metrics

are considered, for any real spacetime gμν, by means of
complex changes of time, it is possible to build infinitely
many periodic or bouncing nondegenerate complex metrics
ĝμν, which are indistinguishable from ĝμν over an arbitrary
long time interval. This result leads to a physically
unacceptable arbitrariness, which might be seen as an
inconsistency of the theory. In the case of general relativity,
the equivalence principle forbids the use of real periodic
changes of time, while it does not exclude the use of
periodic diffeomorphisms if one considers complex met-
rics. However, the condition (4) forbids complex periodic
changes of time and complex time inversions, preventing
the construction of isochronous and bouncing spacetimes,
and avoiding all the related issues. For this reason, (4) can
be viewed as a quantum-gravity generalization of the
equivalence principle.

The author wish to thank P. Bomans, F. Calogero, and E.
Witten for several useful discussions on the draft version of
this manuscript.

FIG. 3. We plot the complex change of time τðtÞ in (21) as a
function of real t. One has τðtÞ≡ t for any t ∈ ½−T̂; T̂�, while τðtÞ
is periodic with period T > 2T̂.

FIG. 4. Considering a FRW universe (19) and the complex
change of time τðtÞ in the plot, the corresponding periodic metric
ĝμν represents a nonsingular universe that contracts, has a bounce,
and then expands forever, converging to (19) at late times.
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