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The renormalization group in effective quantum gravity can be consistently formulated using the
Vilkovisky and DeWitt version of effective action and assuming a nonzero cosmological constant. Taking
into account that the vacuum counterpart of the cosmological constant is dramatically different from the
observed energy density of the vacuum, the running of the last quantity in the late cosmology indicates
strong constraints on the physics beyond the minimal Standard Model of particle physics.
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I. INTRODUCTION

One of the main open issues in nowadays fundamental
physics is the origin of the so-called dark energy. The most
likely candidate is the cosmological constant because such
a constant is an essential element of the consistent quantum
field theory (QFT) in curved space (see e.g., [1] for a recent
discussion and further references). On the other hand, there
are many theoretically interesting alternative models,
assuming that the vacuum energy may vary with time
(see, e.g., [2,3] as starting points). The question is how one
can expect to falsify these models using the existing
observational data. Indeed, the possibilities to do so are
restricted to the observation of the time-variable vacuum
energy, or the effective equation of state [4].
Does the time dependence of the vacuum energy mean

that there is an essence more sophisticated than the
cosmological constant, governing the accelerated expan-
sion of the Universe? The answer is not obvious because
the proper cosmological constant may be changing for at
least two reasons. The observable cosmological constant is
a sum of the two contributions, namely, the fundamental
constant in the action of gravity and the induced counter-
part owing to the phase transition and symmetry breaking
in the vacuum state [5] (see also [6] for the QFT aspects of
the problem). The induced component could have a differ-
ent magnitude because of the typical energy scale at which

the symmetry breaking occurs or, almost equivalently, to
the restoration of the symmetry in the hot vacuum of the
early Universe. Furthermore, the observable cosmological
constant may change in the late Universe because of the
renormalization group running. The running of the vacuum
component of the cosmological constant in flat spacetime
is a basic example of such a running (see e.g., [7]), that
can be extended to semiclassical [8] and quantum [9]
gravity.
The running cosmology models are based on the

universal form of the scale-dependent density of the energy
of vacuum, that can be established using covariance argu-
ments [10] or the assumption of a standard quadratic
decoupling of massive degrees of freedom in the IR, in
the semiclassical approach [6,11],

ρΛ ¼ ρ0Λ þ 3ν

8πG
ðH2 −H2

0Þ: ð1Þ

Here ρ0Λ and H0 are the vacuum energy density and the
Hubble parameter at the reference point, e.g., in the present
moment of time. ν is a phenomenological parameter which
cannot be calculated with the known theoretical methods
[10,12]. Since the particle creation from vacuum in the IR is
suppressed [13], the energy conservation leads to the
“traditional” logarithmic form of the running for the
Newton constant [14],

GðμÞ ¼ G0

1þ ν log ðH2=H2
0Þ
: ð2Þ

There is a possibility of a systematic scale-setting pro-
cedure in the cosmological context [15], providing the
identification of the Hubble parameter H with the scaling
parameter μ.
Let us stress that the aforementioned running in (1) and

(2) is owing to the quantum effects of massive particles in
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the IR, according to the corresponding decoupling theo-
rems [16,17]. Usually, massless degrees of freedom do not
produce running of the dimensional parameters, such as ρΛ
and G. On the other hand, (2) looks like the one-loop
running of the dimensionless coupling in the minimal
subtraction scheme of renormalization, regardless it is
derived in a very different framework.
The models of running vacuum based on (1) were

extensively explored and became an active field of research
(see e.g., [10,12,14,18,19] and further references in the last
work). These models give a well-motivated alternative to
the theories of modified gravity of all kinds, as in both cases
one can describe a slowly varying vacuum energy density.
From the theoretical side, one of the open questions is

whether the aforementioned universality of the running of
vacuum energy (1) can be extended into the full quantum
gravity (QG). The definitive answer to this question is
unknown, as there is no completely consistent theory of
quantum gravity to derive the running. On the other hand,
any kind of a purely metric quantum gravity should have
massless and massive degrees of freedom. The typical
dimensional constant in quantum gravity is the Planck mass
MP; therefore,we can expect that allmassivemodes have the
mass of this magnitude [20]. For the cosmological appli-
cations, what we need is an effective formulation of QG,
when the massive modes are assumed to decouple (see, e.g.,
[21,22] and references therein). In this regime, we expect to
meet the universal IR theory of QG based on the quantum
general relativity (GR). Therefore, we need to account only
for the massless modes [23,24] and it seems this can be a
solid basis for deriving the QG-based running of ρΛ and G
that can be applied in the late running-vacuum cosmology.
Now we are coming close to the main subject of this

contribution, i.e., the role of the “unique” effective action of
Vilkovisky and DeWitt for the IR running in the effective
QG. In the framework of usual perturbative field theory, the
running of ρΛ and G is possible only if the initial gravity
theory has a nonzero cosmological constant. However, even
in this case, the individual running of both quantities
depends on the gauge fixing and on the parametrization
of the quantum metric. Only the running of the dimension-
less ratio of these parameters is universal [9], but this is
insufficient for the cosmological applications. The con-
struction of the Vilkovisky-DeWitt effective action resolves
this difficulty at the one-loop [25] and higher-loop [26]
levels. This useful feature of the “unique” effective action is
owing to its geometric, covariant formulation in the space
of the fields. The renormalization group running of ρΛ and
G, based on Vilkovisky’s construction has been explored in
[27]. In recent works [28,29] we performed an explicit
verification of the gauge- and parametrization-invariance of
these renormalization group equations and proved that, in
the effective QG framework, these equations are exact, i.e.,
not restricted by the one-loop approximation, as explained
also in Sec. III below.

The status of the Vilkovisky-DeWitt effective action has
been previously discussed in the work [30] based on three
interesting applications where the gauge fixing and/or
parametrization ambiguities in the usual effective action
do not enable one to achieve the desired qualitative output,
while the geometric methods provide the result. The
general conclusion of this consideration is that the
Vilkovisky-DeWitt construction is not a panacea, nor a
placebo, but rather a useful tool for the calculations. In the
present contribution, we discuss the application of the
effective QG-based running [29] of ρΛ and G in cosmology
and show that these effects may provide dramatic conse-
quences for particle physics. This can be viewed as one
more application where the Vilkovisky-DeWitt geometric
approach yields a nontrivial consequence. Since the tech-
nical details of the Vilkovisky formalism are not the main
topic of this paper, we postpone a brief review of it and a
discussion about its possible limitations to Appendix.
However, we would like to stress, from the very beginning,
that this approach is an additional independent input and
that its consequences may be verified or falsified only by
means of experiments or observations.
The manuscript is organized as follows. In Sec. II we

briefly review the cosmological constant and the fine-
tuning problem, from the standard perspective of [5,6].
Section III discusses the exact effective QG running [29]
and explains why it might break down the fine tuning for
the cosmological constant. In Sec. IV we perform the
numerical estimates of the mentioned breaking for a few
models of particle physics and arrive at severe constraints
on the physics beyond the standard model. Finally, in
Sec. V we draw our conclusions and add some extra
discussion.

II. COSMOLOGICAL CONSTANT PROBLEM
AND THE RUNNING

As it was already mentioned above, the running of ρΛ
and G in GR-based QG is possible only because of the
nonzero cosmological constant. The higher loop contribu-
tions come with growing powers of the dimensionless ratio
ρΛG2 ¼ ρΛM−4

P . It is important to stress that ρΛ in this
expression is not the observable vacuum energy density
ρobsΛ . It is well known [5] (see also [6]) that

ρobsΛ ¼ ρΛ þ ρindΛ ; ð3Þ

where ρΛ and ρindΛ are the vacuum and the induced densities
of cosmological constant, respectively. An independent
quantity ρΛ is a necessary element of the renormalizable
semiclassical theory (see, e.g., [1] for an introduction).
Loop corrections without external lines of matter fields
produce divergences, including those without derivatives of
the metric tensor. These divergences require renormaliza-
tion and, in particular, fixing the renormalization condition.
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As usual with independent parameters, this procedure
involves a measurement. Thus, the value of ρΛ can be
defined only from the cosmological observations of ρobsΛ .
After that, one has to subtract ρindΛ to arrive at the value
of ρΛ ¼ ρvacΛ .
From the theoretical side, the minimal magnitude of ρΛ is

defined by its running in a semiclassical theory. For
example, in the minimal standard model (MSM) this
indicates at a value of the order of the fourth power of
the Fermi mass,M4

F. As ρΛ is an independent parameter, its
value at the reference scale μ0 can be defined only from the
experimental or observational data. On the other hand, ρindΛ
is, in principle, calculable from the underlying matter fields
model. If its origin is the spontaneous symmetry breaking
(SSB) in the MSM, we have the well-known relation with
the vacuum expectation value (VEV) of the Higgs field,
ρindΛ ∼ λv4 ≈ 108 GeV4. As the value of v is defined by the
typical (Fermi) energy scale MF ≈ 293 GeV, in what
follows we shall associate ρindΛ with M4

F. In case there is
another, similar, phase transition at a higher energy scale
such as MX, we have to replace MF by MX in both ρΛ
and ρindΛ .
It is remarkable that the theoretical predictions for the

two ingredients in the right-hand side of (3) give the same
order of magnitude. At the same time, the relation (3) is
famous for the huge amount of fine tuning required for the
cancelation in its right-hand side, providing a very small
value for the observable sum. In the particle physics units,
the value of ρobsΛ , it is about 10−47 GeV4, such that even in
the MSM we need about 56 orders of the fine tuning in the
choice of the renormalization condition ρΛðμ0Þ.
The cosmological constant problem is a real mystery, as

the 56-order fine tuning can be violated even by very small
changes in the Yukawa couplings that enter the game via
the one-loop or higher-loop corrections (up to 21 loops). It
is worth noting that even a small mismatch in the choice of
the condition for ρΛðμ0Þ may lead to either a negative, zero
or too big (more than 100 times greater) positive value of
ρobsΛ . All three options contradict our own existence through
the anthropic arguments [31]. In the next sections we shall
see that the well-defined running ρΛðμÞ in effective QG
imposes strong constraints on the particle physics
beyond MSM.

III. ON THE RUNNING IN EFFECTIVE QG

The starting point in the discussion of the running in
effective QG is the gravitational action,

S ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 2ΛÞ; ð4Þ

where ρΛ ¼ Λ
8πG, together with the theory of gauge-invari-

ant renormalization (see e.g., [1] and references therein)
and the power counting formula for quantum GR,

ωðGÞ þ dðGÞ ¼ 2þ 2L − 2KΛ: ð5Þ

Here L is the number of loops in the given diagram G and
KΛ is the number of vertices coming from the cosmological
constant term. For the logarithmic divergences ωðGÞ is zero
and then the last formula gives the number of derivatives
dðGÞ in the corresponding counterterm.
It is easy to see that for KΛ ¼ 0 we never get the

renormalization of the Einstein-Hilbert term, but only
higher-derivative counterterms. However, the situation is
different in the case KΛ ≠ 0. One of the main observations
of [29] and of the present work is that Λ in (4) does not
correspond to ρobsΛ but, instead, to the ρΛ ¼ Λ

8πG in the
vacuum part of (3). As we have seen in the previous section,
the two quantities ρobsΛ and ρΛ are dramatically different and
this may change the game in the effective QG-based
running.
The important aspect in the effective QG is whether we

are capable of obtaining results which are free of ambi-
guities. For instance, the known theorems about gauge-
fixing and parametrization dependence [32,33] tell us that
the one-loop divergences of the effective action,

Γð1Þ
div ¼

1

ϵ

Z
d4x

ffiffiffiffiffiffi
−g

p fc1R2
μναβ þ c2R2

αβ þ c3R2

þ c4□Rþ c5Rþ c6g; ð6Þ

are universal only on the classical mass shell. Here ϵ ¼
ð4πÞ2ðn − 4Þ is the parameter of dimensional regulariza-
tion. Using the approach of [9,34] we arrive at the relation

Γð1Þ
divðαiÞ − Γð1Þ

divðα0i Þ ¼
1

ϵ

Z
d4x

ffiffiffiffiffiffi
−g

p ðb1Rμν þ b2Rgμν

þ b3gμνΛþ b4gμν□þ b5∇μ∇νÞεμν;

where bk ¼ bkðαiÞ and αi represent the full set of param-
eters defining an arbitrary gauge fixing and parametrization
of the metric, and εμν ¼ Gμν − Λgμν are the classical
equations of motion. The two invariant quantities are

c1 and cinv ¼ c6 − 4Λc5 þ 4Λ2c2 þ 16Λ2c3; ð7Þ

which means that the invariant running is possible only for
the dimensionless combination of G and Λ [9,35].
The Vilkovisky [25] and DeWitt [26] definition of

effective action is different, as it is based on the covariant
calculus in the space of physical fields. A brief review of
the formalism can be found in Appendix, where we
also discuss some subtleties involving its application to
QG. More detailed considerations can be found, e.g., in
[27–30,36–40].
The renormalization group running of G and Λ, in the

effective QG based on the Vilkovisky-DeWitt version of
effective action, has the form [27,29]
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GðμÞ ¼ G0

�
1þ 10

ð4πÞ2 γ0 ln
μ

μ0

�
−4=5

; ð8Þ

and

ΛðμÞ ¼ Λ0

�
1þ 10

ð4πÞ2 γ0 ln
μ

μ0

�
−1=5

; ð9Þ

where γ ¼ 16πGΛ and the subscript label zero indicated
the value μ0 of the reference scale, e.g., the present epoch
of the Universe. Thus, γ0 ¼ 16πG0Λ0 ¼ 128π2G2

0ρ
0
Λ ¼

128π2ρ0ΛM
−4
P .

Let us stress that, differently from (1) and (2), Eqs. (8)
and (9) come from a real calculation, based solely on the
assumption of applicability of the Vilkovisky and DeWitt
effective action in quantum field theory.
According to the power counting (5), the higher-loop

corrections to these equations are proportional to higher
powers of γ and, for a sufficiently small Λ, can be regarded
as negligible. Starting from this point and taking into
account the arguments from Sec. II, we can explore the
physical consequences of the running (8) and (9).

IV. COSMOLOGY WITH RUNNING VACUUM
IN EFFECTIVE QG

To evaluate ρΛ and γ0 we have to remember that ρΛ has
approximately—and with a great precision—the same
absolute value as ρindΛ . It is clear that ρΛ ≫ ρobsΛ , but
numerically γ0 is still a small quantity. For instance, in
the theory when the MSM is valid until the Planck energy
scale, we have γ0 ∼ 10−65, while for the supersymmetric
grand unified theory (SUSY GUT) this coefficient may be
γ0 ∼ 10−12–10−8. Do these small numbers guarantee that
the variations caused by (8) and (9) are irrelevant?
To evaluate the consequences of the running, let us

consider the strongest option, that is, the SUSY GUT case.
Then, the value of ρΛ should be of the order of M4

X,
assumingMX ∼ 1016 GeV. Accordingly, the parameter γ is
of the order of ðMX=MPÞ4. In this case, we find the strong
inequality 10γ0

ð4πÞ2 ≪ 1. After a little algebra, (8) and (9) boil

down to

GðμÞ ¼ G0

�
1 −

8

ð4πÞ2 γ0 ln
μ

μ0

�
; ð10Þ

and

ρΛðμÞ ¼ ρ0Λ

�
1þ 6

ð4πÞ2 γ0 ln
μ

μ0

�
: ð11Þ

The derivation of the last equation requires expanding the
right-hand side of both (8) and (9) up to the first order in
the small parameter γ0 and replacing the result into the
formula ρΛ ¼ Λ

8πG.

Remember that the standard identification of scale in
cosmology is μ ∝ H [6,10,15]. Taking this identification,
the effects of (10) and (11) are dramatically different.
Indeed, while for Gðμ=μ0Þ ¼ GðH=H0Þ there is a usual
slow logarithmic running that is not too relevant in
cosmology, the effect of the cosmological constant running
(11) may be strong.
In the SUSY GUT case, a simple calculation gives

6

ð4πÞ2 γ0 ∼ 48

�
MX

MP

�
4

≈ 10−11: ð12Þ

This is a really huge number, because it has to be multiplied
not only by the logarithmic factor but, at the first place, by
the ρ0Λ, i.e., by the vacuum energy density in the right-hand
side of the main relation (3). In SUSY GUT the value of ρ0Λ
is about 111 orders of magnitude greater than the observed
value ρobsΛ . Thus, the running (12) produces a discrepancy
with the cosmological observations proportional to 10100

(googol) for a change of about one order of magnitude in
the parameter H. Needless to say that this result contradicts
the anthropic calculations [31]. Thus, we have to give up
either on the effective QG based on the Vilkovisky
“unique” effective action, or on the SUSY GUT and the
corresponding generation of induced vacuum energy in the
right-hand side of (3). As the present report is devoted to
the effective QG-based running, we conclude that the
SUSY GUT hypothesis fails in this framework.
Let us consider another extreme of the energy scale and

assume that the MSM is valid up to the Planck scale. In this
case, instead of (12) we meet

6

ð4πÞ2 γ0 ∼ 48

�
MF

MP

�
4

≈ 10−65: ð13Þ

When multiplied by ρ0Λ ∼M4
F, we find the variation of

the observed cosmological constant given by δρobsΛ ≈
10−55 lnðH=H0Þ GeV4.
Taking the range of change of H between the infla-

tionary epoch with Hinfl ≤ 1015 GeV and the present-day
Universe with H0 ≈ 10−42 GeV, the logarithmic factor is
lnðH=H0Þ ≈ 131. Then the numerical estimate based on
(13) gives δρobsΛ ≈ 10−53 GeV4, that is just six orders of
magnitude smaller than the observed value ρobsΛ . At this
point we can make two observations:
(1) Our model of the effective QG running is lucky

enough to pass the test related to MSM. This means,
e.g., that the experimentally confirmed model of
particle physics does not contradict the anthropic
arguments. The opposite output would mean the
disproval of the Vilkovisky and DeWitt approach.

(2) Since the result is proportional to M8
F, we can state

that the existence of new physics based on the
symmetry breaking beyond the energy scale of
10MF contradicts the effective running of the
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cosmological constant. It is remarkable that the
effective QG provides such a relation between the
cosmological constant problem and the particle
physics.

V. CONCLUSIONS AND DISCUSSIONS

The running derived in the effective QG based on the
Vilkovisky-DeWitt effective action enables one to formu-
late the link between particle physics and cosmology. In
particular, we find that the MSM with the corresponding
SSB leads to the running of the vacuum cosmological
constant that does not contradict the cosmological obser-
vations and, in particular, the anthropic restrictions derived
by Weinberg [31].
On the other hand, the mentioned running of the

cosmological constant imposes severe restrictions on the
SSB and the generation of induced cosmological constant
in the physics beyond the MSM. Even assuming the
symmetry breaking at the 10 TeV scale means we may
run out of the scope with the cosmological constant
violating the fine tuning in (3). The energy scale below
10 TeV is explored in LHC, but this does not mean that new
physics beyond MSM is “forbidden” by the effective QG
and the corresponding running. The obtained restrictions
leave a lot of space for constructing particle physics models
beyond MSM. Thus, it would be interesting to explore this
possibility in more details. The corresponding analysis is
beyond the scope of the present work and will be presented
as a separate publication. Let us just note that the limitation
concerns the value of the new Higgs-like VEV and not the
masses of the particles. Anyway, the preliminary result is
that many (albeit not all) GUT models and supersymmetric
extensions of the MSM may be ruled out by the new
criterion based on quantum gravity. On the other hand,
there are theories, e.g., based on the technicolor approach,
which may have rather large masses of the particles beyond
the standard model and still escape the restrictions dis-
cussed in the present work.
Finally, the well-defined gauge and parametrization

independent running (9), originally described by Taylor
and Veneziano [27] and explored in the effective frame-
work in [29], provides interesting hints concerning the
connection between different branches of Physics and also
opens new horizons for further work.
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APPENDIX: BRIEF REVIEW AND DISCUSSION
OF THE VILKOVISKY EFFECTIVE

ACTION FOR QG

In this appendix we make a short presentation of the
Vilkovisky effective action and comment on the possible
limitations of the formalism, with a focus on the choice of
metric in the space of fields in QG. This discussion is done
in more detail than in our previous publications [28,29].
The Lagrangian quantization of gauge theories, including

QG, involves fixing a gauge which breaks the classical
action’s gauge invariance. In DeWitt’s background field
method (see [41] for review and references) the resultant
effective action is covariant with respect to gauge trans-
formations of the background field, but it still depends on the
choice of gauge fixing for the quantum field. The difference
between these two situations is sometimes referred to as
“gauge invariance” and “gauge-fixing dependence” [30].
In quantum GR, the background field method allows the

evaluation of the divergent part of the effective action.
Owing to locality, the divergences are scalars constructed
with the curvature tensors and their covariant derivatives
[see Eq. (6)]. As discussed in Sec. III, the expression (6) is
invariant under spacetime diffeomorphisms, although some
of the coefficients ci depend on the gauge chosen for the
quantized field, i.e., they are gauge-fixing dependent.
The gauge-fixing dependence of the effective action can

be regarded as part of the more fundamental dependence on
the field parametrization, which also affects nongauge
theories [25,33]. At one-loop level this can be understood
by recalling that the Hessian of the classical action, δ2S

δφiδφj,
does not behave as a tensor under redefinitions of the field
φi. In the same spirit as in Riemannian geometry,
Vilkovisky [25] introduced an affine structure on the
configuration space M⊥ of physical fields, with a metric
Ḡij and a connection T k

ij, and modified the definition of the
effective action such that it transforms in a covariant
manner under diffeomorphism; namely,

exp iΓðφÞ ¼
Z

Dφ0μðφ0Þ expfi½Sðφ0Þ þ σiðφ;φ0ÞΓ;iðφÞ�g;

ðA1Þ

where μðφ0Þ is an invariant functional measure and
σiðφ;φ0Þ is the derivative with respect to φi of the world
function σðφ;φ0Þ [42,43]. Note that the affine structure is
defined on the space of physical fields, which means that if
G is a gauge group acting on a space M of fields φi, then
M⊥ ¼ M=G. Therefore, since σiðφ;φ0Þ behaves as a
vector with respect to φi and as a scalar with regard to
φ0i, the effective action ΓðφÞ defined by (A1) is gauge
invariant and it is independent of the parametrization and
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gauge fixing choices. Because of this, the covariant
effective action ΓðφÞ is also known as “unique effective
action”.
The metric Gij in the full configuration space M of

fields is obtained through the following criteria: (i) It
should be an ultralocal quantity and do not contain
derivatives of the fields in order to not violate the S-matrix
theory, (ii) For quadratic noninteracting field theories, Gij

should provide a flat field space, and (iii) It must be
uniquely determined by the classical action SðφÞ of the
theory; namely, it should be chosen as the local metric
contained in the highest-derivative term of the classical
action after projecting out the gauge-dependent degrees of
freedom. This is known as Vilkovisky’s prescription for the
choice of metric in the space of fields [25].
The projection onto the space M⊥ is performed by the

operator [25,37,38]

Πi
j ¼ δij − Ri

αðN−1ÞαβRk
βGkj; ðA2Þ

where Ri
α are the generators of gauge transformations and

ðN−1Þαβ is the inverse of the metricNαβ on the gauge group,

Nαβ ¼ Ri
αGijR

j
β: ðA3Þ

Therefore, the projection of the metric on M⊥ is

Ḡij ¼ Πk
iGklΠl

j ¼ Gij −GikRk
αðN−1ÞαβRl

βGlj: ðA4Þ

The affine connection T k
ij can then be obtained by requir-

ing its compatibility with the physical field-space metric,
∇̄kḠij ¼ 0 (see, e.g., [25,37,44] for further comments and
explicit formulas).
Notice, however, that by projecting out the gauge-

dependent part of the field we obtain

φi⊥ ≡ Πi
jφ

j ¼ φi − Ri
αðN−1ÞαβRk

βGkjφ
j: ðA5Þ

Thus, in the so-called Landau-DeWitt gauge, defined by

Rk
βGkjφ

j ¼ 0; ðA6Þ

we have

φi⊥ ¼ φi: ðA7Þ

This means that Vilkovisky’s prescription for Gij is
equivalent to getting the metric which follows from the
theory’s action using the Landau-DeWitt gauge [38]. We
stress that this is only due to the fact that in the gauge (A6)
the identity (A7) holds, and that at this stage one is not
choosing a specific gauge which could, potentially, sim-
plify calculations. Thus, the aforementioned detail does not
reduce the generality of the scheme.

Let us discuss in more detail the choice of the metric Gij

in the case of QG. In metric theories of gravity, φi ¼ gμν
and there is a one-parameter family of metrics on M in
accordance with (i) and (ii),

Gij ¼ Gμν;αβ ¼ 1

2
ðδμν;αβ þ agμνgαβÞ;

δμν;αβ ¼ 1

2
ðgμαgνβ þ gμβgναÞ; ðA8Þ

where a ≠ −1=4 is a constant. The value a ¼ −1=4 is
discarded, as otherwise the metric (A8) has no inverse. In
order to fix the parameter a, we shall follow Vilkovisky’s
prescription.
Particularizing the discussion for quantum GR, the

expansion of the Einstein-Hilbert action (4) in the back-
ground field method splitting

gμν → g0μν ¼ gμν þ κhμν; κ2 ¼ 16πG; ðA9Þ

where gμν is the background field and hμν is the quantum
field, gives the quadratic form

Sð2Þ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
hμν

�
1

2

�
δμν;αβ −

1

2
gμνgαβ

�
□

�
hαβ

þ ð∇λhμλ −
1

2
∇μhÞ2

�
þ � � � : ðA10Þ

Here the ellipsis stands for terms without derivatives of the
quantum field, which are unimportant for the present
discussion. Since the generators of the spacetime diffeo-
morphisms are

Ri
α ≡ Rμν;α ¼ −ðgμα∇ν þ gνα∇μÞ; ðA11Þ

a simple calculation shows that the Landau–DeWitt gauge
condition (A6) reads

Rk
αGkjφ

j ¼∇μh
μ
αþa∇αh¼ 0⇒∇μhαμ ¼−a∇αh: ðA12Þ

Substituting this condition into (A10) and recalling (A7),
we find the bilinear projected action on M⊥,

Sð2Þ⊥ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
h⊥μν

×

�
1

2
½δμν;αβ − ð2a2 þ 2aþ 1Þgμνgαβ�□

�
h⊥αβ þ � � � :

ðA13Þ

Thus, the requirement that the term between curly brackets
in the last expression equals the metric (A8) leads to the
algebraic equation [25,38]

−ð2a2 þ 2aþ 1Þ ¼ a; ðA14Þ
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which has the solutions

a ¼ −
1

2
and a ¼ −1: ðA15Þ

The value a ¼ −1 is discarded because the metric on the
gauge group

Nαβ ¼Ri
αGijR

j
β ¼−½gαβ□þð1þ2aÞ∇α∇βþRαβ� ðA16Þ

becomes degenerate. Thus, for the QG based on GR, in the
simplest parametrization (A9), the Vilkovisky’s prescrip-
tion for the choice of metric gives a ¼ −1=2 in an
unambiguous way.
Furthermore, since the metric on M transforms as a

tensor under field reparametrizations, Eq. (A14) holds even
for quantum metric parametrizations more general than
(A9). Thus, the ambiguity represented by the coefficient a
is fixed in the same way, as explicitly shown in [28]. In this
paper (as well as in our work [29]) we assume this choice of
the metric.
This elementary exposition of the Vilkovisky formalism

enables us to discuss some of the usual criticism about it.
First of all, we notice that if the conditions (i) and (ii) for the
field-space metric are satisfied, the Vilkovisky effective
action produces the same result as the ordinary definition of
the effective action at on-shell level. In particular, both
formalisms generate the same elements for the S-matrix
[39]. Therefore, onemight argue that if theS-matrix contains
all the information about physical observables, then the
Vilkovisky effective action gives no new predictions. As
shown in [30], however, there are physical quantities (e.g.,
critical temperatures) that in principle cannot be directly
obtained from scattering amplitudes and they depend on the

choice of gauge and parametrization of the quantum fields, if
calculated using the standard effective action. In this respect,
the Vilkovisky effective action can give unambiguous
results whichmay be verified by experiments. The examples
shown in the main part of this work represent another
application in which this formalism can be useful.
Secondly, there are other ways of constructing covariant

effective actions besides (A1). In particular, a generaliza-
tion of the unique effective action was presented by DeWitt
[26], which is usually called “Vilkovisky–DeWitt effective
action”. This more intricate definition coincides with (A1)
in the one-loop approximation, and has the advantage of
yielding a perturbative expansion in terms of one-particle
irreducible diagrams (which was a major problem in
Vilkovisky’s original proposal) [39,40,45]. Since the con-
siderations in the present work are based on the one-loop
renormalization group equations (and in Sec. III we argued
why higher-loop effects are suppressed [29]), the definition
(A1) is sufficient for our purposes, and our results also hold
within the more elaborate construction by DeWitt.
Last but not least, a common reservation about the use of

the Vilkovisky–DeWitt effective action when applied
specifically to gravitational theories is because the metric
in the space of fields (A8) is not uniquely defined without
the prescription (iii). Notice that (iii) is not needed for the
invariance of the Vilkovisky–DeWitt effective action.
Indeed, by using just (A8) it is possible to construct a
whole family of effective actions parametrized by the
arbitrary constant a, each of them being gauge and para-
metrization invariant. Vilkovisky’s prescription fixes a in
an uniquely way which only depends on the gravitational
theory in question. Whether it is the correct prescription is
still an open question that might be decided only at the
experimental level (in this regard, see also [30,46]).
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[6] I. L. Shapiro and J. Solà, The scaling evolution of the cos-
mological constant, J. High Energy Phys. 02 (2002) 006.

[7] L. S. Brown, Quantum Field Theory (Cambridge University
Press, Cambridge, England, 1994).

[8] B. L. Nelson and P. Panangaden, Scaling behavior of
interacting quantum fields in curved space-time, Phys.
Rev. D 25, 1019 (1982).

[9] E. S. Fradkin and A. A. Tseytlin, Renormalizable asymp-
totically free quantum theory of gravity, Nucl. Phys. B201,
469 (1982).

[10] I. L. Shapiro, Effective action of vacuum: Semiclassical
approach, Classical Quantum Gravity 25, 103001
(2008).

[11] A. Babic, B. Guberina, R. Horvat, and H. Stefancic,
Renormalization group running of the cosmological con-
stant and its implication for the Higgs boson mass in the
standard model, Phys. Rev. D 65, 085002 (2002).

[12] I. L. Shapiro and J. Solà, On the possible running of
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[18] J. Grande, J. Solà, J. C. Fabris, and I. L. Shapiro, Cosmic
perturbations with running G and Lambda, Classical Quan-
tum Gravity 27, 105004 (2010).

[19] J. A. Agudelo Ruiz, J. C. Fabris, A. M. Velasquez-Toribio,
and I. L. Shapiro, Constraints from observational data for a
running cosmological constant and warm dark matter with
curvature, Gravitation Cosmol. 26, 316 (2020).

[20] A. Accioly, B. L. Giacchini, and I. L. Shapiro, On the
gravitational seesaw in higher-derivative gravity, Eur. Phys.
J. C 77, 540 (2017).

[21] J. F. Donoghue, The effective field theory treatment of
quantum gravity, AIP Conf. Proc. 1483, 73 (2012).

[22] C. P. Burgess, Quantum gravity in everyday life: General
relativity as an effective field theory, Living Rev. Relativity
7, 5 (2004).

[23] D. A. R. Dalvit and F. D. Mazzitelli, Geodesics, gravitons
and the gauge fixing problem, Phys. Rev. D 56, 7779
(1997).

[24] T. de Paula Netto, I. L. Shapiro, and L. Modesto, Universal
leading quantum correction to the Newton potential, Eur.
Phys. J. C 82, 160 (2022).

[25] G. A. Vilkovisky, The unique effective action in quantum
field theory, Nucl. Phys. B234, 125 (1984).

[26] B. S. DeWitt, The effective action, inQuantum Field Theory
and Quantum Statistics, Essays in honor of the sixtieth
birthday of E. S. Fradkin, edited by C. J. Isham, I. A.
Batalin, and G. A. Vilkovisky (Hilger, Bristol, 1987).

[27] T. Taylor and G. Veneziano, Quantum gravity at large
distances and the cosmological constant, Nucl. Phys. B345,
210 (1990).

[28] B. L. Giacchini, T. de Paula Netto, and I. L. Shapiro,
Vilkovisky unique effective action in quantum gravity,
Phys. Rev. D 102, 106006 (2020).

[29] B. L. Giacchini, T. de Paula Netto, and I. L. Shapiro, On the
Vilkovisky-DeWitt approach and renormalization group in
effective quantum gravity, J. High Energy Phys. 10 (2020)
011.

[30] K. Kobes, G. Kunstatter, and D. J. Toms, The Vilkovisky-
DeWitt effective action: Panacea or Placebo?, in TeV
Physics: 12th Johns Hopkins Workshop on Current Prob-
lems in Particle Theory, edited by G. Domokos and S.
Kovesi-Domokos (World Scientific, Singapore, 1988).

[31] S. Weinberg, Anthropic Bound on the Cosmological
Constant, Phys. Rev. Lett. 59, 2607 (1987).

[32] I. Ya. Arefeva, A. A. Slavnov, and L. D. Faddeev, Generat-
ing functional for the S-matrix in gauge-invariant theories,
Teor. Mat. Fiz. 21, 311 (1974) [Theor. Math. Phys. 21, 1165
(1974)].

[33] B. L. Voronov, P. M. Lavrov, and I. V. Tyutin, Canonical
transformations and the gauge dependence in general gauge
theories, Sov. J. Nucl. Phys. 36, 498 (1982), https://
inspirehep.net/literature/183748.

[34] I. L. Shapiro and A. G. Jacksenaev, Gauge dependence in
higher derivative quantum gravity and the conformal
anomaly problem, Phys. Lett. B 324, 286 (1994).

[35] J. D. Gonçalves, T. de Paula Netto, and I. L. Shapiro, Gauge
and parametrization ambiguity in quantum gravity, Phys.
Rev. D 97, 026015 (2018).

[36] A. O. Barvinsky and G. A. Vilkovisky, The generalized
Schwinger-DeWitt technique in gauge theories and quantum
gravity, Phys. Rep. 119, 1 (1985).

[37] S. R. Huggins, G. Kunstatter, H. P. Leivo, and D. J. Toms,
The Vilkovisky-DeWitt effective action for quantum grav-
ity, Nucl. Phys. B301, 627 (1988).

[38] E. S. Fradkin and A. A. Tseytlin, On the new definition of
off-shell effective action, Nucl. Phys. B234, 509 (1984).

[39] A. Rebhan, Feynman rules and S-matrix equivalence of the
Vilkovisky-DeWitt effective action, Nucl. Phys. B298, 726
(1988).

[40] P. Ellicott and D. Toms, On the new effective action in
quantum field theory, Nucl. Phys. B312, 700 (1989).

[41] L. F. Abbott, Introduction to the background field method,
Acta Phys. Pol. B 13, 33 (1982), https://inspirehep.net/
literature/166273.

[42] B. S. DeWitt, Dynamical Theory of Groups and Fields
(Gordon and Breach, New York, 1965).

[43] J. L. Synge, Relativity: The General Theory (North-Holland,
Amsterdam, 1960).

[44] G. Kunstatter, Vilkovisky’s unique effective action: An
introduction and explicit calculation, in Super Field Theo-
ries, Proceedings of NATO Advanced Research Workshop
on Superfield Theories, edited by H. C. Lee, V. Elias, G.
Kunstatter, R. B. Mann, and K. S. Viswanathan, NATO ASI
Series B Vol. 160 (Plenum, New York, 1987).

[45] A. Rebhan, The Vilkovisky-DeWitt effective action and its
application to Yang-Mills theories, Nucl. Phys. B288, 832
(1987).

[46] G. A. Vilkovisky, Effective action in quantum gravity,
Classical Quantum Gravity 9, 895 (1992).

GIACCHINI, NETTO, and SHAPIRO PHYS. REV. D 105, 126025 (2022)

126025-8

https://doi.org/10.1103/PhysRevD.70.063529
https://doi.org/10.1088/1475-7516/2005/01/012
https://doi.org/10.1088/1475-7516/2005/01/012
https://doi.org/10.1103/PhysRevD.71.124041
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1088/1126-6708/2003/02/021
https://doi.org/10.1088/1126-6708/2003/02/021
https://doi.org/10.1088/1126-6708/2003/06/004
https://doi.org/10.1088/1126-6708/2003/06/004
https://doi.org/10.1088/0264-9381/27/10/105004
https://doi.org/10.1088/0264-9381/27/10/105004
https://doi.org/10.1134/S0202289320040106
https://doi.org/10.1140/epjc/s10052-017-5117-x
https://doi.org/10.1140/epjc/s10052-017-5117-x
https://doi.org/10.1063/1.4756964
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.1103/PhysRevD.56.7779
https://doi.org/10.1103/PhysRevD.56.7779
https://doi.org/10.1140/epjc/s10052-022-10077-7
https://doi.org/10.1140/epjc/s10052-022-10077-7
https://doi.org/10.1016/0550-3213(84)90228-1
https://doi.org/10.1016/0550-3213(90)90615-K
https://doi.org/10.1016/0550-3213(90)90615-K
https://doi.org/10.1103/PhysRevD.102.106006
https://doi.org/10.1007/JHEP10(2020)011
https://doi.org/10.1007/JHEP10(2020)011
https://doi.org/10.1103/PhysRevLett.59.2607
https://doi.org/10.1007/BF01038094
https://doi.org/10.1007/BF01038094
https://inspirehep.net/literature/183748
https://inspirehep.net/literature/183748
https://inspirehep.net/literature/183748
https://doi.org/10.1016/0370-2693(94)90195-3
https://doi.org/10.1103/PhysRevD.97.026015
https://doi.org/10.1103/PhysRevD.97.026015
https://doi.org/10.1016/0370-1573(85)90148-6
https://doi.org/10.1016/0550-3213(88)90280-5
https://doi.org/10.1016/0550-3213(84)90075-0
https://doi.org/10.1016/0550-3213(88)90005-3
https://doi.org/10.1016/0550-3213(88)90005-3
https://doi.org/10.1016/0550-3213(89)90579-8
https://inspirehep.net/literature/166273
https://inspirehep.net/literature/166273
https://inspirehep.net/literature/166273
https://doi.org/10.1016/0550-3213(87)90241-0
https://doi.org/10.1016/0550-3213(87)90241-0
https://doi.org/10.1088/0264-9381/9/4/008

