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The study of toy models in loop quantum gravity, defined as truncations of the full theory, is relevant to
both the development of the loop quantum gravity phenomenology, in cosmology and astrophysics, and the
progress towards the resolution of the open issues of the theory, in particular the implementation of the
dynamics. Here, we study the dynamics of spin network states of quantum geometry defined on the family of
graphs consisting in 2 vertices linked by an arbitrary number of edges, or 2-vertex model in short. A symmetry
reduced sector of this model—to isotropic and homogeneous geometries—was successfully studied in the
past, where interesting cosmological insights were found. We now study the evolution of the classical
trajectories for this system in the general case, for arbitrary number of edges with random initial
configurations. We use the spinorial formalism and its clear interpretation of spin networks in terms of
discrete twisted geometries, with the quantum 3D space made of superpositions of polyhedra glued together
by faces of equal area. Remarkably, oscillatory and divergent regimes are found with a universal dependence
on the coupling constants of the Hamiltonian and independent of the initial spinors or the number of edges.
Furthermore, we explore the evolution of the associated polyhedra as well as their volumes and areas.
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I. INTRODUCTION

Loop quantum gravity (LQG) offers a description
of the Planck scale geometry of space-time. Its dynamics,
in its semiclassical regime, is meant to reproduce the
Hamiltonian evolution of general relativity (possibly with
corrections in both the infrared and ultraviolet sectors).
Analyzing the coarse-graining and renormalization flow of
the full theory over the several orders of magnitude
bridging between the Planck scale and astrophysical scales
is an arduous task. From this perspective, studying con-
sistent truncated models turns out to be extremely useful in
gaining intuition about the whole theory, exploring its
complex phase diagram and investigating its cosmological
and astrophysical phenomenology.
The simplest family of truncations that one may explore

is given by the 2-vertex model that was studied in the past
with applications to cosmology and black hole modeling
[1–5]. The model consists in truncating the LQG dynamics
to spin network states living on a graph made of two
vertices linked by an arbitrary number N of edges. Despite
the simplicity of the model and its straightforward cosmo-
logical interpretation, this model has been superficially

studied, up to now, in a classical or semiclassical setting,
with the strong assumption of isotropy and homogeneity,
which amounts to focusing on its symmetry reduction
imposing a global UðNÞ symmetry. In this paper, we study
the dynamics of the model for general inhomogeneous
configurations. Investigating the whole space of configu-
rations of the model is progress both towards the study of
dynamics of nonhomogeneous spin network states in LQG
and towards the inclusion of anisotropies in the cosmo-
logical application of the 2-vertex model.
If one truncates LQG to dynamics on a fixed graph, one

works on the corresponding holonomy-flux phase space,
consisting in a collection of a certain number of particles
living on the Lie group SU(2) (one particle per graph edge)
together with constraints imposing the SU(2) gauge invari-
ance. Upon quantization, this leads to the Hilbert space of
spin network states with support on that graph. Now, if one
is interested in Hamiltonian dynamics, the evolution
generated by the classical Hamiltonian on the phase space
gives the leading order of the quantum dynamics, at least
for coherent wave packets. We thus start by studying
classical Hamiltonian dynamics on 2-vertex graphs.
We use the spinorial parametrization of the loop gravity

phase space [3,6–8]. One starts with spinor variables, as
complex 2-vectors, dressing the graph, from which one can
build back both holonomy and flux variables. The spinors
have canonical Poisson brackets and can be interpreted as
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Darboux coordinates for the phase space on a fixed graph.
These spinors are an outstanding tool for LQG and
spinfoams. At the mathematical level, they are the natural
variables for SU(2) unitary representations, whose Hilbert
space simply consists in polynomial wave functions in the
spinors (e.g., [6,9]). At the geometrical level, the spinors
provide a simple parametrization of twisted geometries [10]
and clarify the structure and solution to the simplicity
constraints, which allow us to derive general relativity from
topological BF theory [11–15]. These two key properties of
the spinorial reformulation of the loop gravity phase space
has led to several interesting results: a definition of coherent
spin network states (e.g., [11,12]), subsequently their
application to the definition of EPRL-type spinfoam
models (e.g., [16]) and the semiclassical analysis of the
corresponding spinfoam amplitudes in the large spin
asymptotic limit [17–22], the analysis of the space of
interwiners as the quantization of classical polyhedra and
the discovery of their fine structure in terms of UðNÞ
representations [23–26], the derivation of the Hamiltonian
constraints from spinfoam amplitude recursion relations
[27,28], progress on the coarse-graining flow of EPRL
amplitudes [29], extension to q-deformed LQG for spin
networks with nonvanishing cosmological constant
[30–32], and insights into the renormalization flow of
LQG and cosmology [33,34].
Concretely, given a graph, one dresses every half-edge of

the graph with a spinor variable in C2. One further imposes
two sets of constraints: matching constraints on every edge
and closure constraints on every vertices. Around a vertex,
one projects the spinors onto real 3-vectors, thereby
deriving the fluxes, then Minkowski’s theorem on poly-
topes [35] ensures that one can reconstruct a polyhedron of
N faces from any collection of N spinors satisfying the
closure constraint, such that the fluxes give the normal
vectors to the polyhedron’s faces. Along an edge, the
mapping between the two spinors, living on the two halves
of the edge, define the SU(2) holonomy or transport along
the edge. The matching constraint on the edge imposes that
the classical polyhedra reconstructed at the vertices of the
edge are glued by faces of equal area. Such discrete
geometry are called twisted geometries [36]. Upon quan-
tization, twisted geometries become spin network states,
closure constraints lead to the SU(2) invariance of inter-
twiners at the vertices, matching constraints ensure that
each edge carries a SU(2) spin representing a SU(2)
holonomy.
We apply this machinery to the 2-vertex graph and study

the classical dynamics of spinor networks and twisted
geometries. More precisely, we analyze the classical trajec-
tories for different numbers of edges and Hamiltonian
normalization of the 2-vertex model, as well as for the
generic case given by an arbitrary number of edges with
random initial configurations of spinors. Furthermore, using
the reconstruction algorithmbySellaroli [37], we reconstruct

the polyhedra and compute the evolution of their volume
and shape. Systematically studying a large number of initial
conditions for various values of the coupling constants
entering the Hamiltonian, we identify a universal behavior
of the regimes (oscillatory or divergent) depending on the
coupling constants (and with no dependence on the initial
conditions). Remarkably, this same dependence was found
for the reduced isotropic and homogeneous case at both the
classical level [3] and the quantum level [2]. In light of the
interpretation of this symmetry-reduced regime in terms of
homogeneous loop quantum cosmology, this opens the way
to extrapolate this analogy to the general case treated in the
present paper.
The paper is structured in the following way. In Sec. II,

we review the spinor formalism applied to the 2-vertex
graph and we discuss different general Hamiltonians for
the model (commuting with the constraints) that may be
proposed. In Sec. III, the simplest case of only 2 edges will
be studied, which will be useful in order to explore the
different regimes found depending on the coupling con-
stants and to gain insight into the dynamics of the 2-vertex
model. The case of the isosceles tetrahedron explored in
Sec. IV is very important given that the tetrahedron
represents the simplest polyhedron (corresponding to a
4-valent intertwiner in the LQG theory) with nontrivial
volume. Finally, Sec. V presents the general case for an
arbitrary number of edges and random initial conditions.

II. THE 2-VERTEX MODEL

We consider the same family of models studied in [2,3],
given by a graph with two vertices, noted as α and β, and an
arbitrary number of edges N between them (see Fig. 1).
That previous work focused however on the dynamics for a
reduced sector, considering only states invariant under a
global UðNÞ symmetry. This led to a single state for each

FIG. 1. The 2-vertex graph (also considered in [2,3]) that
consists of 2 vertices labeled with α and β and an arbitrary
number of N edges endowed with a couple of spinors jzii and
jωii attached to each of them.
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value of the sum of the spins carried by the edges, with no
local freedom for the intertwiners at the vertices or the
individual spins on the edges. In the present paper, we push
the analysis and explore the general case for arbitrary spin
fluctuations and intertwiner data.

A. Spinor phase space on the 2-vertex graph

Following the spinor formalism for LQG [3,6–8], we
define a spinor jzi ∈ C2, its conjugate hzj ∈ C2 and the
spinor jz� ∈ C2:

jzi ¼
�
z0

z1

�
; hzj ¼ ð z̄0 z̄1 Þ; jz� ≔ −iσ2jz̄i; with σ2 ¼

�
0 −i
i 0

�
: ð1Þ

Therefore, for the 2-vertex graph, we attach N spinor variables at every vertex, jzαki and jzβki, with k running from 1 to N
(one spinor for each edge and vertex). In order to ease the notation (and avoid multiple indices), we will write jzαki ¼ jzki
and jzβki ¼ jwki.
Each spinor variable is provided with canonical Poisson bracket

fzA; zBg ¼ fz̄A; z̄Bg ¼ 0; fzA; z̄Bg ¼ −iδAB; with A;B ¼ 0; 1; ð2Þ

and it defines a 3D real vector by its projection onto the Pauli matrices, normalized to ðσaÞ2 ¼ I, for each a ¼ 1, 2, 3:

Xa ¼ 1

2
hzjσajzi ¼ 1

2
σaABz̄AzB; X ≡ jX⃗j ¼ 1

2
hzjzi: ð3Þ

These vector components naturally form a suð2Þ Lie algebra,

fX;Xag ¼ 0; fXa; Xbg ¼ ϵabcXc; ð4Þ

whose Casimir is obviously the squared norm, X⃗2 ¼ X2, and who generates the SU(2) group action in the spinor,

efθû·X⃗;•gjzi ¼ gðθ; ûÞjzi; gðθ; ûÞ ¼ ei
θ
2
û·σ⃗ ∈ SUð2Þ: ð5Þ

Along each edge linking the two vertices, we define a SU(2) group element mapping the spinors around α and the spinors
around β:

gk ¼
jwk�hzkj − jwki½zkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihzkjzkihwkjwki
p ∈ SUð2Þ; gk

jzkiffiffiffiffiffiffiffiffiffiffiffiffiffihzkjzki
p ¼ jwk�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihwkjwki

p ; gk
jzk�ffiffiffiffiffiffiffiffiffiffiffiffiffihzkjzki

p ¼ −
jwkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihwkjwki

p : ð6Þ

Let us call Xa
k the 3-vectors defined by the spinors jzki around the vertex α and Ya

k the 3-vectors defined by the spinors jwki
around the vertex β. Then, if we assume norm-matching condition along each edge,

Ck ¼ hzkjzki − hwkjwki ¼ 0; ð7Þ

Xk, Yk, and gk form a T�SUð2Þ Lie algebra:

fgk; gkg ∼ 0; fXa
k; gkg ¼ gk

�
−iσa

2

�
; fYa

k; gkg ¼
�þiσa

2

�
gk; fXk; Ykg ¼ 0: ð8Þ

B. LQG Hamiltonian

Since we are truncating the LQG dynamics to a fixed
graph, we are now looking for a LQG Hamiltonian driving
the time evolution of the data living on the 2-vertex graph
without creation or deletion of edges or vertices. The main
requirement is that it must be SU(2) gauge invariant at
each vertex. Then, since we work in LQG and spin

network states, it is natural to seek for a Hamiltonian
operator polynomial in the spins and thus a classical
ansatz polynomial in the spinor variables, up to possible
prefactors similar to the metric density factors in general
relativity. Finally, we wish to have an ansatz comparable
to (a discrete version of) the Hamiltonian constraint of
classical gravity.
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In order to define a LQG Hamiltonian on the 2-vertex
graph, we introduce the basic SU(2) invariant observables
around each of the two vertices, following [3,6],

Eα
kl ¼hzαk jzαl i; Fα

kl ¼ ½zαk jzαl i; F̄α
kl ¼hzαl jzαk � ¼−hzαk jzαl �;

ð9Þ

and similarly for β. They satisfy the following symmetry
and reality conditions:

Ēkl ¼ Elk; Fkl ¼ −Flk: ð10Þ

On top of this, the observables Fij also satisfy the Plücker
relations:

FijFkl ¼ FilFkj þ FikFjl: ð11Þ

Both observables Eij and Fij are invariant under SU(2)
transformations of the spinors around α,

jzαki ↦
h∈SUð2Þ

hjzαki; Eα
kl ↦ Eα

kl; Fα
kl ↦ Fα

kl: ð12Þ

Since this SU(2) action is generated by the Poisson bracket
with the total vector (or closure vector) around α,
X⃗ ¼Pk X⃗k, this SU(2) invariance simply corresponds to
a vanishing Poisson bracket:

fXa; Eα
klg ¼ fXa; Fα

klg ¼ 0; ð13Þ

and similarly around the vertex β, for which we introduce
the total vector Y⃗.
We can thus introduce the lowest order SU(2)-invariant

polynomial ansatz for a Hamiltonian coupling the geometry
around both vertices:

H ¼
X
k;l

λEα
klE

β
kl þ γFα

klF
β
kl þ γ̄F̄α

klF̄
β
kl; ð14Þ

with a real coupling constant λ ∈ R and a complex
coupling constant γ ∈ C. This ansatz has two essential
properties:

(i) it is invariant under SU(2) (gauge) transformations
acting independently on each vertex, which trans-
lates into the following vanishing Poisson brackets,

fH; X⃗g ¼ fH; Y⃗g ¼ 0; ð15Þ

(ii) it is invariant under U(1) phase transformations
along every edge, which translates into the following
vanishing Poisson brackets,

fH; Ckg ¼ 0; ∀ k: ð16Þ

This means that X⃗ , Y⃗ and the Ck are all constants of motion.
In particular, if we choose closed and matching initial
conditions, i.e., X⃗ ¼ Y⃗ ¼ 0 and Ck ¼ 0 for all ks, then the
configuration of spinors remains closed and matching
during the time evolution. Notice that the closure constraint
(given by X⃗ ¼ Y⃗ ¼ 0) would translate, after quantization,
into the SU(2) invariance of the intertwiner [3,6].
Furthermore, considering the Minkowski theorem [35],
closed configurations correspond uniquely (up to trans-
lations and rotations) to polyhedra whose face normals are
given by X⃗i and whose areas of the faces are given by their
moduli Xi.
We may compute the equations of motion for the

Hamiltonian (14), which are given by

dtjzii ¼ −fH; jziig ¼
X
j

ð2iγ̄F̄β
ijjzj� − iλEβ

ijjzjiÞ; ð17Þ

and similarly for the spinors jωii.
Moreover, the three terms of the Hamiltonian interest-

ingly form a slð2;RÞ algebra:

e0 ¼
X
k;l

Eα
klE

β
kl; f0¼

X
k;l

Fα
klF

β
kl; f̄0¼

X
k;l

F̄α
klF̄

β
kl;

ð18Þ

and the following brackets are satisfied (using the closure
and matching constraints),

fe0; f0g ¼ 2iEf0; fe0; f̄0g ¼ −2iEf̄0;

ff0; f̄0g ¼ −4iEe0; ð19Þ

with E ¼ Eα ¼ Eβ ¼Pihzijzii.
Previous works showed that the ansatz (14) is a dis-

cretization of the scalar Hamiltonian constraint truncated to
the 2-vertex graph and that a symmetry-reduced sector
of this model allows us to represent the homogeneous
isotropic geometrodynamics, i.e. FLRW cosmology
[1,2,5]. There are two clear limitations to our approach:
the possibilities of higher order terms, similar to higher
order fðRÞ corrections to general relativity, and the brutal
truncation to working on a fixed graph with limited degrees
of freedom. Keeping these restrictions in mind, here we
seek to explore the full dynamics of the model and also
further explore the freedom in the normalization of the
Hamiltonian, that is possible prefactors similar to density
factors in the 3D induced metric. This leads us to two
interesting alternative Hamiltonian ansatz given in the next
two subsections.

C. Lattice gauge theory

It is extremely useful to understand the Hamiltonian
ansatz (14) in terms of SU(2) holonomy and lattice gauge
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theory. For instance, it is very natural to consider the SU(2) holonomy for a loop linking the two vertices along a pair of
edges ðk; lÞ:

χkl ¼ Trgkg−1l ¼ Trðjwk�hzkj − jwki½zkjÞðjzli½wlj − jzl�hwljÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihzkjzkihwkjwkihzljzlihwljwli
p ¼ Eα

klE
β
kl þ Eα

lkE
β
lk þ Fα

klF
β
kl þ F̄α

klF̄
β
kl

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XkXlYkYl

p : ð20Þ

Summing over all pairs of links with equal weights gives a lattice gauge theory Hamiltonian:

H̃0 ¼
X
k;l

χkl ¼
X
k;l

Eα
klE

β
kl þ Eα

lkE
β
lk þ Fα

klF
β
kl þ F̄α

klF̄
β
kl

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XkXlYkYl

p ¼ eþ f þ f̄; ð21Þ

with the more compact notations:

e ¼ 1

2

X
k;l

Eα
klE

β
klffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XkXlYkYl
p ; f ¼ 1

4

X
k;l

Fα
klF

β
klffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XkXlYkYl
p ; f̄ ¼ 1

4

X
k;l

F̄α
klF̄

β
klffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XkXlYkYl
p : ð22Þ

It was actually shown in [3,5] that the LQG version of the
Hamiltonian can be written as the lattice gauge theory
Hamiltonian with two flux-vector insertions, with terms of
the type TrXkXlgkg−1l . There are two key differences:

(i) This version of the Hamiltonian has a fixed ratio
between the E coupling and the F coupling. This
necessarily peaks the energy around flat configura-
tions, which corresponds to flat cosmology in the
context of (loop) (quantum) cosmology [5]. We can
generalize this Hamiltonian allowing for arbitrary
couplings in front of e and f, which simply modify
the LQG Hamiltonian by norm factors:

H̃ ¼
X
k;l

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XkXlYkYl

p ½λEα
klE

β
kl þ γFα

klF
β
kl þ γ̄F̄α

klF̄
β
kl�:

ð23Þ

(ii) The norm factors lead to a highly nontrivial modi-
fication of the Lie brackets between Hamiltonian
terms, and we no longer have a closed algebra.

D. The intermediate normalization

We may also consider an intermediate normalization
given by

Hinter ¼
2ffiffiffiffiffiffiffiffiffiffiffi
EαEβ

p
X
k;l

½λEα
klE

β
kl þ γFα

klF
β
kl þ γ̄F̄α

klF̄
β
kl�: ð24Þ

In this case, we may define

e1 ¼
2ffiffiffiffiffiffiffiffiffiffiffi
EαEβ

p e0; f1 ¼
2ffiffiffiffiffiffiffiffiffiffiffi
EαEβ

p f0; f̄1 ¼
2ffiffiffiffiffiffiffiffiffiffiffi
EαEβ

p f̄0;

ð25Þ

which satisfy the following Poisson brackets:

fe1; f1g ¼ 4i

�
1−

e1
2E

�
f1; ð26Þ

fe1; f̄1g ¼ −4i
�
1−

e1
2E

�
f̄1; ð27Þ

ff1; f̄1g ¼ −4i
�
2e1 −

f1f̄1
E

�
: ð28Þ

III. THE 2-VERTEX MODEL WITH 2 EDGES

We will consider now the simplest nontrivial 2-vertex
graph, with only N ¼ 2 edges (see Fig. 2). The relations
between the spinors that satisfy the closure constraint are
the following:

jz1i ¼ jzi; jω1i ¼ jωi;
jz2i ¼ eiθjz�; jω2i ¼ eiφjω�: ð29Þ

In this section we will study the evolution of the model
with 2 edges under the dynamics given by the three
Hamiltonians considered in the previous section (Sec. II).

FIG. 2. The 2-vertex graph with only 2 edges and with spinors
given by Eq. (29).
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A. Loop gravity dynamics

The LQG Hamiltonian (14) for this simple case of 2
edges may be explicitly written as

H ¼ λðhz1jz1ihw1jw1i þ hz2jz2ihw2jw2iÞ
þ λðhz1jz2ihw1jw2i þ hz2jz1ihw2jw1iÞ
þ 2γ½z1jz2i½w1jw2i þ 2γ̄hz1jz2�hw1jw2�; ð30Þ

with the corresponding evolution equations:

dtjz1i ¼ −fH; jz1ig ¼ −iλhw1jw1ijz1i
− iλhw1jw2ijz2i − 2iγ̄hw1jw2�jz2�; ð31Þ

dtjw1i ¼ −fH; jw1ig ¼ −iλhz1jz1ijw1i
− iλhz1jz2ijw2i − 2iγ̄hz1jz2�jw2�; ð32Þ

and similarly for the spinors z2 and w2. Applied to closed
initial conditions [Eq. (29)], where the phases θ and φ
should a priori be allowed to evolve, and taking into
account that

hz1jz2i ¼ hw1jw2i ¼ 0; hz1jz2� ¼ −e−iθhzjzi;
hw1jw2� ¼ −e−iφhwjwi; ð33Þ

the equations of motion for z1, w1 read

dtjzi ¼ −iðλþ 2γ̄e−iðφþθÞÞ2Yjzi; ð34Þ

dtjwi ¼ −iðλþ 2γ̄e−iðφþθÞÞ2Xjwi; ð35Þ

while the equations of motion for z2, w2 read

dtðeiθjz�Þ ¼ −iðλþ 2γ̄e−iðφþθÞÞ2Yeiθjz�; ð36Þ

dtðeiφjw�Þ ¼ −iðλþ 2γ̄e−iðφþθÞÞ2Xeiφjw�; ð37Þ

from which we easily extract the evolution equations for the
relative phases between the first and second link:

dtθ ¼ −4Yðλþ γeiðθþφÞ þ γ̄e−iðθþφÞÞ; ð38Þ

dtφ ¼ −4Xðλþ γeiðθþφÞ þ γ̄e−iðθþφÞÞ: ð39Þ

We also compute the evolution equation for the vector
norms,

dtX ¼ 4iðγeiðθþφÞ − γ̄e−iðθþφÞÞXY; ð40Þ

dtY ¼ 4iðγeiðθþφÞ − γ̄e−iðθþφÞÞXY: ð41Þ

Since dtðY − XÞ ¼ 0, this confirms that we can safely
assume the norm matching condition Y ¼ X on the initial
configurations and that this condition is then preserved
during the evolution. In that case, we also have that the
phase difference does not evolve, dtðθ − φÞ ¼ 0, and we
can focus on the dynamics of the total phase Θ≡ ðθ þ φÞ.
For closed and matching configurations, we are thus left
with a pair of equations of motion:

dtΘ ¼ −8ðλþ γeiΘ þ γ̄e−iΘÞX; ð42Þ

dtX ¼ 4iðγeiΘ − γ̄e−iΘÞX2: ð43Þ

We can proceed to a final simplification, if we assume that
the Hamiltonian is actually a Hamiltonian constraint, i.e., if
we focus on a trajectory with vanishing energy, H ¼ 0.
Then, this imposes

H ¼ 0 ¼ 8ðλþ γeiΘ þ γ̄e−iΘÞX2: ð44Þ

In that case, the total phase Θ is constant and we are left
with a single nontrivial equation:

dtX
X2

¼ 4iðγeiΘ − γ̄e−iΘÞ ⇒ XðtÞ ¼ −1
4iðγeiΘ − γ̄e−iΘÞðt − t0Þ

¼ 1

8tImðγeiΘÞ þ 1=X0

: ð45Þ

Since the phases do not evolve, we can assume that they
vanish, θ ¼ φ ¼ Θ ¼ 0, in which case the spinor simply
evolves as jzi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XðtÞ=X0

p jz0i for any fixed initial value
jz0i. Notice also that the evolution of XðtÞ remains constant
if ImðγeiΘÞ ¼ 0.
If the energy does not vanish, then the equations of

motion can be written as decoupled second order differ-
ential equations if we take into account that the energy itself
is still a constant of motion, dtH ¼ 0:

d2t ðX−1Þ ¼ 4H
X

�
λ−

H
8X2

�
; d2tΘ¼ 4iHðγeiΘ − γ̄e−iΘÞ:

ð46Þ

In order to explore the dependence of the solutions of
Eq. (46) with the initial values and coupling constants we
have studied a large number (∼104) of numerical solutions
for different values of the parameters. We plotted the results
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(see Fig. 3 for an example) and looked for different patterns
in them (see Appendix B for more details about the
procedure). We found the following interesting results:
Result 1:
If λ2 > 4jγj2, then the evolution oscillates.

Result 2:
If λ2 ≤ 4jγj2, then the evolution diverges.

Result 3:
The behavior of the solutions does not depend on the
initial conditions on the spinors. However, such initial
values will affect the oscillation frequency and the value
of the time at which the divergent regimes diverge.

Comment:
In some specific cases the evolution is constant (a
behavior similar to the case of the solutions of
Eq. (45) when γeiΘ ∈ R, where the divergent regime
became constant).

B. Lattice gauge theory dynamics

The lattice gauge theory Hamiltonian (20) takes the
following form for the case with 2 edges that we are
studying:

H̃ ¼ 4

 
2λþ λ

hz1jz2ihw1jw2i þ hz2jz1ihw2jw1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihz1jz1ihw1jw1ihz2jz2ihw2jw2i
p þ 2

γ½z1jz2i½w1jw2i þ γ̄hz1jz2�hw1jw2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihz1jz1ihw1jw1ihz2jz2ihw2jw2i
p

!
: ð47Þ

FIG. 3. The evolution of the spinorial variables given by Eq. (46) are represented for the different regimes. In each column it is shown
the evolution of the spinors of the vertex α, the total area X, and the evolution of the total phase Θ. On the other hand, in the first row an
example of the oscillatory regime, λ2 > 4jγj2 (with λ ¼ 5=8, γ ¼ −1=4), is represented; in the second row we illustrate a case in the
divergent regime, given by λ2 ≤ 4jγj2 (with λ ¼ −1=4, γ ¼ 5=8); and in the third one the evolution for H ¼ 0 (with λ ¼ −1.98081,
γ ¼ 6=5), which is also divergent in the spinor components and area.
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Therefore, the equations of motion for the spinors read:

dtjz1i ¼ −fH̃; jz1ig ¼ −4i
λhw1jw2ijz2i þ 2γ̄hw1jw2�jz2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihz1jz1ihw1jw1ihz2jz2ihw2jw2i
p þ i

2
ðH̃ − 8λÞ jz1i

hz1jz1i
; ð48Þ

and similarly for the other spinors. For closed and matching configurations (which are still preserved under evolution), this
simplifies to

dtjzi ¼
i
X

�
1

4
H̃ − 2λ − 4γ̄e−iΘ

�
jzi ¼ 2i

X
ðγeiΘ − γ̄e−iΘÞjzi; ð49Þ

leading to the norm evolution equations:

dtX ¼ 4iðγeiΘ − γ̄e−iΘÞ; ð50Þ

without any power of the norm on the right-hand side.
The equations of motion for jz2i read

dtðeiθjz�Þ ¼
2i
X
ðγeiΘ − γ̄e−iΘÞeiθjz�; ð51Þ

and similarly for ω2. From these equations, we easily
extract the evolution equations for the relative phases
between the first and second link:

dtθ ¼ 0 ¼ dtφ ¼ dtΘ; ð52Þ

so the phases remain constant under evolution (for any
value of the energy) and the norm X evolves linearly with t.
Therefore, the evolution with this Hamiltonian does not
show the oscillatory and divergent regimes that we obtained
for the LQG Hamiltonian (14).

C. Intermediate Hamiltonian dynamics

The intermediate Hamiltonian introduced in Eq. (24)
takes the following form in the case of N ¼ 2 edges:

Hinter ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhz1jz1i þ hz2jz2iÞðhω1jω1i þ hω2jω2iÞ

p ½λðhz1jz1ihω1jω1i þ hz2jz2ihω2jω2iÞ

þ γð½z1jz2i½ω1jω2i þ ½z2jz1i½ω2jω1iÞ þ γ̄ðhz2jz1�hω2jω1� þ hz1jz2�hω1jω2�Þ�; ð53Þ

and the equations of motion for the variables at the vertex α:

dtjzi ¼
i
2

ffiffiffiffi
Y
X

r
ð−λþ γeiΘ − 3γ̄e−iΘÞjzi; ð54Þ

dtθ ¼ −
Hinter

4X
; ð55Þ

dtX ¼ 2i
ffiffiffiffiffiffiffi
XY

p
ðγeiΘ − γ̄e−iΘÞ; ð56Þ

and similarly for the vertex β.
Therefore, after applying the matching constraint we end

up with the following system of differential equations:

dtX ¼ −4ImðγeiΘÞX; ð57Þ

dtΘ ¼ −
Hinter

2X
: ð58Þ

In order to study the emergence from Eqs. (57) and (58)
of possible regimes (oscillatory or divergent), we have
repeated the procedure explained in Appendix B for this

case. The results that we obtained are exactly the same
as the results for LQG Hamiltonian (30), for which the
regimes only depend on Signðλ2 − 4jγj2Þ.

IV. LQG EVOLUTION FOR THE ISOSCELES
TETRAHEDRON

We now study the evolution given by the LQG
Hamiltonian (14) for configurations representing two

FIG. 4. The 2-vertex model with N ¼ 4 edges. Provided the
parametrization of the spinors given by (59), this graph corre-
sponds to two isoceles tetrahedra attached by their faces satisfy-
ing the matching constraint (equal areas of the matching faces).
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matching isosceles tetrahedra. This model has in general a
nonzero volume. This apparently simple case is important
given that the tetrahedra representing the geometry dual
to the vertices represents the simplest possible chunk of
nonzero volume within the LQG theory and that we can

explore fluctuations of volume and shape, i.e., expansion
and shear dynamics of the geometry.
Let us indeed consider the 2-vertex model with N ¼ 4

edges (see Fig. 4) with the following parametrization of the
spinors:

jz1i ¼
�
α

β

�
; jz3i ¼

�
ξ

δeiθ

�
; jω1i ¼

�
α

β

�
; jω3i ¼

�
ξ

δeiφ

�
;

jz2i ¼
�

α

−β

�
; jz4i ¼

�
ξ

−δeiθ

�
; jω2i ¼

�
α

−β

�
; jω4i ¼

�
ξ

−δeiφ

�
; ð59Þ

where θ and φ are constants. Imposing the closure con-
straint, we can determine the value of one of the parameters,
say δ:

jδj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαj2 þ jξj2 − jβj2

q
: ð60Þ

A. Evolution equations for the spinors

Using the description for the isosceles tetrahedron given
by Eq. (59) and following the equations of motion (17)
corresponding to the LQG Hamiltonian (14), the following
evolution equations for the parameters are obtained:

_α ¼ −2iλᾱðα2 þ ξ2Þ − 4iγ̄ ᾱðβ̄2 þ δ̄2e−iðθþφÞÞ; ð61Þ

_β ¼ −2iλβ̄ðβ2 þ δ2eiðθþφÞÞ − 4iγ̄ β̄ðᾱ2 þ ξ̄2Þ; ð62Þ

_ξ ¼ −2iλξ̄ðα2 þ ξ2Þ − 4iγ̄ ξ̄ðβ̄2 þ δ̄2e−iðθþφÞÞ; ð63Þ

_δ¼−2iλδ̄e−iðφþθÞðβ2þδ2eiðθþφÞÞ−4iγ̄ δ̄e−iðφþθÞðᾱ2þ ξ̄2Þ:
ð64Þ

Notice that the equations for this model do not allow for the
creation of edges; if one variable is zero at the beginning,
then it will remain zero.
In order to study the different solutions of the evolution

equations for this case, we have also proceeded with a
systematic strategy by calculating numerous plots for the
evolution of the total area for different initial values and
coupling constants, as done in the bivalent 2-vertex model
(Sec. III). Remarkably, the same regimes as in the previous
case (also found for the symmetry reducedmodel of Ref. [3])
are obtained. Therefore, the same results and comments are
in order here: if λ2 > 4jγj2, then the evolution oscillates; for
λ2 ≤ 4jγj2 the evolution diverges, and there is no dependence
of the behavior with the initial values of the spinors and for
certain specific cases a constant evolution is found. As an
example, the behavior of the isosceles tetrahedra in the
oscillatory regime is plotted in Fig. 5.

B. Quadrupole moment

The quadrupole moment associated with a polyhedron
gives us direct information about its shape and may provide
a first approximation for the volume. We define the
quadrupole moment as [38]

FIG. 5. The evolution of the spinor components (left) and the areas (right) in the oscillatory regime (with λ ¼ 9.4617, γ ¼ i) is
represented. In the case of the areas, only the total area and the areas of two of the faces are represented (the other two areas are equal to
the ones plotted because of the symmetry of the isosceles tetrahedra).
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Tab ¼
X4
i¼1

1

Xi
Xa
i X

b
i ¼

1

2

X4
i¼1

1

hzijzii
hzijσajziihzijσbjzii;

ð65Þ

and its trace1 is the total area around the node:
TrT ¼P4

i Xi.
Given that the quadrupole may be written in terms of the

spinors, we may compute the evolution of the quadrupole
moment and obtain information about its eigenvalues and
principal axes. For the case of the isosceles tetrahedron, we
obtain the evolution of the quadrupole moment given in
Fig. 6, where, for the choice of coupling constants taken, an
oscillatory behavior may be recognized. Furthermore,
looking at the evolution of its eigenvalues (Fig. 7), we
observe that the distribution of the area will evolve
irregularly along the three main directions. In fact, for
the tetrahedron it is easy to compute its volume V, which is
given by [38]

V2 ¼ 2

9
jX⃗1 · ðX⃗2 ∧ X⃗3Þj: ð66Þ

As the volume is given in terms of the normal vectors (that
may be written in terms of the spinors) we can study the
evolution of the volume exactly. In Fig. 8 the evolution of
the volume is represented and, as expected from the results
for the quadrupole moment, the volume oscillates. The time
values where zero volume is found correspond to the
geometrical situations where two normal vectors are

FIG. 6. The evolution of the different components of the quadrupole is plotted for the isosceles tetrahedron for the same values of the
constants used in Fig. 5 (given that it is a symmetric matrix, we only plot the diagonal and the elements under the diagonal). Notice that,
in this case, the elements T31 ¼ 0 ¼ T32 as a consequence of the parametrization (59) of the isosceles tetrahedron.

FIG. 7. Evolution of the eigenvalues of the quadrupole moment
Tab, given by Eq. (65), for the oscillatory regime considered also
in Figs. 5 and 6.1It is also possible to define a traceless quadrupolemoment [38].
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parallel. As we will observe in Sec. V, for the case of
polyhedra with more faces (graphs with larger number
of links) it will be more difficult to find a combination of
normal vectors for which the resulting polyhedron has zero
volume.

C. Reconstruction of the tetrahedron

We review the reconstruction of the tetrahedron from the
normal vectors X⃗ following [39]. First, we need to locate its
vertices, which we label by the normal vectors at the
opposite face. To ease the notation (using the same notation
as in [39]), we define X⃗a ≡ X⃗1, X⃗b ≡ X⃗2, X⃗c ≡ X⃗3, and
X⃗d ≡ X⃗4. Naming the vertices a, b, c, and d, the normal
vector X⃗c belongs to the face opposed to the vertex c, as
shown in Fig. 9.
Now, the relationship between the edges of the tetrahe-

dron and its normals is given by [39]

ad
�! ¼

ffiffiffiffi
2

U

r
X⃗b × X⃗c; ab

�! ¼
ffiffiffiffi
2

U

r
X⃗c × X⃗d;

ac�! ¼
ffiffiffiffi
2

U

r
X⃗d × X⃗b; ð67Þ

where U ¼ 9V2=2. This uniquely characterizes the tetra-
hedron. Therefore, if we fix the vertex a, the other vertices
are fixed by the relations (67). In order to ease the graphical
visualization, we locate the vertex a so that the centroid G
of the tetrahedron is fixed at the origin O ¼ ð0; 0; 0Þ at any
time. The centroid is given by

G ¼ aþ bþ cþ d
4

: ð68Þ

If we solve for a and set G ¼ ð0; 0; 0Þ, then we obtain the

position of each vertex in terms of ad
�!

, ab
�!

, and ac�!:

FIG. 8. Evolution of the volume of the isosceles tetrahedron
[given by Eq. (66)] in the same oscillatory regime considered in
Figs. 5–7.

FIG. 9. An example of a tetrahedron. The normal vector to the
face opposed to c will be X⃗c and its modulus will be the area of
the face .

FIG. 10. Images of the reconstructed isosceles tetrahedron for three different time snaps corresponding to three different values of the
volume plotted in Fig. 8.
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d ¼ 3

4
ad
�!

−
1

4
ab
�!

−
1

4
ac�!; ð69Þ

c ¼ 2

3
ac�! −

1

3
ab
�!

−
1

3
d; ð70Þ

b ¼ 1

2
ð−c − dþ ab

�!Þ; ð71Þ

a ¼ −b − c − d: ð72Þ

Once we have set the position of the vertices, we can
illustrate our model with 3D images. As we can see in
Fig. 10, the tetrahedron rotates and its faces change their
area and shape and, thus, the volume also evolves (as
already seen in Fig. 8).

V. LQG HAMILTONIAN DYNAMICS FOR
MODELSWITHARBITRARYNUMBEROF EDGES

Up to now we have considered specific models para-
metrized in a simple way in order to ease the study of the
equations of motion. In this section, we consider com-
pletely general parametrizations of the spinors for 2-vertex
models with arbitrary number of edges.
One of the main difficulties in dealing with arbitrary

configurations for the spinors is that the closure constraint
must be satisfied. We now present a method, based on the
results of [25,26], to generate closed arbitrary configurations
of the spinors as initial values for the differential equations of
motion. Then, we solve numerically such equations, recon-
struct the polyhedron for any moment of the evolution and
study the evolution of its total area and volume.
Finally, we consider a more general Hamiltonian with

different coupling constants for different pairs of edges of
the graph.

A. Generating and evolving a random configuration
on the 2-vertex graph

In order to obtain arbitrary configurations of spinors
satisfying the closure constraint, we use the toolbox
of operations on collections of spinors detailed in
Appendix A. Then, we run numerical simulations of the
LQG Hamiltonian for the 2-vertex model on this configu-
ration in order to solve the equations of motion and to
obtain the evolution of the polyhedra (using the
reconstruction algorithm discussed in [37,40]) and of its
volume.
The procedure is the following:
(1) We choose N random spinors. First, we consider

random vectors on the unit sphere multiplied by
weights that are chosen following a Gaussian dis-
tribution. Then, we obtain the corresponding spinors
associated with each vector [3].

(2) We boost the spinors to their corresponding closed
configuration (see Appendix A). Those are the
spinors jzii around the vertex α.

(3) In order to obtain random spinors for the vertex β,
we pseudorandomly deform them while keeping the
individual areas of the faces fixed using the scalar
product Hamiltonian flows defined in Appendix A.
This gives the spinors wi at the vertex β, satisfying
the area-matching condition on the 2-vertex graph.

Regarding the reconstruction of the polyhedra, the
Minkowski theorem [35] ensures the existence and unique-
ness of the 3D convex polyhedron associated with the set of
closed normal vectors. Nevertheless, it does not provide a
method to compute it. For the simple case of the tetrahe-
dron we may use the method [39] described in Sec. IV C,
but for polyhedra with more faces the reconstruction
algorithm is much more intricate [37,40].
In our case, in order to compute the evolution of the

volume,we have applied the algorithmpresented bySellaroli
[37] and the associated implementation in PYTHON

2 (based
on amethod byLasserre [41]) at each step of the evolution, in
order to compute numerically the volume and be able to plot
its evolution. As a consistency check, for N ¼ 4 we have
compared the reconstructed polyhedron as well as its volume
using both Sellaroli’s code and the analytical formulas from
Eqs. (69)–(72) to check that they agree (Fig. 11).
It is worth noting that, in this case, we recover again the

same regimes we observed for the case with N ¼ 2 and for
the isosceles tetrahedron, that is, the regimes also depend
on Signðλ2 − 4jγj2Þ and no dependence of the behavior
with the initial values of the spinor has been found. In order
to systematically check this result, we have proceeded in an
analogous way as in the case with 2 edges or the isosceles
tetrahedron. We have computed numerically the evolution
of a large number of systems with different coupling
constants and number of edges (see Appendix B) and
the results that we have obtained reinforce those found for
the simpler cases treated before.
Sellaroli’s algorithm [37] is an excellent tool to find the

vertices of a polyhedron and thus calculate the volume.
Nevertheless, in order to ease the computational time when
studying the evolution, specially for models with large
number of edges (faces), we may approximate the volume
with the eigenvalues of the quadrupole moment. Taking
into account that the quadrupole moment has information
about the distribution of area along the 3D object, the
eigenvalues will provide a notion of which is the “amount
of area” along every main direction (given by the corre-
sponding eigenvector). Thus, we may use the formula
for the volume of an ellipsoid to approximate the volume
of our polyhedra, where the radii will be the three
eigenvalues:

2Publicly available at https://github.com/gsellaroli/polyhedrec.
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V ¼ 4π

3
T1T2T3; ð73Þ

being T1, T2, and T3 the eigenvalues of the quadrupole
[given by Eq. (65)]. As an example, we have studied the
case of a random hexahedron in the oscillatory regime (see
Fig. 12 for the evolution of the areas). For this case, we
have computed the evolution of the volume in an exact way
(using Sellaroli’s method) and in an approximate way
[using Eq. (73)]. We can observe in Fig. 13 that, although
the evolution based on Eq. (73) does not provide an
accurate numerical value for the volume, both plots have
similar trends.
Finally, we may observe the actual evolution of the

hexahedron given by the reconstruction algorithm at any
time. In Fig. 14 is represented the hexahedron (with the
normal vectors to the faces) at three different snaps of the
evolution.

Regarding the divergent regime, we may proceed analo-
gously, and we find similar results (see Fig. 15) for the
hexahedron. Furthermore, proceeding in the same way, we
may compute the evolution equations for any random
polyhedra3 and, remarkably, we observe the emergence
of the same regimes, depending only on Signðλ2 − 4jγj2Þ
(with no dependence on the initial values). For the cases
with many faces, calculating the volume using Sellaroli’s
algorithm is a computationally expensive procedure, but we
can take advantage of the approximation given by the
eigenvalues of the quadrupole moment [Eq. (73)] in order

FIG. 11. Evolution of the areas (left) and volume (right) for a tetrahedron with randomly chosen initial values. The blue line of the
volume corresponds to the result from the reconstruction algorithm in [37], whereas the dashed orange line is the volume calculated
using Eq. (66). In the first row, the case for the oscillatory regime with λ ¼ 5 and γ ¼ 2 is represented, whereas in the second row we
illustrate the divergent regime with λ ¼ 2 and γ ¼ 5.

3Although the reconstruction algorithm [37] is suitable for
large number of faces, in order to study the evolution we have to
solve numerically the equations of motion and then implement
Sellaroli’s algorithm at each step of the evolution. This process
requires computational time. In our case, we have obtained results
for polyhedra with a maximum of 60 faces.
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to gain intuition about the behavior of the volume of a
polyhedra with large number of faces (Fig. 16).

B. Edge-dependent coupling constants

As an extension of the results obtained for the LQG
Hamiltonian [Eq. (14)], we may also study the evolution
generated by a more general Hamiltonian, considering
coupling constants which depend on the edges:

Hgen ¼
X
k;l

λklEα
klE

β
kl þ γklFα

klF
β
kl þ γ̄klF̄α

klF̄
β
kl: ð74Þ

Notice that this Hamiltonian still commutes with the
closure and matching constraints [3]. Also note that only
the symmetric part of γkl contributes to the dynamics and
that λkl ¼ λlk in order for the Hamiltonian (74) to be
Hermitian.

FIG. 13. We plot the evolution of the volume using the algorithm by Sellaroli (blue) and the approximate Eq. (73) based on the
eigenvalues of the quadrupole moment (orange) for the case with λ ¼ 5 and γ ¼ 2. On the left-hand side the values obtained directly
from the Eq. (73) are used, whereas on the right-hand side the orange line is normalized to have the same maximum as the exact
evolution of the volume (blue). This way, we can appreciate that they share the same tendencies.

FIG. 14. Images of the hexahedron at three different time snaps corresponding to three different values of the volume plotted in
Fig. 13. The vectors arising from the faces are the normal vectors, whose norms correspond to the areas of the corresponding faces.

FIG. 12. Evolution of the areas in the oscillatory regime (with
λ ¼ 5 and γ ¼ 2) for a model with N ¼ 6 edges for a randomly
chosen initial configuration of spinors.
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FIG. 15. On the left-hand side, the evolution of the areas for the divergent regime is represented, with the same initial values as in
Fig. 12, but with swapped coupling constants (λ ¼ 2 and γ ¼ 5). On the right-hand side, the evolution of the volume using the algorithm
by Sellaroli (blue) and the approximate normalized volume (orange) using the eigenvalues of the quadrupole moment [Eq. (73)] are
plotted.

FIG. 16. Table of polyhedra with different number of faces at three time snaps. The last column represents the evolution of the volume
calculated using the approximation given by Eq. (73), normalized so that the maximum value is set to V ¼ 1. As previously explained,
for large number of faces the volume is less likely to approach V ¼ 0.
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We have studied the evolution generated by the
Hamiltonian (74) for different initial random configurations
of the spinors, for different number of faces and for
different values of the coupling constants. No recognizable
regimes dependent on the coupling constants (as it was the
case with the LQG Hamiltonian considered before) have
been observed for the dynamics given by Eq. (74).
Nevertheless, it seems that the oscillatory and divergent
behaviors may appear for certain specific values of the
parameters. As an example, in Fig. 17 we have plotted the
evolution of a random tetrahedron with the following
values of λkl and γkl,

λkl ¼

0
BBB@

5 −6 7 −4
−6 5 −8 5

7 −8 8 −5
−4 5 −5 5

1
CCCA;

γkl ¼

0
BBB@

0.3i 0.5i 0.2i 0.5

0.5i 0.2þ 0.5i 0.1þ i −0.1i
0.2i 0.1þ i 2i −0.5i
0.5 −0.1i −0.5i 0.2i

1
CCCA: ð75Þ

In this case, the evolution is oscillatory but clearly non-
periodic. In fact, it seems that choosing edge-dependent

FIG. 17. On the left-hand side it is shown the evolution under the Hamiltonian (74) with coupling constants given by (75) of the
individual areas of the faces for the random tetrahedron and its total area. On the right-hand side the volume is represented: the blue line
corresponds to the reconstruction algorithm from [37], whereas the orange line has been obtained from the quadrupole-eigenvalues
approximation of Eq. (73). We may observe that, in the time interval considered, the evolution appears to oscillate, nevertheless a general
description of the oscillatory behavior in terms of the values of the coupling constants has not been found.

FIG. 18. Evolution of the areas (left) and the volume (right) in a divergent regime for the evolution generated by the Hamiltonian (74)
with coupling constants given by (76). The blue line corresponds to the reconstruction algorithm from [37], whereas the orange line has
been obtained from the quadrupole-eigenvalues approximation given by Eq. (73).
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coupling constants makes the fluctuations of area and
volume more irregular (as may be intuitively expected).
On the other hand, if we choose the following coupling
constants,

λkl ¼ γkl ¼

0
BBB@

5 −6 7 −4
−6 5 −8 5

7 −8 8 −5
−4 5 −5 5

1
CCCA; ð76Þ

we observe that the evolution diverges (see Fig. 18). So a
divergent behavior may also be found in this case. Finally,
we would like to remark that for this general Hamiltonian
[Eq. (74)] it is also possible to implement the reconstruction
algorithm and follow the deformations and rotations of
polyhedra with different number of edges in an analogous
way as done in Sec. VA for the LQG Hamiltonian.

VI. CONCLUSIONS

The parametrization of the loop gravity phase space in
terms of spinors and its subsequent quantization [3,6–8] has
been successfully used in the past in order to study several
key aspects of LQG and loop quantum cosmology, such as
the construction of coherent states [24,42], the formulation of
dynamics within symmetry reduced models [2,3] and the
construction of classical settings for cosmological models
[5]. This spinorial formalism for LQGprovides an interesting
geometrical perspective. The imposition of the closure
constraint allows the association of a convex polyhedron
of N faces to a collection of N closed spinors (using the
Minkowski theorem). This geometrical interpretation of the
spinors has been extensively explored and its results have
been found to be specially appealing [36,38,39].
Following the work done in [3], we have considered a

simple model given by a graph with 2 vertices linked by N
edges. Nevertheless, in the present paper we have studied
this model in the general case without restricting ourselves
to the symmetry reduced sector (homogeneous and iso-
tropic sector) explored there.
In order to study the classical dynamics, we have first

considered the so-called LQG Hamiltonian [Eq. (14)] that
was previously proposed in [3]. The building observables
of this Hamiltonian satisfy a closed algebra with the
Poisson brackets and it seems the most natural
Hamiltonian to study the dynamics of the system, although
alternative normalizations (still commuting with the closure
and matching constraints) are also interesting and have
been considered. In particular, the Hamiltonian correspond-
ing to a lattice gauge theory (using the holonomies around
closed loops) provides a useful perspective.
The equations of motion and the dynamics of the

polyhedra associated with the classical spinors have been

deeply explored for the LQGHamiltonian. The evolution in
this general case (out of the homogeneous and isotropic
sector) is much more intricate than in the reduced case,
given that the equations of motion constitute a system of
coupled nonlinear differential equations for the compo-
nents of the spinors.
We have solved the equations of motion for the simplest

case of only 2 edges. The results that we have obtained
show the emergence of different regimes (oscillatory or
divergent) depending only on the values of the coupling
constants of the Hamiltonian. In fact, we obtain the same
regimes that appeared analytically in the reduced case
studied in [2,3], where interesting cosmological analogies
and interpretations were also explored.
Furthermore, we have considered the important case of

the tetrahedron (4 edges). In the first place, with a para-
metrization of the spinors corresponding to the isosceles
tetrahedron [38] and, later on, for the general case with
random spinors. Notice that within the LQG theory the
tetrahedron is the simplest possible model with nonzero
volume, so this case is specially relevant. The evolution of
the spinors, areas of the faces, volume, and the quadrupole
moment for this case has been studied, obtaining again the
same regimes in terms of the coupling constants of the
Hamiltonian.
Finally, the most general case with an arbitrary number

of edges and with random initial configurations of the
spinors has been explored. In order to obtain closed initial
configurations, we have used the method described in
Appendix A, which is based on previous techniques
developed in [25,26]. At this point, in order to gain intuition
about the evolution of the discrete geometry, we needed to
reconstruct the polyhedron corresponding to a certain
configuration of spinors. For the case of the tetrahedron,
the reconstruction could be developed using the simple
method given in [39]. Nevertheless, for general polyhedra
the reconstruction algorithm is more complex [37,40].
Using Sellaroli’s algorithm [37] for each step of the
evolution, we have been able to study the evolution of
the polyhedra, as well as their areas and volumes.
Additionally, we have checked that we may use the
eigenvalues of the quadrupole moment of the polyhedron
to sketch the behavior of the volume. By doing so, we do
not need to use the reconstruction algorithm for each time
step and, thus, the computational time decreases drastically.
Interestingly, in this general case the same oscillatory and
divergent regimes are obtained (marked by the same
relation between the coupling constants).
We also explored the dynamics given by a much more

general Hamiltonian with edge dependent coupling con-
stants. We solved and plotted the evolution for random
tetrahedra. However, no regimes were found.
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To summarize, we have used the spinorial formalism for
LQG to explore the 2-vertex model, which was already
shown to be useful in order to study nontrivial dynamics
within the LQG framework and where interesting cosmo-
logical implications were found. In this case, we have
studied the general phase space of these models (extending
the results found in [3] for the homogeneous and isotropic
sector). Moreover, making use of Sellaroli’s reconstruction
algorithm, we analyzed the evolution of the polyhedra
associated with randomly chosen initial spinors.
Remarkably, for the LQG Hamiltonian considered, we
obtained a universal behavior of the evolution that showed
either an oscillatory or a divergent regime depending only
on the sign of a combination of the coupling constants, and
it was thus completely independent of the initial configu-
ration of the spinors or the number of edges, i.e., inde-
pendent of the initial polyhedron considered. Given the
cosmological implications of this models [2,3,5], this fact
opens an interesting path to explore more general cosmo-
logical models within the LQG theory.
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APPENDIX A: THE SPINORIAL TOOLBOX

There are plenty of mathematical results on the ensemble
of polyhedra described by the face normals and averages
over this ensemble [25,26]. We will review in this appendix
some of these results and we will propose a method in order
to generate random spinors for each of the vertices of the
2-vertex model, satisfying both the closure and matching
constraints.

1. Closing a randomly generated collection of spinors

In the first place, we will generate a collection of 3D
vectors with random directions on the sphere and with
Gaussian distribution on their norms. Then, we consider
the associated spinors to each 3D vector of the collection
fzigi¼1.:N , which do not necessarily satisfy the closure
constraint, i.e., the 2 × 2 matrix C ¼Pi jziihzij is not
proportional to the identity I2.
Since C is a positive Hermitian matrix, we can diago-

nalize it and take its square root:

C ¼
X
i

jziihzij ¼ ρΛΛ†; with ρ ¼ det C > 0;

Λ ∈ SLð2;CÞ: ðA1Þ

Such a matrix Λ is not unique and we can compose it with

an arbitrary SU(2) matrix, Λ → Λg with g ∈ SUð2Þ, with-
out changing the equality above (A1). This allows us, for

instance, to fix Λ to be a pure boost, i.e., Λ ¼ Λ†.
One can then act with the inverse Lorentz transformation

(whether we fixed Λ to be a pure boost or not) and define a
modified collection of spinors z̃i:

jz̃ii¼Λ−1jzii; C̃¼
X
i

jz̃iihz̃ij ¼Λ−1CΛ¼ ρI2: ðA2Þ

This new set of spinors is closed by construction. It is even
the unique closed collection of spinors, which can be
obtained from the original spinors by the action of
SLð2;CÞ. The total area TrC, as well as the individual
areas hzijzii are obviously not conserved by this action.
Nevertheless, as proved in [26], the SLð2;CÞ orbits are at
constant ½zijzji for every pair ði; jÞ.

2. Deforming a collection of spinor at fixed areas

Once we have obtained a collection of closed random
spinors for one of the vertices of the model, wewould like to
obtain a different closed collection of spinors for the other
vertex that satisfies the matching constraint. Therefore, the
idea is to deform the original closed collection of spinors
without changing the individual areas hzijzii.
Previous work [2,23,26] showed that one can explore the

whole space of closed collection of spinors at fixed total
area

P
ihzijzii by UðNÞ transformations generated by the

(Poisson flows of the) observables Eij ¼ hzijzji. Those
transformations actually trade the area of the ith face for the
area of the jth face, and thus clearly change the individual
areas. Nevertheless, we can use them to cook up a flow that
modifies the face normals without changing the face areas.
We simply use

Sij ¼ EijEji ¼ jhzijzjij2; Sij ¼ Sji: ðA3Þ

This is basically the scalar product X⃗i · X⃗j. It clearly
commutes with the individual areas and with the total
closure vector [since it is SU(2) invariant]:

fSij; hzkjzkig ¼ 0;

�
Sij;
X
k

hzkjσ⃗jzki
�

¼ 0: ðA4Þ

It nevertheless modifies the flux vectors:
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fSij; jziig ¼ ihzjjziijzji;
fSij; hzijg ¼ −ihzijzjihzjj;

fSij; hzijσ⃗jziig ¼ i½hzjjziihzijσ⃗jzji − hzijzjihzjjσ⃗jzii�: ðA5Þ

This generically does not vanish. For instance, let us choose
zi ¼ ð1; 0Þ, then the right-hand side is easily evaluated to

i½hzjjziihzijσ⃗jzji − hzijzjihzjjσ⃗jzii� ¼

0
B@

iðz̄0jz1j − z0j z̄
1
jÞ

ðz̄0jz1j þ z0j z̄
1
jÞ

0

1
CA:

ðA6Þ

Another way to see that this flow does not vanish is to
compute directly the Poisson bracket of the scalar product
X⃗i · X⃗j with X⃗i:

fX⃗i · X⃗j; X⃗ig ∝ X⃗i ∧ X⃗j: ðA7Þ

Thus, in order to deform a closed spinor configuration
while preserving the individual areas, one can simply let the
spinors evolve along the Hamiltonian flow generated by Sij,
given by the nonlinear coupled evolution equations:

∂tij jzii ¼ −fSij; jziig ¼ −ihzjjziijzji;
∂tij jzji ¼ −ihzijzjijzii; ∂tij jzki ¼ 0 ∀ k ≠ i; j: ðA8Þ

Now, if we would like to generate a (seemingly) almost
random closed spinor configuration from a given original
spinor configuration with the same face areas, one could let
the spinors evolve during a random amount of time ti1i2
along the flow generated by Si1i2 for a randomly chosen pair
ði1; i2Þ, then choose a random index i3 and let the spinors
evolve during a random amount of time ti2i3 along the flow
generated by Si2i3, and so on.

APPENDIX B: METHOD FOR THE STATISTICAL
STUDY OF THE PARAMETER SPACE

The cases considered along this paper lay out of the
homogeneous and isotropic sector (symmetry reduced
sector) of the 2-vertex model studied in [2,3]. In that case,
it was possible to solve analytically the equations of motion

and study the different regimes in the parameter space.
Nevertheless, for the general cases considered here, even
though we obtained the exact analytical equations of
motion for our models, these are solved numerically.
Therefore, the search for the sectors of the parameter space
leading to the oscillatory or divergent regimes has been
done by resorting to numerical methods and analyzing a
large sample of the parameter space.
For the models with 2 and 4 edges, studied in Secs. III A

and IV, respectively, we have considered a large number of
initial values for the spinors and coupling constants.
Systematically, we have changed the initial values of the
spinors and phases, and we have chosen different values of
the coupling constants λ and γ trying to span as many
scenarios as possible. We have crossed real positive and
real negative values, as well as imaginary numbers with
positive and negative components. On the other hand,
setting the initial conditions for the spinors, we have
changed the values of λ and γ. For every set of initial
spinors, both for the N ¼ 2 and N ¼ 4 cases, we have
obtained the same trends as shown in Fig. 19 (the figure is
done for the general random case). However, taking other
initial values for the spinors led to equal results, proving
thus the consistency of our analysis.
For the more general models studied in Sec. VA, we

have also obtained these kind of results. In these cases,
however, since we have developed an algorithm
(Appendix A) to build the initial configurations which
already satisfy the matching and closure constraints, we
only needed to set the coupling constants. An interesting
result that we have observed (apart from the appearance of
these regimes even for the general random cases) is that the
divergent regimes diverge earlier for higher number of
edges (see Fig. 19).
Finally, we have also studied in the same systematic way

the cases where the coupling constants of the Hamiltonian
depend on the edges (λij and γij). Nevertheless, as
commented on in Sec. V B, we have not found any trend
which describes the dependence of the regimes on the
coupling constants and initial values of the spinors.
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