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Recent studies have revealed intriguing similarities between the contribution of wormholes to the
gravitational path integral and the phenomenon of replica symmetry breaking observed in spin glasses and
other disordered systems. Interestingly, these configurations may also be important for the explanation
of the information paradox of quantum black holes. Motivated by these developments, we investigate
the thermodynamic properties of a PT-symmetric system composed of two random non-Hermitian
Hamiltonians with no explicit coupling between them. After performing ensemble averaging, we identify
numerically and analytically a robust first-order phase transition in the free energy of two models with
quantum chaotic dynamics: the elliptic Ginibre ensemble of random matrices and a non-Hermitian
Sachdev-Ye-Kitaev (SYK) model. The free energy of the Ginibre model is temperature independent in the
low-temperature phase. The SYK model has similar behavior for sufficiently low temperature, and then it
experiences a possible continuous phase transition to a phase with a temperature-dependent free energy
before the first-order transition takes place at a higher temperature. We identify the order parameter of the
first-order phase transition and obtain analytical expressions for the critical temperature. The mechanism
behind the transition is the existence of replica symmetry breaking configurations coupling left and right
replicas that control the low-temperature limit of the partition function. We speculate that quantum chaos
may be necessary for the observed dominance of off-diagonal replica symmetry breaking configurations in
the low-temperature limit.
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I. INTRODUCTION

The replica trick [1] is a powerful tool in the study of
disordered systems. It consists of replicating the action n
times which facilitates the explicit calculation of the
average over disorder. The resulting n-dependent action,
describing the ensemble-averaged system, is then, in most
cases, solved in the mean-field limit by the saddle-point
method. In the last step of the calculation, the value of n is

set to a value that depends on the observable of interest
(typically 0 or 1).
The replica trick has been employed in a broad variety of

problems in different research fields including disordered
spin systems [2,3], quantum disordered conductors [4],
random matrix theory [5], QCD [6,7], and the development
of error correction codes [8]. For instance, in the context of
disordered spin systems describing certain magnetic alloys,
the replica trick plays a pivotal role in the physical
description of the low-temperature spin-glass phase char-
acterized by an energy landscape with multiple local
minima and a splitting of the Gibbs measure into separate
components (called pure states), which is a signature of
breaking of ergodicity [9,10].
It was also found [2,3,9,10] that replica symmetry

breaking solutions of the Sherrington-Kirkpatrick
model [11], a model for these disordered spin systems,
describe the low-temperature spin-glass region, while
replica symmetric configurations are dominant for higher
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temperatures. Replica symmetry breaking (RSB) refers to
solutions of the saddle-point equations which couple differ-
ent replicas and that, superficially, should be subleading in
the mean-field limit. These RSB solutions have a precise
physical meaning for spin glasses [3,9]: they represent the
overlap of probability among pure states which is directly
related to the order parameter of the transition.
A different type of RSB is found in the context of

disordered systems [4] and randommatrix theory [5,12,13].
In this case, the replica symmetry between the advanced
and retarded sectors of the Green’s function is broken,
leading to Goldstone’s modes that dominate the partition
function. These configurations give nonperturbative con-
tributions to spectral correlators that provide information
on the dynamics for scales on the order of the Heisenberg
time. Indeed, fully accounting for all RSB solutions, it
reproduces [5,12,13] the exact random matrix theory result
for the two-level correlation function.
Another model that has recently been intensively studied

by means of the replica trick is the Sachdev-Ye-Kitaev
model [14–19]: a model describing N Majorana fermions
with infinite-range random interactions in Fock space.
Variants of this model with complex fermions were
originally introduced [14,15,20] and studied [21–26] in
the context of nuclear physics and quantum chaos over half
a century ago.
The renewed interest in this model is due to intriguing

similarities with Jackiw-Teitelboim (JT) gravity [27,28], a
two-dimensional theory of gravity that describes almost
extremal black holes in near AdS2 (Anti-de Sitter space in
two dimensions) backgrounds [19,29,30]. In the infrared
limit, both models share the same action: a Schwarzian
whose path integral can be evaluated exactly [31]. The
resulting spectral density [32,33], which grows exponen-
tially for excitations close to the ground state, is consistent
with that of quantum black holes. The dynamics is quantum
chaotic [16] with spectral correlations given by random
matrix theory predictions [32,34], classified according to
the global symmetries of the system [35,36]. Likewise, a
weakly coupled two-site Sachdev-Ye-Kitaev (SYK) model,
which is also quantum chaotic [37–40] for sufficiently high
energies, reproduces the physics of the transition from a
traversable wormhole to a two-black-hole configuration in
near-AdS2 backgrounds with Lorentzian signature [41,42].
On the gravity side, it may seem that disorder, and

therefore any nontrivial structure in replica space, plays no
role and that these similarities with the SYK model, where
the replica symmetric solution is typically chosen, are
unrelated to the fact that the SYK model is a disordered
system. However, recent results in the gravity literature put
in doubt this prediction. In a recent work by Saad et al.
[43], it was found that the dual theory of JT gravity was
exactly given by a randommatrix theory in a certain scaling
limit which suggests that the gravitational path integral
involves an average over different theories (see also

Ref. [44]). Moreover, a replica calculation [45] of the free
energy in JT gravity identified a range of parameters where
the contribution of RSB configurations, called replica
wormholes in this context, are dominant compared to replica
symmetric configurations. Similarly, the calculation [46–48]
of the evolution of the von Neumann entropy in JT gravity
plus additional matter, modeling the black hole evaporation
process, showed that for late times the growth stops due to
additional RSB saddle points in the gravitational path
integral. These RSB saddle points represent wormholes
connecting different copies of black holes. This behavior
is in agreement with that expected for Hermitian systems
[49]. The “information paradox” is therefore avoided.
However, these results also raise some fundamental

issues. It seems that the gravitational path integral repre-
sents an ensemble over theories, something that is not yet
well understood. Moreover, at least in field theories with
a gravity dual, Euclidean wormholes raise the so-called
factorization puzzle, namely, the field theory dual to
wormholes connecting two boundaries should be related
to a field theory partition function that does not factorize
[50–56], but it is unclear how exactly to define such an
object. Another problem is that these Euclidean worm-
holes, at least in JT gravity without additional matter, are
not solutions of the classical equations of motion [43,57],
so their interpretation as RSB saddle solutions is not
straightforward. In the simplest case of two replicas, it
was possible [58] to find wormhole solutions of the
classical JT gravity equations, provided that complex
sources were added. The system undergoes a first-order
wormhole–black hole transition where the wormhole phase
is characterized by a free energy that depends only weakly
on the temperature until a possible second continuous
phase transition occurs, below which the free energy
becomes temperature independent.
Given these recent advances, an interesting question to

ask is whether it is possible to find field theories whose
dominating saddle points are RSB configurations and
whether their role is qualitatively similar to that of worm-
holes in gravity theories. A positive answer to this question
may shed some light on the factorization and information
loss puzzle mentioned above and, more generally, on the role
of wormholes in holography and quantum gravity. Even
putting aside any gravitational interpretation, it is a problem
of fundamental interest to determine the conditions for the
dominance of off-diagonal replicas in disordered and
strongly interacting quantum mechanical systems.
The main goal of this paper is to address this problem by

studying several random non-Hermitian but PT symmetric
two-site systems with no explicit coupling between them.
Among others, we investigate the elliptic Ginibre ensemble
of random matrices and the non-Hermitian SYK model
[59]. By downgrading the Hermiticity of the SYK model to
just PT symmetry [60], so that the model still has a real
positive partition function, we identify RSB configurations
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that control the free energy in the low-temperature limit.
The restoration of replica symmetry at higher temperature
triggers a first-order thermal phase transition. If the
imaginary part of the SYK model is large enough, we
have indications of the existence of an additional con-
tinuous phase transition at a temperature below the one at
which the first-order transition takes place. Moreover, we
obtain explicit expressions for the critical temperature,
the ground-state energy, and the order parameter that
characterizes the RSB phase. Our results are qualitatively
similar to those of a gravitational system [58] and also
largely universal, provided that the dynamics is quantum
chaotic [59].
We note that the role of RSB configurations has already

been the subject of different studies [61,62] for the SYK
model with real couplings. Although there is not yet
consensus in the literature, it seems that in these cases
most of the features of the model, which are also present in
JT gravity, do not involve any RSB.
The paper is organized as follows. In Sec. II, we

qualitatively explain why we expect a universal thermal
phase transition due to RSB configurations in a non-
Hermitian random quantum system. This is illustrated in
Sec. III by an analytical solution of a non-Hermitian
random matrix model with PT symmetry, which roughly
corresponds to the two-site non-Hermitian SYK model
with a q-body (q > 2) interaction. In Sec. IV, by an explicit
solution of the Schwinger-Dyson (SD) equations and also
by the numerical calculation of the free energy from the
eigenvalues of the SYK Hamiltonian, we show that a q ¼ 4
two-site non-Hermitian SYKmodel with PT symmetry and
no explicit coupling between the two sites also undergoes a
first-order phase transition induced by RSB configurations.
We close with concluding remarks and a list of topics for
further research in Sec. V. Technical details are worked out
in six Appendixes. Some of the results of this paper were
announced in a recent letter [59].

II. REPLICA SYMMETRY BREAKING
IN RANDOM NON-HERMITIAN,

PT-SYMMETRIC SYSTEMS

In this section, we aim to give a qualitative argument for
the existence of a rather universal phase transition for the
free energy of a PT-symmetric system composed of two
random disconnected non-Hermitian Hamiltonians. This
can be viewed as a replicated version (with two replicas)
of a single-site non-Hermitian Hamiltonian. The low-
temperature phase is dominated by RSB configurations
whose effect is strikingly similar to that of Euclidean
wormholes in AdS2 gravity. In later sections, we discuss
examples including a two-site non-Hermitian SYK model
where an explicit replica analysis is possible.
We argue below that for the two-site non-Hermitian

systems we are interested in the replica trick gives correct
results. Wewill also see that for these systems the quenched

and annealed free energies are identical in the thermody-
namic limit. This justifies using annealed averaging to
obtain quenched free energies, which we will do for the
Schwinger-Dyson calculation of the free energy.
In the second part of this section, we show that when

eigenvalues have the universal characteristics of quantum
chaotic systems the connected two-level correlation func-
tion corresponding to RSB configurations contributes to
the free energy at leading order. Moreover, we argue that
these contributions indeed control the low-temperature
limit of the free energy. In Sec. IVA, an analysis of the
SD equations for the one-replica SYK model will show
more explicitly that RSB configurations are directly
responsible for the phase transition which mimics that
observed for Euclidean wormholes in JT gravity [58].

A. Quenched free energy by the replica trick

We consider the partition functions of two-site
Hamiltonians of the form

H ¼ HL ⊗ 1þ 1 ⊗ HR: ð1Þ

We are mostly interested in the case where HL ¼ H†
R,

and in general HL;HR;H are non-Hermitian, but H is
PT-symmetric [60], namely,

½PT;H� ¼ 0;

with P a permutation matrix that interchanges the L and R
Hilbert spaces and where the antiunitary operator is
T ¼ CK ⊗ CK. Here, C is a charge conjugation matrix
and K the complex conjugation operator. If the D eigen-
values of the complexD ×DmatrixHL are denoted by Ek,
then the D2 eigenvalues of H are given by Ek þ E�

l . The
eigenvalues with k ¼ l are real, while the other eigenvalues
come in complex-conjugate pairs, consistent with the
existence of PT symmetry.
The partition function of this Hamiltonian (before

averaging over the disorder) is given by

ZðβÞ ¼ Tre−βH ¼ ZLZR ¼ jTre−βHL j2; ð2Þ

where we have defined

ZL ≡ Tre−βHL; ZR ≡ Tre−βHR; ð3Þ

and obviously ZL ¼ Z�
R. If ρðzÞ is the eigenvalue density

of HL, then

ZðβÞ ¼
Z

d2z1d2z2ρðz1Þρðz2Þe−βðz1þz�
2
Þ: ð4Þ

The quenched free energy must be computed by a
quenched average −βhFi ¼ hlogZi, where β is the inverse
of temperature T. A direct analytical calculation of the
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quenched disorder average is in general technically
demanding. The replica trick was introduced [1] to circum-
vent these difficulties by using that

hlogZi ¼ lim
n→0

hZni − 1

n
¼ lim

n→0

hðZLZ�
LÞni − 1

n
: ð5Þ

The average on the right-hand side is much easier to
evaluate analytically by replicating n times the original
action, carrying out the averages analytically and taking the
limit n → 0 at the end of the calculation.
However, a word of caution is in order: it is well

documented that the replica trick may give incorrect results
if applied naively [63,64]. An example is the Sherrington-
Kirkpatrick model mentioned earlier, where the entropy is
negative for sufficiently low temperature if the replica trick
is naively applied [11]. A number of fixes have been
introduced [3,5,12,65,66], including the supersymmetric
method that avoids the replica trick altogether [67–71].
However, in many situations, there are no realistic alter-
natives, so it is necessary to understand under which
conditions the trick is applicable. The replica trick is
premised on Carlson’s theorem [72], which states that if
a holomorphic function fðzÞ on ReðzÞ > 0 vanishes for all
positive integers n it also vanishes on the right half-plane,
provided that jfðzÞj < C expðπjzjÞ on the imaginary axis
and grows no faster than an exponential elsewhere on the
right half-plane. For a non-Hermitian Hamiltonian such as
HL, logZL in general has a nonzero imaginary part, and
therefore it is unclear whether the conditions of Carlson’s
theorem are satisfied in the low-temperature limit. Hence, if
we were interested in the free energy of the one-site model,
the naive replica trick

hlogZLi ¼ lim
n→0

hZn
Li − 1

n
ð6Þ

is likely to give incorrect results.
The average of the one-site free energy can be

expressed as

hlogZLi ¼ hlog jZLji þ hi argZLi: ð7Þ

For a non-Hermitian Hamiltonian, the phase of ZL is
expected to oscillate rapidly so that the average of the
second term vanishes. If that is the case, we have

hlogZLi ¼ hlog jZLji ¼
1

2
hlogZLZ�

Li: ð8Þ

This shows that the quenched average free energy is
necessarily given by the quenched free energy of a replica
and a conjugate replica (in the sense of the one-site model).
Because logðZLZ�

LÞ is real, we have that hexp n logZLZ�
Li

is bounded for imaginary n so that there is a chance we can

apply Carlson’s theorem to validate the replica trick.
We thus have

hlogZLi ¼ lim
n→0

1

2

hðZLZ�
LÞni − 1

n
: ð9Þ

Notice that this is exactly half of (5); therefore, the correct
replica description of a non-Hermitian one-site model
naturally involves the conjugate replicas. This procedure
is actually well known for quenched averages (now under-
stood as ignoring the fermion determinant) of a similar
quantity, namely, the resolvent GðzÞ ¼ TrðHL − zÞ−1
[6,73,74]. For a non-Hermitian Hamiltonian, the quenched
resolvent is given by the replica limit,

GðzÞ ¼ lim
n→0

1

2n
d
dz

hdetnðHL þ zÞ detnðH†
L þ z�Þi; ð10Þ

which is sometimes referred to as Hermitization
[6,73,75,76].
More importantly, we will study the two-site system

using the mean-field approximation. Because ZLZ�
L is

positive definite, we expect the replica trick to work,
and if the two-site system has a replica-diagonal behavior

hðZLZ�
LÞni ¼ hZLZ�

Lin; ð11Þ

then the replica limit (9) is given by

hlogZLi ¼ lim
n→0

1

2

hðZLZ�
LÞni − 1

n

¼ lim
n→0

1

2

hZLZ�
Lin − 1

n
¼ 1

2
log hZLZ�

Li: ð12Þ

We conclude that in the thermodynamic limit the quenched
free energy of ZL is given by half the annealed free energy
of ZLZ�

L. The latter, for non-Hermitian theories, is gen-
erally different from the annealed free energy of ZL.
At this point, it is useful to clarify a potentially confusing

semantic point of our notion of RSB which is different from
that in spin glasses. It is reminiscent of RSB in disordered
systems where RSB happens between n retarded and n
advanced Green’s functions, i.e., Uð2nÞ → UðnÞ ×UðnÞ.
In the present case, we have RSB between replicas and
conjugate replicas of the partition function. In the replica
symmetric phase, the replicas remain uncoupled after
averaging so that

hðZLZ�
LÞni ¼ hZLinhZ�

Lin: ð13Þ

When replica symmetry is broken, this factorization no
longer holds,

hðZLZ�
LÞni ≠ hZLinhZ�

Lin; ð14Þ

but we still have that
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hðZLZ�
LÞni ¼ hZLZ�

Lin: ð15Þ

So, from the two-site model perspective, hZLZ�
Li is the one-

replica partition function of the two-site Hamiltonian H,
which is not expected to bring about any further RSB.
On the other hand, this can be viewed as the two-replica
partition function of the single-site HamiltonianHL. In that
case, one can legitimately talk about RSB. However, the
two perspectives are mathematically equivalent.
For a characterization of the conditions to observe

dominant RSB configurations is important to split the
partition function into a connected and a disconnected
piece:

hZi ¼ hZLZ�
Li ¼ hZLZ�

Lic þ hZLihZ�
Li: ð16Þ

The first term receives contributions from the connected
two-point function, while the second term is determined by
the one-point function. Because of the non-Hermiticity,
hZLðβÞi may actually be exponentially suppressed so that
the connected part of the partition function may become
dominant. As discussed in the previous paragraph, we will
refer to this situation as RSB. In a field theory formulation
of the partition function, the corresponding saddle-point
configuration of the action connects different replicas. In
this paper, we will not pursue an explicit gravitational
interpretation of these results. However, the analogy with
gravity is evident: RSB configurations are the field theory
analog of Euclidean wormhole solutions in gravity, which
are tunneling geometries connecting two or more otherwise
disconnected space-time regions. However, we note that if
this analogy applies the relation with a gravitational system
is not at the level of the microscopic Hamiltonian but rather
at the level of the effective action resulting from the replica
trick after ensemble averaging.
The remainder of this section is devoted to a better

understanding of both the circumstances for which the
connected part becomes relevant so that RSB configura-
tions control the free energy of the system and the effect of
RSB on the thermodynamic properties of the system.

B. Existence of a phase transition induced
by RSB configurations

For the random Hamiltonian (1), we calculate the
expectation value of the partition function as

hZðβÞi ¼
Z

d2z1d2z2

Z
hρðz1Þρðz2Þie−βðz1þz�

2
Þ; ð17Þ

where β≡ 1
T is the inverse temperature and the level density

is given by

ρðzÞ ¼
X
k

δ2ðz − zkÞ: ð18Þ

The two-point correlation function can be decomposed as

hρðz1Þρðz2Þi ¼ hρðz1Þihρðz2Þi þ δ2ðz1 − z2Þhρðz1Þi
þ R2;cðz1; z2Þ ð19Þ

with

R2;cðz1; z2Þ≡
X
k≠l

½hδ2ðz1 − zkÞδ2ðz2 − zlÞi

− hδ2ðz1 − zkÞihδ2ðz2 − zlÞi�; ð20Þ

which is the two-point correlator without self-correlations.
Because of the normalization of the level density, we have
the sum rule obtained by integrating (19) over z1:Z

dz1R2;cðz1; z2Þ ¼ −hρðz2Þi: ð21Þ

The decomposition of the partition function corresponding
to (19) is

hZðβÞi ¼ jhZLðβÞij2 þ
Z

d2zρðzÞe−βðzþz�Þ

þ
Z

d2z1d2z2R2;cðz1; z2Þe−βðz1þz�
2
Þ: ð22Þ

Notice that, from (22) on, we will no longer make a
notational distinction between ρðzÞ and hρðzÞi when the
context is free of confusion. Because of the sum rule (21),
the second term in (22) cancels the third term for β ¼ 0.
Therefore, there is no RSB in the infinite temperature limit.
We shall see that for sufficiently low temperature the
situation is different.
To simplify the argument, for now we assume a rota-

tionally invariant eigenvalue distribution, so thatZ
d2zρðzÞe−βz ¼ D ð23Þ

with D the number of eigenvalues of the one-site
Hamiltonian. We note that this is a realistic situation which
can occur for instance for H given by two copies of the
Ginibre ensemble [77] of complex random matrices.
We next estimate the connected part of the partition

function. To do that, we need to make three assumptions
about the two-point correlations of the eigenvalues:
(1) The correlations are isotropic and only depend on

the distance of the eigenvalues so that

R2;cðz1; z2Þ ¼ −ρðz̄Þ2Fðjz1 − z2j=λÞ; ð24Þ

where z̄ is the center of mass coordinate
z̄ ¼ ðz1 þ z2Þ=2.

(2) The correlation length is a function of ρðz̄Þ only.
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(3) The average spectral density ρðz̄Þ does not appreci-
ably vary on the scale of the correlation length.

These assumptions are expected to hold for the universal
correlations of non-Hermitian quantum chaotic systems.
In terms of the integral over the center of mass [i.e.,
ðz1 þ z2Þ=2] and the differences of the eigenvalues (i.e.,
z1 − z2), the sum rule reads

−ρðz̄Þ2
Z

Fðjz1 − z2j=λÞd2ðz1 − z2Þ ¼ −ρðz̄Þ: ð25Þ

This requires that λ ∼ 1=
ffiffiffiffiffiffiffiffiffi
ρðz̄Þp

and

ρðz̄Þ
Z

d2ðz1 − z2ÞFðjz1 − z2j
ffiffiffiffiffiffiffiffiffi
ρðz̄Þ

p
Þ ¼ 1: ð26Þ

Since ρðz̄Þ ∼D, we have that the length scale of the
eigenvalue correlations is 1=

ffiffiffiffi
D

p
.

For the connected part of the partition function, we then
obtain

Z2;c ¼ −
Z

d2z̄
Z

d2ðz1 − z2Þρðz̄Þ2Fðjz1 − z2j
ffiffiffiffiffiffiffiffiffi
ρðz̄Þ

p
Þ

× e−β½z̄þz̄�þiImðz1−z2Þ� þ
Z

d2z̄ρðz̄Þe−βðz̄þz̄�Þ: ð27Þ

Since the correlations are short ranged, we can Taylor
expand expðiImðz1 − z2ÞÞ. The first term in the Taylor
expansion cancels with the second integral in Eq. (27)
because of the sum rule, and the second term of the Taylor
expansion vanishes because the correlations are even in
y1 − y2. So, to leading nonvanishing order in 1=ρðz̄Þ,
we obtain

Z2;c ¼
β2

2

Z
d2z̄
Z

d2ðz1 − z2Þρðz̄Þ2Fðjz1 − z2j
ffiffiffiffiffiffiffiffiffi
ρðz̄Þ

p
Þ

× ðImðz1 − z2ÞÞ2e−βðz̄þz̄�Þ: ð28Þ

We can scale ρðz̄Þ out of the z1 − z2 integrations. Then, the
integral factorizes, and the integral over the difference is
just a constant which wewill denote by hζ2i. The connected
part of the partition function is thus given by

Z2;c ¼
β2hζ2i

2

Z
jz̄j<E0

d2z̄e−βðz̄þz̄�Þ

¼ π

2
βE0hζ2iI1ð2βE0Þ; ð29Þ

where E0 is the radius of the support of ρðz̄Þ, I1 is a
modified Bessel function of the first kind, and

hζ2i ¼
Z

d2sFðjsjÞðImsÞ2; ð30Þ

with s ¼ ffiffiffiffiffiffiffiffiffi
ρðz̄Þp ðz1 − z2Þ. The annealed free energy is thus

given by

−βF ¼ log ½cβI1ð2βE0Þ þD2�: ð31Þ

Since E0 > 0, the first term becomes dominant at low
temperatures. More specifically, a genuine phase transition
at finite temperature can occur, provided that logD and E0

scale linearly with the system size N. This is indeed the
case for interacting fermionic systems such as the (two-site)
SYK model, where the ground-state energy E0 ¼ Ne0=2
(each site has N=2 Majoranas) with e0 the ground-state
energy per particle that does not depend on N and
D ¼ 2N=4. In the thermodynamic limit, we then can use
the asymptotic limit of the modified Bessel function, while
the prefactors are irrelevant. The free energy is given by

F=N ¼ −θðTc − TÞe0 − θðT − TcÞT log 2=2 ð32Þ

with

Tc ¼
2e0
log 2

: ð33Þ

This argument for the transition is based on the existence
of the above large-N scaling behavior and the scaling
properties of the two-point correlation function. In the next
section, we will study an example where these conditions
are met. The rotational invariance of the spectrum is in fact
not essential. In particular, from the universality arguments
and Eqs. (28)–(30), we see that the connected part of the
partition function depends on ρðzÞ only through the shape
of its support. Moreover, the exponential dependence on
2βE0 is largely independent of the shape of the support
of ρðzÞ; consider the integral in Eq. (29) with a generic
support, namely,

Z
suppðρÞ

d2z̄e−βðz̄þz̄�Þ ¼
Z
suppðρÞ

e−2βxdxdy: ð34Þ

If the support of ρ on the real axis has a projection
½−E0; Emax�, and for each x the slice of the support has
a length LðxÞ along the y direction, the integral becomes

Z
Emax

−E0

e−2βxLðxÞdx: ð35Þ

Since E0 is a large parameter (E0 ∼ N), the integral on the
right-hand side localizes at the maximum of the integrand,
namely, at x̃ ¼ −E0 as long as LðxÞ ≪ ex. This establishes
that Z2;c ∼ e2βE0 .
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III. FREE ENERGY FOR THE ELLIPTIC
GINIBRE MODEL

In this section, we evaluate the free energy for the elliptic
Ginibre model. In the large D limit, the elliptic Ginibre
model has a constant level density inside an ellipse, while
the Ginibre model has a constant level density inside a
circle. This model can be seen as a representative of the
universality class of non-Hermitian Hamiltonians which do
not necessarily have a rotationally invariant level density.
Our calculations will be framed in general terms and can
be applied to the non-Hermitian SYK model with slight
modifications. Using the general arguments of Sec. II A,
the quenched free energy of the elliptic Ginibre model is
equal to the annealed free energy of the model with one
replica and one conjugate replica. In the case of the
ordinary Ginibre model, the two-site partition function
can be evaluated analytically for finiteD (see Appendix A).
In that case, the one-site partition function does not depend
on β. This is related directly to the fact that the eigenvalue
density is rotationally invariant. We now show that the
derivation of the previous section is also valid for the
universality class of the elliptic Ginibre ensemble.
The Hamiltonian of the elliptic Ginibre ensemble [78,79]

is given by

HL ¼ H1 þ ikH2

σðkÞ ; ð36Þ

here, σðkÞ is a scale factor which can be k dependent. In this
model, H1 and H2 are independent matrices extracted from
the Gaussian Unitary Ensemble according to the proba-
bility distribution

e
−2N

σ2
0

ðTrH2
1
þTrH2

2
Þ
: ð37Þ

Note that σ0 is a parameter that is unrelated to σðkÞ. In most
of this paper, we choose σðkÞ ¼ 1, but we point out another
interesting possibility σðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − k2Þ

p
such that the

variance of the real part of the eigenvalues is independent
of k. This guarantees, as we will see below, that the
disconnected partition function, dominant in the high-
temperature phase, is k independent. This could be of
interest for quantitative comparisons with the gravity
picture [58] where the high-temperature phase corresponds
to two decoupled black holes.
We can choose (1) as the definition of our total

Hamiltonian where HL ¼ H†
R, but unlike the SYK model,

this would not give a PT-symmetric Hamiltonian. We can
instead letHL ¼ H�

R; then, we have a Hamiltonian which is
PT symmetric. In any case, both choices give the same
spectrum and hence the same partition function. We next
evaluate the two-site partition function with HL given
by (36).

The calculation of the partition function can actually be
carried out at finite D by integrating the expressions for the
spectral density and two-level correlation functions of the
elliptic Ginibre ensemble which were first obtained in
Ref. [78]. Here, we are interested in the large D limit and
only need the asymptotic form of the spectral density which
is constant inside an ellipse with long axis length 2E0 and
short axis length 2y0,

ρðzÞ ¼ D
πE0y0

θ

�
1 −

x2

E2
0

−
y2

y20

�
ð38Þ

with

E0 ¼
σ0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

σðkÞ ; y0 ¼
σ0k2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

σðkÞ ; ð39Þ

and z ¼ xþ iy. We do not need the specific form of the
two-point correlations other than that they are isotropic and
short range with a range that scales as 1=

ffiffiffiffi
D

p
as given by

the general form (24).
To obtain the disconnected part of the partition function,

we need to evaluate the one-site partition function, which
can be easily computed by the following parametrization of
the energy integration variable:

z ¼ E0r cosϕþ iy0r sinϕ ð40Þ

with r ∈ ½0; 1� and ϕ ∈ ½−π; π�. Using that the Jacobian
of this transformation is rE0y0, we find the partition
function

ZLðβÞ ¼
Z

d2ze−βzρðzÞ

¼ D
π

Z
1

0

rdr
Z

π

−π
dϕe−βrðE0 cosϕþiy0 sinϕÞ

¼ 2D

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − y20

p I1

�
β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − y20

q �
: ð41Þ

Using that E2
0 − y20 ¼ σ20ð1 − k2Þ=σ2ðkÞ, we obtain the

disconnected piece of the two-site partition function

Z2;disðβÞ ¼
4D2σ2ðkÞ

β2σ20ð1 − k2Þ
h
I1ðβσ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
=σðkÞÞ

i
2
: ð42Þ

When we have
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
=σðkÞ → 0 for k → 1, as is the case

for our generic choice of σðkÞ ¼ 1, the disconnected
contribution to the free energy becomes temperature
independent for k ¼ 1. The connected part of the partition
function is given by

Z2;c ¼
Z

d2z1d2z2ρ2cðz1; z2Þe−βðz1þz�
2
Þ; ð43Þ

REPLICA SYMMETRY BREAKING IN RANDOM NON-HERMITIAN … PHYS. REV. D 105, 126027 (2022)

126027-7



where the connected two-point correlation function
ρ2cðz1; z2Þ is given by the sum

ρ2;cðz1; z2Þ ¼ R2;cðz1; z2Þ þ δ2ðz1 − z2Þρðz2Þ: ð44Þ

The first term represents the true two-point correlations
involving two different eigenvalues, while the second term
is due to self-correlations. To evaluate the connected
partition function, we can use the general argument given
in Sec. II B, but now we have an explicit expression for the
two-point correlation function which satisfies the condi-
tions used in that section. In particular, the two-point
correlation function is given by

R2;cðz1; z2Þ ¼ −ρðz̄Þ2Funv

� ffiffiffiffiffiffiffiffiffi
ρðz̄Þ

p
jz1 − z2j

�
; ð45Þ

where z̄ ¼ ðz1 þ z2Þ=2 and Funv is a universal function that
is given by the largeD result for the Ginibre ensemble [77]:

FunvðsÞ ¼ e−πs
2

: ð46Þ

It satisfies the sum ruleZ
dz1R2;cðz1; z2Þ ¼ −ρðz2Þ ð47Þ

and that the eigenvalue correlations are short ranged on the
scale of 1=

ffiffiffiffi
D

p
. The two-point function (46) can also be

derived rigorously for the elliptic Ginibre ensemble [78].
We can now proceed in exactly the same way as in

Sec. II B but with an explicit expression for the two-point
correlation function. Let us expand the Boltzmann factor in
powers of y1 − y2, the imaginary part of z1 − z2,

e−βðz1þz�
2
Þ ¼e−βðz̄þz̄�Þ

�
1−iβðy1−y2Þ−

1

2
β2ðy1−y2Þ2þ���

�
;

ð48Þ

where z̄ ¼ ðz1 þ z2Þ=2. As mentioned in Sec. II B, the
contribution due to the first term vanishes because of the
sum rule (47), and the second term does not contribute
because the integral is even in y1 − y2. We thus find

Z2;c ¼
β2

2
hðy1 − y2Þ2i

Z
d2z̄e−βðz̄þz̄�Þθ

�
1 −

x̄2

E2
0

−
ȳ2

y20

�
;

ð49Þ

where

hðy1 − y2Þ2i ¼
Z

ðy1 − y2Þ2ρðz̄Þ2e−πjz1−z2j2ρðz̄Þd2ðz1 − z2Þ

¼ 1

2π
: ð50Þ

Using the parametrization (40), we obtain

Z2;c ¼
βy0
4

I1ð2βE0Þ: ð51Þ

To derive this result, we have interchanged the largeD limit
and the integrations over the spectral density and spectral
correlations. In Appendix A, we show that this misses
additional corrections which change the prefactor in (51).
Since these corrections do not change the exponential
D-dependence of the contribution, they do not affect the
free energy in the thermodynamic limit.
The total partition function is given by

Z ¼ Z2;dis þ Z2;c: ð52Þ

Taking only the leading nonvanishing terms in the thermo-
dynamic limit, we simplify the free energy to

FðTÞ ¼ −T log
�
e2

E0
T þD2e

2
T

ffiffiffiffiffiffiffiffiffi
E2
0
−y2

0

p �
: ð53Þ

In order to mimic forthcoming results for the two-site
SYK model and more generically of interacting fermionic
systems, we set D ¼ 2N=4 and σ0 ¼ e0N=2, where e0 is a
size-independent microscopic energy scale, and we stress
that N is not the number of eigenvalues of the Ginibre
Hamiltonian. With these choices, the free energy per
particle can be written as

F
N

¼ −θðTc − TÞ e0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
σðkÞ

− θðT − TcÞ
 
T
log 2
2

þ e0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k4

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
σðkÞ

!
; ð54Þ

where the critical temperature of the first-order phase
transition is given by

Tc ¼
2e0

σðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
log 2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k4

p �
; ð55Þ

which for small k scales as k4. These results are fully
consistent with the universal expression (32). Indeed, the
free energy for the elliptic Ginibre model is qualitatively
similar to those of the ordinary (circular) Ginibre case; in
both cases, there is a first-order phase transition separating
a low-temperature region where the free energy is domi-
nated by RSB configurations. We now explore whether this
first-order transition is a feature of more realistic fermionic
systems such as a non-Hermitian SYK model, where there
are N Majoranas in zero spatial dimensions with infinite-
range interactions and random complex couplings.
Therefore, we do not expect that any artificial choice of
scaling is necessary to observe the transition. For k ¼ 1,
the elliptic Ginibre model reduces to the ordinary circular
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Ginibre model. Its partition function can be evaluated
exactly at finite D, and up to a prefactor, the large D limit
of this result is in agreement with the results derived in this
section. The details are worked out in Appendix A.

IV. FREE ENERGY AND RSB FOR THE
PT-SYMMETRIC SYK MODEL

We now turn to the study of the Hamiltonian (1) withHL
and HR given by a q ¼ 4 SYK model with complex
couplings,

H ¼
XN=2

i<j<k<l

ðJijkl þ ikMijklÞψ i
Lψ

j
Lψ

k
Lψ

l
L

þ
XN=2

i<j<k<l

ðJijkl − ikMijklÞψ i
Rψ

j
Rψ

k
Rψ

l
R; ð56Þ

where the variances of the couplings are

hðJi1���iqÞ2i ¼ hðMi1���iqÞ2i ¼
2q−1ðq − 1Þ!
qðN=2Þq−1 v2 ð57Þ

and v sets the physical scale. The strength of the complex
deformation resulting in a non-Hermitian Hamiltonian
is controlled by the parameter k. The Majorana fermions
satisfy the Clifford algebra

fψ i
L;ψ

j
Lg ¼ fψ i

R;ψ
j
Rg ¼ δij; fψ i

L;ψ
j
Rg ¼ 0: ð58Þ

We have also studied variations of this non-Hermitian SYK
model, for example, a model where the couplings are not
complex conjugated. However, the partition function of this
model is not positive definite. A more interesting possibil-
ity is to include an explicit coupling term between the
two sites. This model has the remarkable property that all
eigenvalues become real beyond a critical value of the
coupling. Below, we will see that we will have to add an

infinitesimal explicit coupling term to break the symmetry
between the left and right replicas. The effect of a finite
coupling will be studied in detail in Ref. [80].
This section is divided into two parts. First, we provide

theoretical arguments, supported by numerical results
obtained by exact diagonalization of the Hamiltonian,
which show that the free energy of this SYK model is
quantitatively similar to that of the elliptic Ginibre model.
In the second part, we confirm this conclusion by explicitly
calculating the free energy from the solution of the SD
equations. These equations are the saddle-point equations
derived for one replica and one conjugate replica and give
the largeN limit of the free energy [18]. Wewill see the free
energy obtained from the SD equations agrees with the
Ginibre prediction.
For the numerical calculations, we diagonalize the one-

site Hamiltonian with up to N=2 ¼ 34 Majoranas. In this
case, we can directly calculate the quenched free energy,
which is equal to half the free energy of the two-site model
[see Eq. (8)], and there is no need to use the replica trick.
We have found that the ensemble fluctuations of log jZLj2
are small and this quantity seems to be self-averaging for
large N. The annealed average hjZLj2i, which corresponds
to one replica and one conjugate replica, shows much
stronger fluctuations, and it is not clear if it is self-
averaging. For comparison with theoretical predictions, it
is necessary to eliminate the fluctuations by averaging
about many disorder realizations. We shall see that indeed,
after averaging, annealed and quenched averages lead to
similar results by comparing the quenched free energy from
exact diagonalization with that obtained from the solution
of the Schwinger-Dyson equations that assumes annealed
averages in its derivation.
We start with the analysis of the distribution of complex

eigenvalues. In Fig. 1, we depict the distribution of the
eigenvalues of a one-site SYK model with N=2 ¼ 30
Majoranas and compare it with the ellipse (red curve)
given by

FIG. 1. Eigenvalue distributions of a single realization of the non-Hermitian one-site SYKmodel compared to the elliptical eigenvalue
distributions with non-Hermiticity parameters k ¼ 0.1 (left) and k ¼ 0.75 (right). Note the different scales of the y axes in the two plots.
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x2

E2
0ðkÞ

þ y2

y20ðkÞ
¼ 1 ð59Þ

with E0ðkÞ and y0ðkÞ fitting parameters. The quality of the
fit of the support of the spectrum is comparable to that
of the elliptic Ginibre model, but contrary to the elliptic
Ginibre model, the eigenvalue distribution is not com-
pletely uniform. In Fig. 2, we plot the distribution of the
phase ϕn of the rescaled eigenvalues

jẼnjeiϕn ¼ ReðEnÞ
E0ðkÞ

þ i
ImðEnÞ
y0ðkÞ

ð60Þ

for k ¼ 0.1 (left) and k ¼ 0.75 (right). For k ¼ 1, the
distribution of the phase is uniform but becomes less
uniform for smaller values of k. However, the deviation
from uniformity is well fitted by a cos 2ϕ-dependence.
Finally, in Fig. 3, we compare the fitted values of E0ðkÞ

and y0ðkÞ to the analytical functional dependence obtained
for the elliptic Ginibre model, namely,

E0ðkÞ ¼
N
2

e0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ; ð61Þ

y0ðkÞ ¼
N
2

e0k2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ; ð62Þ

with e0 the ground-state energy per particle for k ¼ 0
[for N=2 ¼ 30, we obtain e0 ≈ 0.011; see Eq. (66)]. The
agreement is excellent, which strongly suggests that indeed
the two models have very similar spectral properties. We
now turn to the study of the free energy.
We recall two of the main features of the free energy of

the elliptic Ginibre model. First, because of the non-
Hermiticity, the disconnected part of the partition function
is exponentially suppressed for k ≠ 0, which makes it
possible for its magnitude to be comparable to that of
the connected part. Second, because the spectral correla-
tions are short range, the details of these correlations are
irrelevant. As a consequence of a spectral sum rule, both the
leading contribution due to the self-correlations and those
due to the genuine two-point correlations are of the same
magnitude but with an opposite sign and cancel at leading

FIG. 2. Distribution of the phases of the eigenvalues after linearly rescaling the spectrum from an elliptical shape to a circular shape.
This distribution is uniform for k ¼ 1 and becomes less uniform for smaller values of k. This is illustrated for k ¼ 0.1 (left) and for
k ¼ 0.75 (right).

FIG. 3. The k-dependence of the long semi-axis, the ground-state energy E0ðkÞ, and the short semi-axis y0ðkÞ that define the elliptical
support of the eigenvalues of a one-site non-Hermitian SYK model with N=2 ¼ 30. The k-dependence is compared to the prediction for
the elliptic Ginibre model.
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order for large N. A phase transition induced by RSB can
only occur if, after this leading-order cancellation, the
remaining two-point piece is comparable with the discon-
nected part. We can get an estimate of the critical temper-
ature by assuming that the eigenvalues are distributed
uniformly inside an ellipse with long axes 2E0 and short
axis 2y0; in other words, they are given by the distribution
of the elliptic Ginibre ensemble. Using the results of the
previous section, we find the critical temperature

Tc ¼
E0ðkÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0ðkÞ − y20ðkÞ

p
log 2

4

N
ð63Þ

with the k-dependence of E0ðkÞ and y0ðkÞ given by the
results for the elliptic Ginibre model (62). This gives a
critical temperature,

Tc ¼
2e0
log 2

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k4

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ; ð64Þ

which behaves as k4 for small k. The free energy in terms
of e0 is given by

−
F

N=2
¼ θðTc − TÞ 2e0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

þ θðT − TcÞ
�
T log 2þ 2e0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p �
: ð65Þ

The energy e0, the ground-state energy per particle for the
k ¼ 0 SYK model, is given by [32,33]

ðe0N=2Þ2 ¼ 4M2

1 − η
; ð66Þ

where M2 is our choice for the second moment of the
one-site k ¼ 0 SYK model

M2 ¼
�
N=2

4

�
hJ2ijkli ¼

�
N=2

4

�
1

6N3
; ð67Þ

and

η ¼
�
N=2

q

�−1Xq
m¼0

ð−1Þm
�

q

m

��
N=2 − q

q −m

�
∼ 1 −

4q2

N
;

ð68Þ

where we have chosen q ¼ 4 and v ¼ 1
24

in (57). This
choice is the one employed in the numerical calculations.
For N=2 ¼ 30, we find e0N=2 ¼ 0.332, while from Fig. 3,
we can read off a value of 0.328 which is only slightly
lower. The analytical result for the critical temperature
using Eq. (63) and e0N=2 ¼ 0.332 is equal to Tc ¼ 0.0225
for k ¼ 1, which is also close to the result from exact
diagonalization, which is approximately 0.022. As will be

discussed later in this section, an independent calculation
of Tc and E0 by exact diagonalization is in agreement with
these results.
The analytical results for the Ginibre model are largely

based on the uniformity of the distribution of the eigen-
values. However, in the SYK case, the phase is only
uniform for k ¼ 1, while the radial distribution is never
uniform. For k < 1, we have found that the ϕ-dependence
of the spectral density is well fitted by (see Fig. 2)

ρðϕÞ ¼ 1

2π
ð1 − α cos 2ϕÞ: ð69Þ

The angular integral of the disconnected part of the
partition function then becomes

2I0

� ffiffiffi
2

p
βr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−1=k2

q �
−2α

k4þ1

k4−1
I2

� ffiffiffi
2

p
βr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−1=k2

q �
:

ð70Þ

Therefore, the leading exponent is not affected. The same
argument can be made for the self-correlations and genuine
two-point correlations. The deviation of the radial distri-
bution from uniformity also does not change the leading
exponent. This implies that, even for k < 1, we expect the
same results as for the elliptic Ginibre model; namely,
in the large N limit, there is a k-dependent first-order
phase transition.
So far, we have restricted our analysis to the k ≤ 1

region. It is easy to see that for k > 1 the partition function
is equivalent to that resulting from the transformation
k → 1=k and β → iβ. The calculation of the free energy
can be carried out along the line of the k < 1 calculation.
Details are worked out in Appendix D.
Another interesting question is whether the eigenvalue

distribution can be related to that of the SYK with real
couplings. We have found, see Appendix C for details, that
indeed the real and imaginary parts of the eigenvalues of
the non-Hermitian SYK are still well described by the
Q-Hermite prediction [33,81], though the fitted value of η
is no longer given by the analytical estimate (68). Notably,
for k < 0.3, the distribution of the imaginary part of the
eigenvalues is very close to semicircular. These facts are
not directly related to the physics of the RSB but illustrate
the rather deep connections between the models we are
considering.

A. Free energy, ground-state energy, and gap
of the SYK model from the SD equations

We now compare the predictions of the Ginibre model
with a calculation of the free energy from the solution of the
SD equations for the same two-site q ¼ 4 non-Hermitian
SYK model in the ΣG representation [18,82,83]. This
formulation is based on the replica trick for the quenched
partition function, hlog jZLj2i. However, we assume that
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the mean-field calculation does not break the replica
symmetry so that the free energy can be obtained from
the one-replica calculation, i.e., from the annealed partition
function hjZLj2i; see the end of Sec. II A where this
terminology is introduced. However, we do have RSB
between ZL and Z�

L, which are only coupled by the
disorder. We will see that, when the temperature is
sufficiently low, the dominant solutions of the saddle-point
equations couple a replica and a conjugate replica. We refer

to Sec. II for a justification of both the correctness of the
replica trick in this non-Hermitian case and the equivalence
of quenched and annealed averages. This is important as by
design the free energy from the SD equations involves an
annealed average but we are interested only in quenched
averages.
Following the standard procedure [16,18], we obtain the

SYK action in Euclidean time as a simple variation of the
action considered in Ref. [41],

−
2SE
N

¼ log Pfð∂tδab − ΣabÞ −
1

2

Z
dτ1dτ2

X
a;b

�
Σabðτ1; τ2ÞGabðτ1; τ2Þ − sab

J 2
ab

2q2
½2Gabðτ1; τ2Þ�q

�

−
i
2
ϵ

Z
dτðGLRðτ; τÞ −GRLðτ; τÞÞ; ð71Þ

where the indices a and b can be equal to L or R. The
function sab takes the values sLL ¼ sRR ¼ 1 and sLR ¼
sRL ¼ ð−1Þq=2, and the couplings J ab are taken to be J
when a ¼ b and J̃ when a ≠ b. They are related to
the variance and covariance of the random L and R
couplings by

hðJLijklÞ2i ¼ hðJRijklÞ2i ¼
2q−1ðq − 1Þ!
qðN=2Þq−1 ð1 − k2Þv2

≡ 2q−1ðq − 1Þ!
qðN=2Þq−1 J 2;

hJLijklJRijkli ¼
2q−1ðq − 1Þ!
qðN=2Þq−1 ð1þ k2Þv2

≡ 2q−1ðq − 1Þ!
qðN=2Þq−1 J̃ 2; ð72Þ

where the left and right couplings are related to the
couplings of the Hamiltonian (56) by

JLijkl ≡ Jijkl þ ikMijkl;

JRijkl ≡ Jijkl − ikMijkl: ð73Þ

This gives

J 2 ≡ ð1 − k2Þv2; J̃ 2 ≡ ð1þ k2Þv2: ð74Þ

Finally, Gab denotes the fermion bilinear defined via the
equations

Gabðτ1; τ2Þ≡ 2

N

XN=2

i¼1

ψ i
aðτ1Þψ i

bðτ2Þ ð75Þ

(we are assuming 0 < τ < β), while Σab are the Lagrange
multipliers that implement this constraint. They can also be

interpreted as the self-energies of the fermions, and the
expectation value of Gabðτ1; τ2Þ is the Green’s function.
Note the iϵ term in the action (71) would have corre-
sponded to a term

iϵ
X
i

ψ i
Lψ

i
R ð76Þ

in the Hamiltonian, which was not present in the original
Hamiltonian (56). However, as we will see in the next
section, we will need this infinitesimal term added to detect
the symmetry breaking whose order parameter is GLR.

1. Symmetries of the Green’s functions

From the definition (75), we then obtain the symmetry
relations

Gabðτ1; τ2Þ ¼ −Gbaðτ2; τ1Þ: ð77Þ

Assuming translational invariance as we will do in the
remainder of this section, we have

Gabðτ1;τ2Þ→Gabðτ1 − τ2Þ; Σabðτ1;τ2Þ→ Σabðτ1− τ2Þ:
ð78Þ

This results in

GLRðτÞ ¼ −GRLð−τÞ; GLLðτÞ ¼ −GLLð−τÞ;
GRRðτÞ ¼ −GRRð−τÞ: ð79Þ

For ϵ ¼ 0, the action is invariant under

ψLðτÞ → −ψLðτÞ; ψRðτÞ → ψRðτÞ: ð80Þ

This symmetry can be implemented by the operatorQN=2
i¼1 ψ

i
L, when N=2 is even. Therefore, we have that
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GLRðτÞ ¼ hψLðτÞψRð0Þiβ ¼ 0; ð81Þ

where h·iβ denotes a thermal expectation value. We take
τ > 0 to avoid using the time-ordering symbol. This
symmetry is broken by a nonzero value of ϵ. In the large
N limit, we shall see it is broken spontaneously for ϵ → 0,
at sufficiently low temperature. Below, we always consider
the limit

lim
ϵ→0

lim
N→∞

GLRðτÞ: ð82Þ

Also, in terms of eigenvectors and eigenfunctions of the
SYK model, GLRðτÞ vanishes identically without the
presence of ϵ term as one can easily check numerically
for small values of N.
Next, we consider an antiunitary PT operation,

PT1∶ψ i
LðτÞ→ψ i

RðτÞ; ψ i
RðτÞ→−ψ i

LðτÞ; i→−i: ð83Þ

This operation can be implemented by

P ¼ exp

�
−
π

2

X
j

ψ j
Lψ

j
R

�
¼
Y
j

1ffiffiffi
2

p ð1 − 2ψ j
Lψ

j
RÞ;

T1 ¼ TL ⊗ TR; ð84Þ

where TL, TR are just the conventional time reversals of a
single-site SYK that leaves the fermions invariant and takes
i to −i. We note that PT1 is a symmetry of the two-site
Hamiltonian without the iϵ term (76) but gets explicitly
broken by the iϵ term. Fortunately, if we compose PT1 with
the symmetry of equation (80), we get another antiunitary
operation that is a symmetry even in the presence of the iϵ
term,

PT2∶ψ i
LðτÞ→ψ i

RðτÞ; ψ i
RðτÞ→ψ i

LðτÞ; i→−i; ð85Þ

implemented by the same P and

T2 ¼ T1

YN=2

i¼1

ψ i
L: ð86Þ

This PT2 symmetry ensures the reality of the partition
function even in the presence of the iϵ term. The PT2

symmetry results in the identities

GLRðτÞ ¼ hψLðτÞψRð0Þiβ ¼ hψRðτÞψLð0Þi�β ¼ G�
RLðτÞ;

ð87Þ

GLLðτÞ ¼hψLðτÞψLð0Þiβ ¼ hψRðτÞψRð0Þi�β ¼ G�
RRðτÞ;

ð88Þ

where we have used the antiunitarity of PT2. Note that,
although the P operator alone is not a symmetry, it satisfies

PHP−1 ¼ H† ð89Þ

in the presence of the iϵ term. This means

ψLðτÞ†¼−PψRð−τÞP−1; ψRðτÞ†¼PψLð−τÞP−1: ð90Þ

Hence, we have1

G�
LRðτÞ ¼ ðTre−βHψLðτÞψRð0ÞÞ�

¼ TrðψRð0Þ†ψLðτÞ†e−βH†Þ
¼ −TrðψLð0ÞψRð−τÞe−βHÞ
¼ −Trðe−βHψLðτÞψRð0ÞÞ ¼ −GLRðτÞ: ð91Þ

This is to sayGLRðτÞ is purely imaginary. Together with the
symmetries (79) and (87), this gives

GLRðτÞ ¼ GLRð−τÞ: ð92Þ

Since GLRðτ þ βÞ ¼ −GLRðτÞ, we also find

GLRðβ − τÞ ¼ −GLRðτÞ: ð93Þ

Using the symmetries (79) and the antiperiodicity of
GLLðτÞ, we obtain

GLLðβ − τÞ ¼ GLLðτÞ: ð94Þ

That is, GLRðτÞ is odd about β=2, whereas GLLðτÞ is even
about β=2.
So far, all the symmetry relations we worked out are true

for each independent realization of the random couplings.
For the Hermitian Maldacena-Qi SYK model [41], there is
one more relation that holds:

GRRðτÞ ¼ GLLðτÞ; GLLðτÞ ¼ G�
LLðτÞ: ð95Þ

In our non-Hermitian model, there is not enough symmetry
for the above to hold realization by realization. Indeed,
as we can numerically verify, for a generic realization,
GLL and GRR are complex and only GLL ¼ G�

RR [Eq. (88)]
holds. However, if we perform the ensemble averaging, we
would expect Eq. (95) to hold for the non-Hermitian model
because

HðJ;M; ϵÞ† ¼ HðJ;−M; ϵÞ ð96Þ

1We omit the normalization factor Trðe−βHÞ in the denomi-
nator for this derivation since it is real and does not affect the
reality property of Green’s functions. Also note that τ is the
Euclidean time.
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and the distribution of the disorder M is an even function.
Let us summarize all the symmetry relations of the Green’s
functions in one place:

GabðτÞ ¼ −Gbað−τÞ;
GLRðτÞ ¼ GLRð−τÞ ¼ −G�

LRðτÞ;
GLLðβ − τÞ ¼ GLLðτÞ; GLRðβ − τÞ ¼ −GLRðτÞ;

GLRðτÞ ¼ G�
RLðτÞ; GLLðτÞ ¼ G�

RRðτÞ;
hGRRðτÞi ¼ hGLLðτÞi; hGLLðτÞi ¼ hG�

LLðτÞi: ð97Þ

We stress all the above equations except the last line hold
for each realization of the ensemble. It is also useful to note
that the LL Green’s function satisfies

GLLð0Þ ¼
h2N Tr

P
kðψk

LÞ2e−βHi
hTre−βHi ¼ 1

2
: ð98Þ

The symmetries of Gab are inherited by Σab. This also
follows from the Schwinger-Dyson equations, which will
be discussed in the next subsection.

2. Schwinger-Dyson equations

Starting from the action (71), the stationarity of Σab gives
the following set of saddle-point equations for the Fourier
components of Σab and Gab

2:�
iωn þ ΣLLðωnÞ ΣLRðωnÞ

ΣRLðωnÞ iωn þ ΣRRðωnÞ

�

×

�
GLLð−ωnÞ GRLð−ωnÞ
GLRð−ωnÞ GRRð−ωnÞ

�
¼
�
1 0

0 1

�
: ð99Þ

Using that GRRðωnÞ ¼ GLLðωnÞ ¼ −GLLð−ωnÞ and
GLRðωnÞ ¼ GLRð−ωnÞ ¼ −GRLðωÞ, the saddle-point
equations can be simplified to

−ðiωn þ ΣLLðωnÞÞGLLðωnÞ þ ΣLRðωnÞGLRðωnÞ ¼ 1;

ðiωn þ ΣLLðωnÞÞGLRðωnÞ þ ΣLRðωnÞGLLðωnÞ ¼ 0:

ð100Þ

In (100), we have introduced the fermionic Matsubara
frequencies

ωn ≡ 2π

β

�
nþ 1

2

�
; ð101Þ

with β being the inverse temperature. At the stationary
points of the G integral, the SD equations for self-energies
ΣLL and ΣLR in the time domain take the form of

ΣLLðτÞ ¼
J 2

q
ð2GLLðτÞÞq−1;

ΣLRðτÞ ¼ ð−1Þq=2 J̃
2

q
ð2GLRðτÞÞq−1 − iϵδðτÞ;

ΣRRðτÞ ¼
J 2

q
ð2GRRðτÞÞq−1;

ΣRLðτÞ ¼ ð−1Þq=2 J̃
2

q
ð2GRLðτÞÞq−1 þ iϵδðτÞ: ð102Þ

They can be rewritten as integral equations for the Fourier
components of Gab and Σab, so that the SD equations
constitute a set of coupled integral equations.
Using the symmetry properties of Gab in Eq. (97),

we obtain the following relations (for even q):

ΣLLðτÞ ¼ ΣRRðτÞ; ΣRLðτÞ ¼ −ΣLRðτÞ;
ΣLLð−τÞ ¼ −ΣLLðτÞ; ΣLRð−τÞ ¼ ΣLRðτÞ: ð103Þ

This again leads to the evenness of ΣLLðτÞ the oddness of
ΣLRðτÞ about β=2.
Using the symmetry properties, the SD equations (100)

can be conveniently rewritten in the following form:

GLLðωnÞ ¼ −
iωn þ ΣLLðωnÞ

ðiωn þ ΣLLðωnÞÞ2 þ Σ2
LRðωnÞ

;

GLRðωnÞ ¼
ΣLRðωnÞ

ðiωn þ ΣLLðωnÞÞ2 þ Σ2
LRðωnÞ

: ð104Þ

Except for the special case q ¼ 2, for which the self-
energies are linear in GabðτÞ and can be easily transformed
to the frequency space, the exact solutions of the SD
equations above have to be obtained numerically. Details of
the numerical procedure are given in Appendix B.
Depending on the temperature, the saddle-point equa-

tions may have more than one solution. The physical
solution is the one with the lowest free energy subject to
the condition that the steepest descent manifold (Lefschetz
thimble) it lies on can be continuously deformed into the
original integration manifold. This can be worked out
explicitly for q ¼ 2, where it turns out that the saddle
point with the lowest free energy is not always the one that
determines the physical free energy [84]. The phase
transition occurs when the solution with the lower free
energy switches to a different solution at the critical
temperature. The free energy depicted in the left panel
of Fig. 4 clearly illustrates this hysteresis mechanism.
In our case, we shall see that at low temperatures the

system is dominated by the solution with a nonzero GLR
while at higher temperatures the replica symmetric solution
with a vanishing GLR dominates. The two solutions
intersect at a point where the system undergoes a first-
order phase transition. Interestingly, we see that in the RSB
phase the free energy is almost constant. This is suggestive

2The omitted correlators GRL and GRR are easy to obtain from
GLL and GLR, thanks to the symmetry properties (97).
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of the existence of a finite gap between the ground state and
the excited spectrum of the effective theory similar to the
wormhole phase in the Maldacena-Qi model [37,41]. A
comment is in order: from the gravity perspective, it may
seem strange that the high-temperature phase depends on
the strength k of the imaginary part of the coupling.
However, note that this k-dependence can be eliminated
by an overall rescaling of the Hamiltonian by a function of
k as we did for the Ginibre case. For the sake of simplicity,
we stick with the Hamiltonian (56).
Finally, we study the differences between the annealed

free energy, obtained from the solution of the saddle-point
SD equations (see Fig. 4, left) and the quenched free energy
(see Fig. 4, right, and Fig. 5), which is accessible by an
exact diagonalization of the Hamiltonian. For the latter, due
to technical limitations, we have consideredN=2 ≤ 34. The
number of disorder realizations is such that for any given N
and k at least 106 eigenvalues are obtained. It is well known
[32,34] that the SYK model requires a relatively large

number of fermions, N ≥ 30 in most cases, to approach
the thermodynamic limit. For that reason, we have also
carried out a finite size scaling analysis with a fitting
function (for k ¼ 1),

Fðε; Tc; wÞ

¼
R∞
0 dse−ðs−TÞ2=2w2 ½θðTc − sÞε − θðs − TcÞs log 2�R

∞
0 dse−ðs−TÞ2=2w2 ;

ð105Þ

which provides an excellent global fit for N ≤ 30. The
accuracy of the free energy data for N ¼ 34 reduces the
quality of the fit, and we did not include it in the N → ∞
extrapolation. However, the N ¼ 34 data are within fluc-
tuations of the extrapolation from N ¼ 22, N ¼ 26, and
N ¼ 30. In Fig. 6, we show the dependence of ε (left),
Tc (middle), and w (right) on 1=N.
The large deviation from linearity for N ¼ 34 are due to

fluctuations close to the critical temperature, which can
only be suppressed by increasing the size of the ensemble
well beyond our computational resources. The extrapolated
free energy agrees well with the result from solving the
Schwinger-Dyson equations (compare the red and the black
curves in Fig. 5). Also, the extrapolated values of the
physical parameters εðk ¼ 1Þ ¼ −0.0139 and Tc ¼ 0.0203
are in agreement with results from the Schwinger-Dyson
equation where εðk ¼ 1Þ ¼ −0.0135 and Tc ¼ 0.0197.
In the thermodynamic limit at fixed q ¼ 4, the values of
these parameters are equal to εðk ¼ 1Þ ¼ −0.0147 and
Tc ¼ 0.0225. The parameter εðkÞ is well determined by
the global fit and can also be obtained from extrapolating
at a single temperature well below Tc, where we can
also include the N ¼ 34 data. The critical temperature
then follows from the intersection point with the high-
temperature curve, which gives

Tc ¼
γðkÞ − εðkÞ

S0
; ð106Þ

FIG. 5. Quenched free energy per particle obtained from
exact diagonalization of the two-site SYK model for k ¼ 1
and different values of N. We also include the extrapolated,
N=2 → ∞, free energy resulting from a finite size scaling
analysis of the numerical results (black curve) together with
the large N prediction from the solution of the SD saddle-point
equations (red curve). Agreement between the two results is
excellent. See the main text and Fig. 6 for details and limitations
of the finite size scaling analysis.

FIG. 4. Left: annealed free energy for different values of k from the solutions of the SD equations. Right: quenched free energy per
particle from exact diagonalization of the two-site SYK model for different values of k and N=2 ¼ 30.
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with −S0 the slope of the high-temperature curve and γðkÞ
and ϵðkÞ the intercepts of the high-temperature curve and
the low-temperature curve with the T ¼ 0 vertical axis,
respectively. Within the accuracy of our calculations, this
finite size scaling analysis gives the same result as obtained
from using the finite size scaling form (105).

B. Critical temperature and the ground-state energy

Since the system develops a first-order phase transition,
we can study the free energy of both phases separately and
use this to determine the critical temperature TcðkÞ as a
function of k. We start with the low-temperature phase.
From Fig. 5, it is clear that the free energy is close to being
temperature independent. The intercept of the free energy
of the low-temperature phase with the T ¼ 0 axis is well
determined. In Fig. 7, we show the intercept εðkÞ versus k
(black points) and compare it to the k-dependence obtained
for the elliptic Ginibre model

εðkÞ ¼ 2

N
E0ðkÞ ¼

e0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ð107Þ

with e0 determined by the ground-state energy of the k ¼ 0
SYK model. From elementary considerations, it is clear
that −εðkÞN=2 is equal to the smallest real part of the

eigenvalues. The excellent agreement of the k-dependence
shows that the two-site non-Hermitian SYK model is in the
universality class of the elliptic Ginibre model.
Next, we consider the free energy of the high-

temperature phase. Its intercept with the T ¼ 0 axis γðkÞ
is compared to the focal point of the ellipse containing the
eigenvalues obtained for the elliptic Ginibre model

γðkÞ ¼ −
2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0ðkÞ − y20ðkÞ

q
: ð108Þ

Again, the agreement is excellent without any fitting [see
Fig. 7 (right)]. The free energy of the high-temperature
phase is approximately linear in T, but the entropy per
particle [see Fig. 8 (left)] is only equal to log 2 for k ¼ 1,
contrary to the expectation from the Ginibre model.
For k < 1, the zero-temperature entropy of the high-
temperature phase is a constant equal to the k ¼ 0 value
of C=π þ 1

4
log 2 (red curve in Fig. 8, left) where C is

the Catalan constant,3 but jumps to log 2 close to k ¼ 1.

FIG. 7. The intercepts of the free energy with the T ¼ 0 axis for the low-temperature phase (left) and the high-temperature phase
(right) both obtained from solving the Schwinger-Dyson equations of the non-Hermitian SYK model. The results are compared to
analytical formulas for the Ginibre ensemble, where εðkÞ and γðkÞ are half of the long axis and the focal length of the ellipse containing
the eigenvalues of the Hamiltonian. The curves are obtained without fitting with εð0Þ as the only parameter.

FIG. 6. The fitting parameters ε ¼ εðkÞ (left), Tc (middle), and w (right) as a function of 2=N for N ¼ 22, 26, 30, and 34. The linear
dependence works well for all N for ε, but in case of Tc and w, the N ¼ 34 values are aberrant. This is due to the limited size of the
ensemble (40 realizations) in this case. The result obtained from the SD equations is indicated by the red dot at 2=N → 0.

3This comes from the zero-temperature entropy density
formula [16,18] S0 ¼ 1

2
log 2 −

R 1=q
0 πð1

2
− xÞ tanðπxÞdx for the

one-site Hermitian SYK model.
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Even for k ¼ 0.98, the zero-temperature entropy is very
close to the k ¼ 0 value.
The critical temperature is determined by the intersection

of the free energy of the low- and high-temperature phases.
The results are given in Fig. 8 (right). We also show the
result for the Ginibre ensemble (blue curve) that can be
obtained from ϵðkÞ and γðkÞ. However, it is clear that this
cannot work because the slope of the free energy of the
high-temperature phase is always log 2 for the elliptic
Ginibre model. If we substitute log 2 by the actual slope
for k < 1, S0ðkÞ ¼ 0.464848, we obtain

TcðkÞ ¼
e0

S0ðkÞ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k4

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
!
; ð109Þ

which is depicted by the red curve in Fig. 8. If we use the
actual value of S0ðkÞ for k ¼ 1, we also find agreement with
the result for the Ginibre ensemble. The agreement with the
Ginibre ensemble provides strong support to the physical
picture of RSB configurations dominating the free energy
in the low-temperature limit and inducing a first-order
phase transition.
We already have seen that the entropy of the two-black-

hole phase is not given by the Ginibre ensemble. Also, for
the low-temperature phase, we observe deviations from the
Ginibre ensemble, which gives a vanishing entropy. Indeed,
if we plot the entropy per particle

SðTÞ ¼ −
2

N
dF
dT

ð110Þ

on a log-log scale (see Fig. 9), we find a clear temperature
dependence. For each of the four k values, k ¼ 0.4,
k ¼ 0.7, k ¼ 0.9, and k ¼ 1, we observe a strong first-
order phase transition at Tc, discussed earlier in this
section. At this point, the entropy per particle jumps from
a small positive value to a value in the range ½0.5; log 2�

(see the caption of Fig. 9). For k ¼ 1, we observe a second
critical temperature, T0, below which the entropy vanishes
to the accuracy of the calculation. Between this temperature
and Tc, the entropy becomes a small nonzero positive
number after first becoming negative. Changing the dis-
cretization steps by a factor 2, or even a factor 1000, does
not change this picture for k ¼ 1. Note that the apparent
jump between T0 and Tc is due to plotting jSðTÞj on a log-
log scale. For k ¼ 0.4, k ¼ 0.7, and k ¼ 0.9 (in fact for
k < 0.95), the entropy remains positive, and we plot SðTÞ
rather than jSðTÞj.
The discretization error is expected to be of second order

in the discretization step Δt ¼ β=M. Indeed, at low temper-
atures, the entropy behaves as 1=T2 (see Fig. 9). After
Richardson extrapolation (see the black points in Fig. 9),

SextrapolatedðTÞ ¼ 2SðM;TÞ − SðM=2; TÞ; ð111Þ

the leading-order dependence on the step size is canceled,
and the discretization error is of order ðΔtÞ3. Indeed, the
extrapolated result (black dots in Fig. 9) behave as 1=T3 for
temperatures below the kink (see green lines). We conclude
that for temperatures below the kink the nonzero value of
the entropy is due to finite size effects. We expect that in the
continuum limit the entropy will also vanish in this region
for k < 1. Because GLR is continuous at t ¼ 0 and t ¼ β,
the finite size effects for contributions involving GLR are
very small. On the other hand, GLL is discontinuous at
t ¼ 0 and t ¼ β, which results in large finite size effects
of contributions of GLL to the free energy. This explains
why the entropy for k ¼ 1, which depends only on GLR,
does not depend on the discretization step for a large range
of M values. We also notice that by choosing half-integer
discretization points the discretization errors are reduced
by an order of magnitude with respect to choosing integer
discretization points.

FIG. 8. The zero-temperature entropy per particle S0ðkÞ vs k for the black hole phase calculated from the slope of the free energy (left),
compared to C=π þ 1

4
log 2with C the Catalan constant (0.915966). The right figure compares the critical temperature obtained from the

solutions of the Schwinger-Dyson equations to the formula from the elliptic Ginibre ensemble with the high-temperature entropy
substituted by the entropy of the curve shown in the left figure. If we would have used the actual values of the entropy for k ¼ 1 (which is
log 2), the result of the SD equations would have agreed with the result from the Ginibre ensemble.
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The entropy is also given by [18] (i.e., using
F ¼ U − TS)

dF
dT

¼ F
T
þ J 2β2

1

M

XM
n¼1

GLL

�
n −

1

2

�

þ J̃ 2β2
1

M

XM
n¼1

GLR

�
n −

1

2

�
: ð112Þ

Each of the terms can be calculated separately from the free
energy and the Green’s functions. This identity (which is
valid at finite M) is satisfied numerically to three or four
significant digits (except when the entropy is very small
and large cancellations occur in the right-hand side). We
could not fully explain why this identity is not satisfied
with greater accuracy, but it could be due large finite size
effects inGLL for t close to 0 or β. For k > 0.95, the entropy
becomes negative. However, its magnitude is very small—
the monotony of the free energy is only violated by about
10−6 of its value. Within a wide range of the parameters, it
also does not depend on the size of the discretization step
and the convergence criterion. However, we cannot exclude

that the negativity of the entropy may be an artifact of the
algorithm.
To identify the value of the second critical point, we fit

the logarithm of aðT − T0Þp to the logarithm of the
extrapolated entropy between T0 and Tc well away from
the end points to reduce finite size effects. The results are
shown in Fig. 10. For k ¼ 0.98 and k ¼ 1, we only fit in the
region where the entropy is positive. Examples of the fitted
curves are shown in Fig. 9 (blue curves). Taking these fits at
face value would indicate a high-order continuous phase
transition. Because of the smallness of the entropy and the
magnitude of the finite size effects for k < 1, we cannot
exclude that such conclusion is an artifact of the algorithm
we are using.

C. Decay of GLRðτÞ and the gap

In order to understand the nature of the RSB configura-
tions, we investigate the behavior of GLRðτÞ in more detail.
We are particularly interested in its exponential decay

rate with τ, which, for traversable wormholes or weakly
coupled two-site SYK models with real coupling
(Maldacena-Qi model [41]), is directly related to a gap
Eg in the spectrum. Contrary to the Maldacena-Qi model,

FIG. 9. Log-log plot of the entropy of the two-site non-Hermitian q ¼ 4 SYK model as a function of the temperature for k ¼ 0.4
(upper left), k ¼ 0.7 (upper right), k ¼ 0.9 (lower left), and k ¼ 1 (lower right). The red dots show results obtained from a numerical
solution of the Schwinger-Dyson equations for 105 discretization points on ½0; β�, and the black dots are a Richardson extrapolation [85]
from the solutions with 5 × 104 and 105 discretization points. At the first-order phase transition point, the entropy jumps from 0.010 to
0.474, from 0.032 to 0.506, from 0.070 to 0.569, and from 0.132 to 0.693 (log 2) for k ¼ 0.4, k ¼ 0.7, k ¼ 0.9, and k ¼ 1, respectively.
For k ¼ 1, the entropy becomes negative on the interval [0.0046, 0.0118] and vanishes up to the accuracy of the calculation for
T < 0.0046. For k ¼ 1, the results do not depend on the discretization step until it is increased by a factor of about 1000. The blue curve
for k ¼ 1 is a fit for T > 0.0118 until the first-order transition point.
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where the gap Eg is equal to the energy difference of the
first excited state and the ground state, the non-Hermitian
SYK Hamiltonian does not have a genuine gap, but as
we will see below, GLRðτÞ still decreases exponentially for
large τ.
The gap (decay rate) is computed by fitting the long-time

behavior of the propagator GLRðτÞ, or GLLðτÞ, for suffi-
ciently low temperature with an exponential ansatz. More
specifically, taking into account the symmetries of the
solution (see Sec. IVA 1 and Appendix B), we employ
the ansatz

GLRðτÞ ∼ sinh ðEgðβ=2 − τÞÞ;
GLRðτÞ ∼ cosh ðEgðβ=2 − τÞÞ; ð113Þ

where the gap Eg is a fitting parameter. A feature to note is
that these nontrivial solutions for GLR continue to exist for
a range of temperatures when they no longer minimize
the free energy (see Fig. 4). The two-black-hole solutions
exist for all temperatures. We have checked that at small
temperatures this ansatz reproduces well the behavior of the
propagator for 0 ≪ jτ − β=2j ≪ β=2 (for small k, it also
agrees well for τ around β=2; see Fig. 11. Close to the end
points, we see significant deviations from the free propa-
gator in particular for GLRðτÞ.

The value of the decay rate Eg as a function of the
coupling k in the low-temperature limit is shown in Fig. 12
(left). For small k, it depends quadratically on k, but there
are significant deviations for k > 0.8.
Except for very low temperatures, the value of GLRð0Þ

is almost constant as a function of the temperature in the
RSB phase and vanishes beyond the critical temperature;
see Fig. 13. Therefore, GLRð0Þ can be considered as the
order parameter of a first-order phase transition. The
thermodynamic limit of this order parameter will be
analyzed in detail in the next subsection. The wormhole
solution continues to exist for T > Tc until T ≈ 0.006. The
k-dependence of GLRð0Þ is shown in the right panel of
Fig. 12. The small k behavior can be fitted by ∼ðk − bÞ2=3.
The value of b ¼ 0.076 is consistent with the value of k
below which we can no longer obtain a wormhole solution
from the SD equations.
Qualitatively, the observation of an exponential decay,

see Fig. 13 (left), with a decay rate Eg gives further support
to the physical picture of RSB configurations as tunneling
events connecting different replicas. This is also the
interpretation of wormholes in the gravity partition func-
tion. We note that the use of the term “gap” for the decay
rate Eg is more by analogy with the traversable wormhole
case where it can be demonstrated rigorously that Eg is the
difference between the ground and the first excited state.

FIG. 11. The nontrivial solutions of the SD equations for GLL (left) and GLR (right), for T ¼ 0.001 and k ¼ 0.55. The SD solutions
(black curve) are compared to the free Green’s functions (red curves) with a fitting parameter that sets the scale (the gap Eg) and an
overall constant. The exponents of GLL and GLR agree to six significant digits.
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FIG. 10. The fitting parameters T0 and p as a function of k.
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In our case, the Hamiltonian is non-Hermitian, and its
spectrum does not have a gap. Therefore, this interpretation
can only be applicable to the associated replica field theory.

D. Order parameter for the phase transition

In this subsection, we study the behavior of the mixed
propagator at the origin, GLRð0Þ. We will show that it is an
order parameter of the first-order phase transition discussed
before. Since the eigenstates of the Hamiltonian are
degenerate for mod ðN=2; 8Þ ≠ 0, the value of GLRð0Þ is
basis dependent. For example, if the eigenstates are chosen
to be also eigenstates of the chirality operators γL5 ¼
iN=4ðN=2−1ÞQN=2

j ψ j
L and γR5 ¼ iN=4ðN=2−1ÞQN=2

j ψ j
R, the

Green’s function GLRð0Þ vanishes identically.
At finite temperature, GLRð0Þ is given by

GLRð0Þ ¼
1

Z
1

N=2

	
Tr

�
e−βH

X
k

ψL
kψ

R
k

�

: ð114Þ

As discussed before, this quantity vanishes for ϵ ¼ 0 in the
action (71) and is purely imaginary for nonzero values of ϵ.
The zero-temperature limit is given by the ground-state
expectation value

h0jSj0i≡ h0j 1

N=2

X
k

ψL
kψ

R
k j0i: ð115Þ

For mod ðN=2; 4Þ ¼ 2 (Gaussian Unitary Ensemble uni-
versality class), we have four degenerate ground states
which can be characterized by the chirality of the L (left)
and R (right) SYK models (see Appendix E). Eigenstates
with these quantum numbers are obtained by adding an
infinitesimal term ∼γ5;Lγ5;R to the Hamiltonian. In this
basis, the spin operator with basis states jþ þi; j− −i;
jþ −i; j−þi is given by

hχLχRjiSjχLχRi ¼

0
BBB@

0 iα 0 0

−iα 0 0 0

0 0 0 iβ

0 0 −iβ 0

1
CCCA; ð116Þ

where χL; χR ¼ � are the possible chiralities of the left
and right ground states. The antisymmetry follows from
the Hermiticity and the anticommutation properties of the
gamma matrices. Using the representation

ψk
L ¼ γk ⊗ 1;

ψk
R ¼ γ5 ⊗ γk; ð117Þ

we can write the constants α and β as

α ¼
X
k

hþjγkj−i2 ¼ 0

β ¼ −
X
k

jh−jγkjþij2 ≠ 0; ð118Þ
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FIG. 13. The behavior of the GLRð0; TÞ, as a function of the
temperature for k ¼ 0.55. As expected in a first-order transition, it
drops to zero abruptly at the transition, which suggests that it can
be considered an order parameter of the transition. The dashed
red curve indicates the value of GLRð0; TÞ for T > Tc [41].
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FIG. 12. Top: t energy gap Eg, namely, the rate of exponential decay of GLRðτÞ (left) and GLRð0Þ (right) as a function of the k
calculated from the propagator for T ¼ 0.0005. For small k, we observe a quadratic dependence of Eg on k. The exponent of the
k-dependence of GLRð0Þ is not well determined, but an aðk − bÞ2=3 gives a reasonable fit.
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and the minus sign is due to the chirality. For the γk
in (117), we use the representation

γ2k−1¼2−1=2σ3⊗ � ��⊗σ3
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{k

⊗σ1⊗σ0⊗ � ��⊗σ0
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{N

2
−k−1

;

γ2k¼2−1=2σ3⊗ � ��⊗σ3
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{k

⊗σ2⊗σ0⊗ � ��⊗σ0
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{N

2
−k−1

: ð119Þ

For each term contributing to the sum in (118) containing a
σ1, there is a corresponding gamma matrix with a σ2 at the
same position in the tensor product. The nonvanishing
matrix elements differ by�i so the sum over the squares of
the matrix elements, which gives α, vanishes. Since β is
equal to the sum of the absolute value of the matrix
elements, it does not vanish. The ground state is thus
given by

jGi ¼ 1ffiffiffi
2

p ðjþ −i � ij−þiÞ: ð120Þ

We thus find that for ϵ ≠ 0 the ground-state expectation
value of GLRð0Þ ¼∓iβ is nonvanishing. Note that the sign
of GLRð0Þ is determined by the sign of ϵ.
Next, we consider the case mod ðN=2; 8Þ ¼ 0. Then, the

ground state of the single-site SYK is unique and can be in

each of the two chirality sectors. Therefore, the ground state
of the two-site SYK model has either jþ þi or j− −i as
ground state in terms of the chiralities of each SYK. This
means that the expectation value of S vanishes. For a
nonzero value of ϵ, a perturbative calculation yields

GLRð0Þ ¼
ϵ

Eþþ − E−−
ð121Þ

with Eþþ and E−− the lowest energy with both chiralities
positive or negative, respectively. In the thermodynamic
limit, the spacing of Eþþ − E−− ∼ exp½− 1

2
NS0� with S0 the

zero-temperature entropy density, and a finite value is
possible if the thermodynamic limit is taken before the limit
ϵ → 0.
Finally,we consider the casemod ðN=2; 8Þ ¼ 4 (Gaussian

Symplectic Ensemble universality class). In this case, the
levels of each SYK are doubly degenerate (see Appendix E).
Therefore, we have four degenerate ground states. Since the
charge conjugationmatrix is the product of an even number of
gamma matrices, both states of a Kramer’s degenerate pair
have the same chirality. We conclude that all four ground
states have either the chirality jþ þi or j− −i so that the
ground-state expectation value of S vanishes. For small ϵ, the
component of the wave function with the opposite chiralities
is again given by first-order perturbation theory, andGLRð0Þ
is again of the form (121). We expect to obtain a finite value
if the thermodynamic limit is taken before the ϵ → 0.
These arguments also apply to the original Maldacena-Qi
(MQ) model with real couplings.
In Fig. 14 (left), we show the ϵ-dependence of GLRð0Þ

for different values of N. As was expected, only for
N=2 ¼ 12 or N=2 ¼ 24, we observe spontaneous sym-
metry breaking.
The theoretical arguments given in this section are

consistent with the numerical calculation of GLRð0Þ from
the solution of the SD equations (see Fig. 15), which
identifies GLRð0Þ as the order parameter of a first-order
phase transition.
We now show that an exact finite N calculation of

the order parameter GLRð0Þ based on the exact diagonal-
ization of the Hamiltonian yields similar results. Since a

FIG. 14. The ground-state expectation value of S at zero
temperature, namely, GLRð0Þ, as a function of ϵ for k ¼ 0.5.

FIG. 15. The temperature dependence of GLRð0Þ as a function of the temperature T for k ¼ 0.5 and N ¼ 20 (left) or N ¼ 24 (right).
The values of ϵ are indicated in the figures.
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non-Hermitian matrix can be diagonalized by a similarity
transformation, e ¼ V−1HV, we have that

GLRð0Þ ¼
1

Z
2

N
Tr½e−βeV−1SV�: ð122Þ

In Fig. 14, we show the zero-temperature limit of this
quantity as a function of ϵ for N=2 ¼ 12, N=2 ¼ 16,
N=2 ¼ 20, and N=2 ¼ 24, all for k ¼ 0.5. The random
matrix theory universality class of a single SYK is Gaussian
Unitary Ensemble (GUE), Gaussian Orthogonal Ensemble
(GOE), GUE and Gaussian Symplectic Ensemble (GSE), in
this order. In agreement with the above arguments, in the
GUE class, the symmetry is spontaneously broken, but in
the GOE and the GSE classes, it is not clear whether a finite
result can be obtained for large N and small ϵ. The
temperature dependence of GLRð0Þ for N ¼ 20 and N ¼
24 is shown in Fig. 15. Again, we observe that the GUE
universality class (for N ¼ 20) and the GSE universality
class (for N ¼ 24) behave qualitatively different.
In the GUE universality class (left), the low-temperature
limit of GLRð0Þ saturates to a finite value, while the
pseudocritical temperature seems to be proportional to ϵ.
For the GSE universality class, the zero-temperature value
is proportional to ϵ, while the critical temperature seems
to scale as ϵ2. Also, the numerical value of the zero-
temperature limit of GLRð0Þ is below the result obtained
from the SD equations, which may be due to the slow
convergence of the large N limit.

V. CONCLUSIONS

By downgrading the condition of Hermiticity to only PT
symmetry in random quantum systems, the saddle-point
equations have RSB solutions connecting different replicas
with lower energy than the replica-symmetric ones. The
nature of these solutions is strikingly similar to that of
wormholes in JT gravity. With the free energy as observ-
able, we have identified a first-order transition in two
examples where the dynamics is quantum chaotic, the
two-site Ginibre model and the two-site non-Hermitian
SYK model.
The free energy of the two-site non-Hermitian SYK

model was calculated in two ways: by explicit diagonal-
ization of the Hamiltonian at finite N and by solving the
Schwinger-Dyson equations in the thermodynamic limit.
A strong first-order transition at finite T separates a low-
temperature phase where the free energy is dominated by
RSB configurations (the wormhole phase) from the high-
temperature phase controlled by replica symmetric con-
figurations (the two-black-hole phase). Although we did
not present explicit results relating the infrared limit of this
SYK model with a gravity theory, this transition is
reminiscent of an Euclidean wormhole-to-black-hole tran-
sition [58]. The solutions of the Schwinger-Dyson equa-
tions also indicate that there is a second phase transition at a

lower temperature, which is continuous, below which the
free energy becomes strictly constant. In between these two
phase transitions, the free energy increases rapidly until it
jumps to the value of the two-black-hole phase at the first-
order phase transition temperature. Because of substantial
finite size effects, only for k ¼ 1, the existence of a phase
with a constant free energy is established unambiguously.
For k < 1, we cannot exclude that the derivative of the free
energy remains nonvanishing all the way to zero temper-
ature. Another remarkable observation is that the zero-
temperature entropy of the black hole phase does not
depend on the degree of non-Hermiticity as long as k < 1
but jumps to the high-temperature value4 at k ¼ 1. We have
no good explanation for what causes the discontinuity of
the k-dependence of the entropy.
Although we have restricted our analysis to q ¼ 4, we

expect that this transition is universal, provided that q > 2
when the dynamics is quantum chaotic, and therefore its
spectral correlations are expected to be those of the Ginibre
ensemble. This expectation is based on the following facts:

(i) We have found excellent agreement between the two-
site elliptic Ginibre ensemble and the q ¼ 4 two-site
non-Hermitian SYK model—in some sense, the
Ginibre model is an SYK model with q ∼ N.

(ii) For real couplings, spectral correlation does not
depend qualitatively on the value of q > 2.

An important conceptual question arises: for this first-
order phase transition to happen, is it a requirement that the
dynamics is quantum chaotic? Indeed, for the two-site
q ¼ 2 SYK model which is integrable [18,84], we only
have second-order phase transitions [84]. However, as is
shown in Appendix F, for uniform uncorrelated random
eigenvalues inside the complex unit disk, we do find a first-
order phase transition, but in the low-temperature phase,
the free energy depends linearly on the temperature.
The results of this paper open several promising research

avenues. First of all, it remains to establish unambiguously
the existence of the second continuous phase transition
mentioned above. Because of the smallness of the entropy in
the wormhole phase, this requires a new algorithm for
solving the SD equations that greatly reduces the finite
size effects, allowing us to study the details of this phase
transition. An improved algorithm will also help us to
analyze the discontinuity of the k-dependence of the entropy.
It would also be interesting to explore whether a

generalized Schwarzian is still the effective description
of the infrared limit of both a perturbed JT gravity theory
(related to Euclidean wormholes) and the two-site non-
Hermitian SYK investigated in this paper. If this is the case,
like for traversable wormholes [41], it would be a strong
indication that RSB configurations are the field theory

4The high-temperature value of the free energy is given by
F ¼ − N

2
T log 2 resulting in a high-temperature entropy per

particle [defined in Eq. (110)] of log 2.
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equivalent of Euclidean wormholes which may be relevant
in the solution of the factorization problem in holography. It
would also be interesting to include in our model an explicit
Maldacena-Qi coupling in order to study transition/cross-
over from Euclidean to traversable wormholes [80].
In light of our results, and recent developments in the

resolution of the information paradox [86,87], an interesting
research direction is to investigate the growth of entangle-
ment entropy in a setting based on the non-Hermitian SYK.
Of special interest is the contribution of multireplica worm-
holes in the late stages of the time evolution. Another
problem that deserves further attention is a more exact
delimitation of the conditions to observe RSB configurations
even within PT-symmetric systems. Is quantum chaos
always a necessary and sufficient condition, beyond the
q ¼ 2 example discussed? If not so, is it possible to
characterize the existence of RSB configurations as a
function of the range of interactions? Are many-body
correlations important, or can similar results be obtained
in single-particle, noninteracting two-site disordered sys-
tems? Is the extension of these results to higher spatial
dimensions straightforward? If so, does the existence of
RSB configurations depend on the strength of disorder or
the hopping range in real space? Can they occur in the
presence of Anderson or many-body localization? We plan
to address some of these questions in the near future.
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APPENDIX A: CALCULATION OF THE FREE
ENERGY FOR THE TWO-SITE GINIBRE

ENSEMBLE

In this Appendix, we evaluate the partition function
of the two-site Ginibre model. For a Ginibre ensemble of
D ×D matrices, the eigenvalue kernel is given by [77,88]

Kðz1; z2Þ ¼
e−z1z

�
2

π

XD−1

k¼0

ðz1z�2Þk
k!

: ðA1Þ

The eigenvalue density reads

ρðzÞ ¼ Kðz; zÞ; ðA2Þ
and the connected two-point correlation function is equal to

ρ2;cðz1; z2Þ ¼ −Kðz1; z2ÞKðz2; z1Þ þ δðz1 − z2ÞKðz1; z1Þ;
ðA3Þ

where the second term is due to the self-correlations.
The spectral density is normalized to D, and the eigenval-
ues are located in a circle of radius

ffiffiffiffi
D

p
. To be able to adjust

the overall scale of the eigenvalues, we include a factor σ in
the definition of the partition function

Z2ðβÞ ¼
Z

d2z1d2z2ρ2;cðz1; z2Þe−βðz1þz�
2
Þ=σ þ jZ1ðβÞj2:

ðA4Þ
The second contribution is due to the disconnected part of
the two-point function with Z1 given by

Z1ðβÞ ¼
Z

d2zρðzÞe−βz=σ: ðA5Þ

We first calculate the disconnected contribution. The
one-site partition function requires the integral

Z1ðβÞ ¼
Z

d2z
π

e−βz=σe−jzj2
XD−1

k¼0

ðzz�Þk
k!

: ðA6Þ

Only the first term of the Taylor expansion of expð−βzÞ
gives a nonvanishing result, and after changing to polar
coordinates, we obtain

Z1ðβÞ ¼
Z

∞

0

dse−s
XD−1

k¼0

sk

k!
¼ D: ðA7Þ

Next, we calculate the contribution due to self-correlations.
It is given by

ZselfðβÞ ¼
1

π

Z
d2ze−βðzþz�Þ=σe−jzj2

XD−1

m¼0

ðzz�Þm
m!

¼
XD−1

m¼0

X∞
l¼0

�
β

σ

�
2l ðmþ lÞ!

m!l!l!

¼
XD−1

m¼0

eβ
2=σ2L0

mð−β2=σ2Þ

¼ eβ
2=σ2L1

D−1ð−β2=σ2Þ; ðA8Þ
where we have used a summation formula for associated
Laguerre polynomials:
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Xn
m¼0

La
mðxÞ ¼ Laþ1

n ðxÞ: ðA9Þ

The asymptotic behavior of the Laguerre polynomials is
given by

Lα
nð−xÞ ∼ nα=2ð−xÞ−α=2e−x=2Jαð2i

ffiffiffiffiffi
nx

p Þ: ðA10Þ

For α ¼ 1 and x ¼ β2=N, this gives

L1
Dð−β2=σ2Þ ∼

σ

β

ffiffiffiffi
D

p
e−β

2=2σ2I1ð2β
ffiffiffiffi
D

p
=σÞ: ðA11Þ

It is instructive to calculate the large D asymptotics by
expressing the sum in the first line of (A8) as an incomplete
Γ-function:

ZselfðβÞ ¼ 2

Z
∞

0

rdr
ΓðD; r2Þ
ΓðDÞ I0ð2βr=σÞ: ðA12Þ

For large D, the incomplete Γ-function can be approxi-
mated by

ΓðD; r2Þ
ΓðDÞ ≈

1

2
erfcððr −

ffiffiffiffi
D

p
Þ
ffiffiffi
2

p
Þ: ðA13Þ

Inserting this in Eq. (A12), we obtain after a partial
integration

ZselfðβÞ ¼
σ

β

ffiffiffi
2

π

r Z
∞

0

rdre−2ðr−
ffiffiffi
D

p Þ2I1ð2βr=σÞ

≈
σ

β

ffiffiffiffi
D
2

r
eβ

2=2σ2I1ð2β
ffiffiffiffi
D

p
=σÞ: ðA14Þ

For large D, we have that 1
2
erfcððr− ffiffiffiffi

D
p Þ ffiffiffi

2
p Þ→θð ffiffiffiffi

D
p

−rÞ,
but with this asymptotic, we would have missed the
expðβ2=2σ2Þ factor.
The contribution of the genuine two-point correlations

can be worked out in the same way. We obtain

−
1

π2

Z
d2z1d2z2e−ðβ=σÞðz1þz�

2
Þe−jz1j2−jz2j2

×
XD−1

m¼0

ðz1z�2Þm
m!

XD−1

n¼0

ðz2z�1Þn
n!

¼ −
XD−1

n¼0

Xn
m¼0

�
n

m

�
1

m!

�
β2

σ2

�
m

¼ −
XD−1

n¼0

L0
nð−β2=σ2Þ

¼ −L1
D−1ð−β2=σ2Þ; ðA15Þ

where we have again used the summation formula (A9).
We are interested in a scaling limit where β=σ ≪ 1. Then,
we can expand the exponent in (A8). The first term in the
expansion is canceled by the two-point correlations (A15).
For the partition function, we then obtain the result

Z2ðβÞ ¼ D2 þ β2

σ2
L1
D−1ð−β2=σ2Þ: ðA16Þ

To obtain a free energy density logZ=N that is stable in the
large N limit, we choose D ¼ 2N=2. Inserting on the right-
hand side the large D limit of the Laguerre polynomial
given in (A11), we find

Z2ðβÞ ¼ D2 þ
ffiffiffiffi
D

p β

σ
I1ð2β

ffiffiffiffi
D

p
=σÞ: ðA17Þ

This contribution scales in the same way with N as the
disconnected part if we choose σ ∼

ffiffiffiffi
D

p
=N. Ignoring

logarithmic corrections, we obtain the free energy

FðTÞ
N

¼ −
T
N
log ðD2 þ I1ð2β

ffiffiffiffi
D

p
=σÞÞ

≈ −
T
N
log ðD2 þ e2β

ffiffiffi
D

p
=σÞ: ðA18Þ

The two exponents are equal at

Tc ¼
2
ffiffiffiffi
D

p
=σ

2 logD
: ðA19Þ

Choosing σ ¼ ffiffiffiffi
D

p
=N, we obtain Tc ¼ 2=log 2, and the

free energy is equal to

FðTÞ
N

¼ −
T

log 2
θðT − TcÞ − 2θðTc − TÞ; ðA20Þ

in agreement with the k → 1 limit of (56).
The integrals for the contributions of the self-correlations

(A8) and genuine two-point correlations (A15) generally
cannot be calculated exactly, and we must rely on an
approximate evaluation. To do that, we assume that the
eigenvalue correlations are in the universality class of the
Ginibre ensemble. Noting that the integral over z1 and z2
can be written as an integral over the center of mass and
the difference of z1 and z2, we assume that the integral of
z1 − z2 can be extended to the entire complex plane, while
the integral over ðz1 þ z2Þ=2 is replaced by the large D
limit of the spectral density. Since the eigenvalue correla-
tions are short ranged, we expect that the extension of the
integral over z1 − z2 to the entire complex plane and using
the large D limit of the two-point function is a good
approximation. However, we have seen earlier in this
section that this approximation does not determine the
exponent α of the prefactor exp½αβ2=σ2�. In particular,
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contributions from the boundary of the eigenvalue disk may
change the value of α, but this does not affect the free
energy in the thermodynamic limit.
In the last part of this section, we compare the exact and

approximate expressions for the replica breaking part of the
partition function. For the approximate calculation of the
contribution of the self-correlations to the partition func-
tion, we replace the spectral density by its large D limit

1

π
e−jzj2

XD−1

k¼0

ðzz�Þk
k!

→
1

π
θð

ffiffiffiffi
D

p
− jzjÞ; ðA21Þ

which after changing to polar coordinates results in

Zself;app ¼
1

π

Z ffiffiffi
D

p

0

rdr
Z

2π

0

dϕe−
2rβ
σ cosϕ

¼ 2

Z ffiffiffi
D

p

0

rdrI0ð2rβ=σÞ ¼
σ
ffiffiffiffi
D

p

β
I1ð2β

ffiffiffiffi
D

p
=σÞ:

ðA22Þ

This differs by factor expðβ2=2σ2Þ from the exact result
(A14), and we have seen earlier in this section that this is
due to contributions from the boundary of the eigenvalue
region.
The approximate result for the contribution of the

genuine two-point correlations is given by

Zc;app ¼ −
1

π2

Z
jzj< ffiffiffi

D
p d2z

×
Z

d2ηe−ðβ=σÞðz̄þz̄�þiImðz1−z2ÞÞe−jz1−z2j2 ; ðA23Þ

where z̄ ¼ ðz1 þ z2Þ=2 and η ¼ z1 − z2, and the two-point
correlation function is replaced by its large D limit. The
integral over the center of mass is replaced by an integral
over a disk with constant density which is justified in
the large D limit. The integral over Imðz1 − z2Þ can be
performed by completing squares, while the integral over
Reðz1 − z2Þ is a simple Gaussian. This results in

Zc;app ¼ −
e−β

2=4σ2

π

Z
jzj< ffiffiffi

D
p d2z̄e−ðβ=σÞðz̄þz̄�Þ: ðA24Þ

The integral over the center of mass is the same as the
integral that enters in the calculation of the contribution of
the self-correlations. We thus find

Zc;app ¼ −e−β2=4σ2
σ
ffiffiffiffi
D

p

β
I1ð2β

ffiffiffiffi
D

p
=σÞ; ðA25Þ

which also does not reproduce the prefactor exp½−β2=σ2� of
the large D limit of the exact calculation (A15). The sum
of the approximate result for the contribution of the
self-correlation and the contribution of the genuine two-
point correlations is given by

Zself;app þ Zc;app ¼
β2

4σ2
σ
ffiffiffiffi
D

p

β
I1ð2β

ffiffiffiffi
D

p
=σÞ; ðA26Þ

which differs by a factor 4 from the exact result. However,
this prefactor does not contribute to the large D limit of the
free energy.
In the main text, we used the same approximation to

calculate the partition function for the elliptic Ginibre
ensemble, and we expect that also in that case only constant
prefactor is affected by our approximations.

APPENDIX B: NUMERICAL SOLUTION
OF THE SD EQUATIONS FOR THE

NON-HERMITIAN SYK

We proceed iteratively as follows:
(i) Start from an appropriate initial ansatz for GLLðωnÞ

and GLRðωnÞ. To be explicit, we found that the
disconnected solutions, dominant at large temper-
atures, could be easily reached by starting with two
copies of the free ansatz, used to solve the standard
SYK model. On the other hand, RSB solutions can
be found starting from the solution for the two-site
model in the presence of an explicit coupling and
sending the coupling to zero.

(ii) Using a fast Fourier algorithm, one computes the
corresponding correlator in the time domain.

(iii) The self-energies are calculated according to (102),
and then ΣLLðωnÞ and ΣLRðωnÞ are obtained by an
inverse Fourier transform.

(iv) The propagators in frequency space are updated
using the weighted rule

Gnew
LL ðωnÞ ¼ ð1 − xÞGold

LLðωnÞ − x
iωn þ ΣLLðωnÞ

ðiωn þ ΣLLðωnÞÞ2 þ Σ2
LRðωnÞ

;

Gnew
LR ðωnÞ ¼ ð1 − yÞGold

LRðωnÞ þ y
ΣLRðωnÞ

ðiωn þ ΣLLðωnÞÞ2 þ Σ2
LRðωnÞ

; ðB1Þ

where x and y are real parameters between 0 and 1 introduced to prevent over-relaxation. In practice, we initially fix
them at 0.5 and further reduce them if the updated propagators start running away.
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(v) The procedure is repeated until we reach conver-
gence when difference of the absolute value of the
Fourier coefficients becomes less than ϵ. In most
calculations, we take ϵ ¼ 10−10. We have checked
the convergence by taking ϵ as small as 10−14.

The time domain ½0; β� is discretized as τk ¼
βðk − 1=2Þ=M, k ¼ 1;…;M, where M is chosen to be
2 × 105 and 105, which allows us to extrapolate to the
continuum limit. The corresponding Matsubara frequencies
are equal to

ωn ¼
2πðnþ 1

2
Þ

β
ðB2Þ

with n ¼ −M=2;−M=2þ 1; � � �M=2 − 1.

1. Symmetry properties of the correlators

As we have shown in the main text, the propagators
GLLðτÞ and GLRðτÞ satisfy the following symmetry
properties:

(i) GLLðτÞ is real and is symmetric about β=2.
(ii) GLRðτÞ is purely imaginary and is antisymmetric

about β=2.
Let us analyze the implications of the above conditions

on the Fourier components of GLRðτÞ since they are
relevant for the calculation of the order parameter. The
Fourier decomposition of the propagator given by

GLRðτÞ ¼
1

β

XM=2−1

n¼−M=2

exp

�
−i

2π

β

�
nþ 1

2

�
τ

�
GðnÞ

LR ðB3Þ

is purely imaginary if

XM=2−1

n¼−M=2

exp

�
−i

2π

β

�
nþ 1

2

�
τ

�
GðnÞ

LR

¼ −
XM=2−1

m¼−M=2

exp

�
i
2π

β

�
mþ 1

2

�
τ

�
GðmÞ

LR : ðB4Þ

This requires that the Fourier coefficients satisfy

GðmÞ
LR ¼ −Gð−m−1Þ

LR : ðB5Þ

Similarly, we can impose the condition that GLR be
antisymmetric about β=2. This results in the requirement

that the coefficients GðmÞ
LR are purely imaginary

GðmÞ
LR ¼ −GðmÞ

LR : ðB6Þ

APPENDIX C: SPECTRAL DENSITY OF THE
NON-HERMITIAN SYK MODEL AND

Q-HERMITE POLYNOMIALS

In this Appendix, we discuss the distribution of the real
and imaginary parts of the eigenvalues. In Fig. 16, we show
results for k ¼ 0.3, k ¼ 0.75 and k ¼ 1 (see caption). For
k ¼ 1, the distribution of the real part (left) is the same as
the distribution of the imaginary part (right). The real and
imaginary parts of the eigenvalues have been normalized
by the length of the long and short axes of the ellipses
containing the eigenvalues. The eigenvalue distribution
is fitted to the Q-Hermite spectral density using the
Q-parameter η as a fitting parameter. For k ¼ 0, this
parameter is given by

η ¼
�
N=2

4

�−1X4
m¼0

ð−1Þm
�

4

m

��
N=2 − 4

4 −m

�
; ðC1Þ

which is equal to η ¼ 0.233 for N=2 ¼ 30. The values we
obtain by fitting are lower, in particular for the distribution
of the imaginary part; see the legend of Fig. 16. We also
point out that for k ¼ 0.3 the distribution of the imaginary
parts of the eigenvalues is very close to semicircular. We
expect that this also will be the case for k < 0.3.

APPENDIX D: PARTITION FUNCTION
FOR THE SYK MODEL AT k > 1

In this Appendix, we relate the free energy for k > 1 to
the free energy for k < 1. The single-site Hamiltonian for
k > 1 can be written as

HLðkÞ ¼ H1 þ ikH2 ¼ ik

�
H2 −

i
k
H1

�
: ðD1Þ

Since the probability distribution of the Hamiltonian is
invariant for H1 → −H2 and H2 → H1, as far as ensemble
averaged observables are concerned, the Hamiltonian of
this ensemble can be written as

ik

�
H1 þ

i
k
H2

�
¼ ikHLð1=kÞ: ðD2Þ

Note, however, the above change of variables produces an
overall minus sign for HR; therefore, the relation for the
two-site Hamiltonian reads

HðkÞ ¼ ik½HLð1=kÞ −HRð1=kÞ�: ðD3Þ

The one-site partition function is equal to

ZLðβÞ ¼ hTre−βHLðkÞi ¼ hTre−iβkHLð1=kÞi; ðD4Þ

so it is equivalent to the partition function for non-
Hermiticity parameter 1=k at an imaginary inverse
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temperature ikβ. For k → ∞, we see from Eq. (D3) that the
two-site partition function becomes the spectral form factor
of a Hermitian SYK model. For β → ∞, the form factor (or
the partition function) will be dominated by the self-
correlations and is thus given by

ZðβÞ ¼ ZLZR ¼
X
mn

eiβkðEm−EnÞ ≈D ¼ 2N=4; ðD5Þ

resulting in a free energy of FðTÞ=ðN=2Þ ¼ −T=2 log 2
as compared to the high-temperature limit of the free
energy given by FðTÞ=ðN=2Þ ¼ −T log 2. In Fig. 17, we
show the free energy as a function of the temperature
for k ¼ 1 red and k ¼ 2 (black). The ratio of the intercepts
with the y axis is 1.578, while from the Ginibre ensemble,
we get

ffiffiffiffiffiffiffiffi
5=2

p ¼ 1.58114. If we assume that for k > 1 the
zero-temperature slope of the free energy does not depend
on k as is the case for k < 1, an estimate for the critical
temperature can be obtained by equating −T=2 log 2 ¼
E0 ¼ −0.009849. This gives Tc ¼ 0.0284, which is in

FIG. 17. The quenched free energy per particle as a function of
the temperature for the q ¼ 4 non-Hermitian SYK model with
N ¼ 30 and the non-Hermiticity parameters k ¼ 1 (red) and
k ¼ 2 (black). The positions of the peaks are related to the zeros
of J1ðxÞ with the leftmost peak corresponding to the smallest
nontrivial zero of J1ðxÞ.

FIG. 16. The distribution of the real (left) and imaginary parts of the eigenvalues of the non-Hermitian one-site SYK model with
N=2 ¼ 30, q ¼ 4 and k as given in the legend of the figure (black curve). The red curves represent a fit of the Q-Hermite density function
with a value of η given in the legend of the figure.
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good agreement with Fig. 17. The positions of the peaks are
approximately inversely proportional the positions of the
zeros of J1ðxÞ with the leftmost peak corresponding to the
smallest nontrivial zero, which will be explained in the next
paragraph.
We can work out the k > 1 partition function in more

detail for the elliptic Ginibre ensemble (which provides a
good approximation of the spectra of the non-Hermitian
SYK model). Using the scaling (D4), the eigenvalues of
this ensemble are distributed homogeneously inside an
ellipse given by

x ¼ E0 cosϕ; y ¼ y0 sinϕ ðD6Þ

with E0 and y0 given by Eq. (39) with k → 1=k, namely,

E0 ¼
kσ0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

σð1=kÞ ; y0 ¼
σ0=kffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

σð1=kÞ : ðD7Þ

The one-site partition function is then given by

ZLðβÞ ¼
2D

ikβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − y20

p I1
�
ikβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − y20

q �
¼ 2D

kβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − y20

p J1
�
kβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − y20

q �
; ðD8Þ

which vanishes at the zeros of the Bessel function. If the
zeros of J1 are given by zn, the partition function vanishes
when

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − y20

q
¼ zn: ðD9Þ

The free energy is singular at the critical temperatures

Tn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − y20

p
zn

; ðD10Þ

which are of the order of the system size in the normali-
zation that E0 scales linearly with the number of particles.
Since the exponent of the disconnected part is purely

imaginary, it does not contribute to the free energy in the
thermodynamic limit. The disconnected part of the two-site
partition function is thus given by

Zk>1
disconnected ∼D2: ðD11Þ

Using the arguments leading to (29), the connected part of
the partition function is equal to

Zk>1
connected ∼ e2βjE0j: ðD12Þ

Equating the two gives the critical temperature

Tcðk > 1Þ ¼ 2jE0ðkÞj
logD2

¼ jE0ðkÞj
N=2 log 2

: ðD13Þ

This is the result for the Ginibre ensemble. The temperature
dependence of the free energy of the high-temperature
phase of the SYK model is not linear in T for k ≠ 1 (apart
from the peaks due to the zeros of the Bessel function). As
is the case for k < 1, we expect that the zero-temperature
slope is smaller than log 2. Earlier in this Appendix, we
have argued that it is equal to 1

2
log 2 resulting in a critical

temperature of

Tcðk > 1Þ ¼ 2jE0ðkÞj
N=2 log 2

; ðD14Þ

which is in good agreement with Fig. 17.

APPENDIX E: DEGENERACIES OF THE
NON-HERMITIAN SYK MODELS

Numerical diagonalization reveals that the non-
Hermitian one-site SYKmodel has exactly the same energy
level degeneracies as the Hermitian model:

(i) N=2 mod 8 ¼ 0, T2 ¼ 1, no degeneracy.
(ii) N=2 mod 8 ¼ 2, 6, T2 ¼ �1, twofold degeneracy.
(iii) N=2 mod 8 ¼ 4, T2 ¼ −1, twofold degeneracy.

Here, T is the time reversal operator with

T ¼ CK ðE1Þ

with C the product of the odd or even gamma matrices
and K the complex conjugation operator. In the Hermitian
case, a proof can be found in Appendix A of Ref. [34]. In
the first case, the T operator commutes with the chirality
matrix γc and with the product of four gamma matrices in
the Hamiltonian. This does not impose any conditions on
the eigenvalues of the two blocks also in the non-Hermitian
case so that the eigenvalues are nondegenerate. In the latter
two cases, the degeneracy proof of Ref. [34] needs to be
modified for the non-Hermitian case.

1. N=2 mod 8 = 2, 6

In this case, the degeneracy can be shown by a light
modification of the proof of Ref. [34]. The time reversal
operator anticommutes with the chirality matrix γc, and
hence, in the chiral basis, it has the form

T ¼
�

0 cK

c�K 0

�
; ðE2Þ

where K is the complex conjugation and cc� ¼ �1. Since
γc commutes with the Hamiltonian, we have

H ¼
�
A 0

0 B

�
: ðE3Þ
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In the non-Hermitian model, time reversal transforms the
Hamiltonian as

T−1HT ¼ H†: ðE4Þ

Then, Eqs. (E2) and (E3) imply

c−1Ac ¼ BT; ðE5Þ

and hence we conclude A and B have the same eigenvalues,
so H is generically twofold degenerate. Notice that the
degeneracy comes form two different chirality sectors, so
hΩjψLψRjΩi in the corresponding two-site model is not
necessarily zero if we take jΩi to be a linear combination of
two different chiralities.

2. N=2 mod 8 = 4

This would be the GSE case for the Hermitian SYK
model. The twofold degeneracy is a Kramers degeneracy,
and the proof is simple for the Hermitian case, which we
now briefly recapitulate. Since T is a symmetry in the
Hermitian SYK, if jvi is an eigenstate, then jTvi is also an
eigenstate. To prove jTvi is linearly independent from jvi,
we use the fact that T is antiunitary and T2 ¼ −1:

hvjTvi¼hvjT−1T2vi¼hTvjT2vi� ¼−hTvjvi� ¼−hvjTvi:
ðE6Þ

Hence, jTvi is orthogonal to jvi, and we conclude twofold
degeneracy.
In the non-Hermitian case, T is no longer a symmetry,

and we only have

T−1HT ¼ H†; ðE7Þ

so jTvi is not an eigenstate ofH even if jvi is. However, the
spectrum is still twofold degenerate, and the proof for
Kramers degeneracy needs modification. The gist is a proof
by contradiction: if there exists an eigenvalue of H that is
not degenerate, then T cannot be invertible and hence
contradicts its antiunitarity.
Suppose H is a D ×D matrix and the complete set of

eigenvectors ofH is fjv1i; jv2i;…; jvDig. Suppose jv1i is a
vector with a nondegenerate eigenvalue λ1,

Hjv1i ¼ λ1jv1i; ðE8Þ

H†jT−1v1i ¼ λ�1jT−1v1i; ðE9Þ

where the second equality follows from T−1HT ¼ H†. We
still have hv1jTv1i ¼ 0 for the same reason as in the
Hermitian case. For any other eigenvector jvii (i ≠ 1),
we have that

Hjvii ¼ λijvii ⇒ hvijH† ¼ hvijλ�i : ðE10Þ

Combining the above equations, we can deduce that for
i ≠ 1

λ�i hvijT−1v1i ¼ hvijH†T−1v1i ¼ λ�1hvijT−1v1i; ðE11Þ

and since λ1 ≠ λi by assumption, we conclude hTvijv1i ¼
hvijT−1v1i� ¼ 0.
We have now proven that if jv1i has a nondegenerate

eigenvalue then jv1i is orthogonal to all Tjvii (i ¼
1; 2;…; D); namely, T brings the full Hilbert space into
the orthogonal complement of jv1i, and this contradicts the
fact that T is an invertible operator. Hence, by contra-
diction, we have proven that every eigenvalue is at least
twofold degenerate. Given that there is no symmetry
mechanism to enforce an even higher degeneracy, we will
see twofold degeneracy for a generic realization of the
ensemble.
It is worth noting that the above proof applies to each

chiral block Hamiltonian because both H and T commute
with γc so in the chiral basis they are simultaneously block-
diagonal. So, degenerate eigenstates always have the same
chirality, and h0jψLψRj0i in the corresponding two-site
model (without the iϵ symmetry breaking term) must
vanish, regardless of which linear combination one takes.

APPENDIX F: RANDOM EIGENVALUES
IN A DISK

In this Appendix, we discuss the partition function of
uniform uncorrelated random eigenvalues in a disk with
level density given by

ρðzÞ ¼ D
πR2

θðR − jzjÞ: ðF1Þ

The radius R will be adjusted in order to get a stable large
D limit.
The one-site annealed partition function is the same as

the one for the Ginibre model:

Z1ðβÞ ¼
Z

ρðzÞe−βzd2z ¼ D: ðF2Þ

The two-site partition function corresponding to one
replica and one conjugate replica is given by

Z2ðβÞ ¼
	X

kl

e−βðEkþE�
l Þ



¼
	X

k≠l
e−βðEkþE�

l Þ


þ
	X

k

e−βðEkþE�
kÞ


: ðF3Þ
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Since different eigenvalues are uncorrelated, and all eigen-
values have the same distribution, we obtain in the large D
limit

Z2ðβÞ ¼
DðD − 1Þ
π2R4

Z
D
d2ze−βz

Z
D
d2ze−βz

�

þ D
πR2

Z
D
d2ze−βðzþz�Þ

¼ DðD − 1Þ þ D
Rβ

I1ð2RβÞ: ðF4Þ

The large D limit of the free energy density is given by

FðTÞ
logD

¼ − lim
D→∞

T
logD

logðZ2
1ðβÞ þ Z2ðβÞÞ

¼ − lim
D→∞

T
logD

log

�
e2 logD þ D

Rβ
I1ð2RβÞ

�
: ðF5Þ

A nontrivial largeD limit is obtained if we scale R as logD,
and we will choose R ¼ logD. At the critical temperature
Tc, the two leading exponents are equal so that

2 logD ¼ logDþ 2βc logD; ðF6Þ

resulting in

Tc ¼ 2; ðF7Þ

and the free energy is given by

FðTÞ
logD

¼ ð−2 − TÞθðTc − TÞ − 2TθðT − TcÞ: ðF8Þ

In Fig. 18, we show the free energy (F5) versus the
temperature. The convergence to the asymptotic result
(F8) is slow, but for D ¼ 2100 (black curve), a kink
becomes visible.
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