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I. INTRODUCTION

Generalized dualities such as the Abelian T-duality, the
non-AbelianT-duality, andPoisson-Lie (PL)T-dualities have
been the objects of interest in the area of holography as they
can be used as solution generating techniques within super-
gravity. A doubled world sheet formalism was introduced
earlier to make these Abelian T-dualities manifest in the
construction [1]. This formalism constructed a σ-model on a
double dimensional target space such that it reduced to the
known standard σ-model when restricted to half of the
coordinates. Similarly, a doubled target space formulation
called the double field theory (DFT) was introduced in [2,3]
for the case of Abelian T-dualities. This work was further
extended for other generalized dualities as well [4–8]. To
collect all these generalized cases, a neat doubled world sheet
formalism was introduced known as the E-models. These
E-models have included not only PL-dualizable σ-models but
also η- and λ-deformed models [9]. Having an E-model can
correlate to defining aDFTon a two-dimensional (2D)Dwith
invariance under 2D diffeomorphisms.
Complicated calculations in integrable deformations can

be simplified by the use of PL symmetry, making the study
of E-models and DFTs useful [10,11]. DFT enables us to
include the integrable models under a single umbrella, as
was shown in [12,13]. In terms of DFT, various integrable
models can be regarded as mere examples or special cases
of these theories. The DFT formulation manifests Abelian
T-duality at the level of low energy effective action by
using a doubled coordinate using the coordinates that
span the usual D-dimensional target space as well as the
coordinates of the T-dual. In the working of DFT, T-duality
maps, diffeomorphisms, and B-field gauge transformations
are all viewed as OðD;DÞ transformations, where the DFT

action remains invariant under the group OðD;DÞ.
Imposing the strong constraint on the DFT fields, i.e.,
demanding that they depend only on the D-dimensional
target space coordinates, the low-energy effective action for
strings is recovered. The OðD;DÞ scalar in DFT acts
similar to the dilaton ϕ, and the generalized OðD;DÞ
invariant metric HMN includes the information about the
metric and the B-field. By the virtue of DFT, T-dualities
can also be visualized in nonisometric directions [6,14–16].
By viewing the λ-model in the framework of E-models,

the author of Ref. [9] shows how we are able to see beyond
the possible values of λ which were set to the range
0 ≤ λ ≤ 1. This indicates how working in the doubled
framework of E-models/DFT more underlying subtleties
can be brought to light. Reference [7] gives a target space
description to the world sheet E-models within the DFT for
the usual λ-deformed model on D=H̃. Reference [12]
follows the work of [7] and uses the generalized Scherk-
Schwarz ansatz to find the generalized frame field and
extends the work to show how the same algebra can also
cover the asymmetrical λ-deformationmodel. Reference [12]
also discusses solution-generating techniqueswhich are used
to construct ways to find a set of metric, Kalb-Ramond field,
and, dilaton (Neveu-Schwarz Neveu-Schwarz (NSNS)
fields) which would also form a supergravity solution
considering a known set of NSNS fields which are them-
selves a supergravity solution. This is performed by going to
the doubled fields of DFT.
It was an interesting direction to find ways to deform an

integrable nonlinear σ-model such that the integrability
would still hold. The λ-deformed σ-model and the Yang-
Baxter (YB) σ-model [17] are some of the well-studied
examples of such integrable deformed models. A few years
after the λ-model was introduced [18], Sfetsos et al. [19]
extended the study to include nontrivial λ deformations, in
the form of matrices rather than a number or parameter and
formulated the generalized λ-deformation model.1 These
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generalized models elegantly not only included the usual
previously known λ-model but also included the YB
deformed models as a special case of the same generalized
λ-model.
In this paper, we establish a doubled formalism in terms

of the world sheet description given by an E-model as well
as transform this to give a target space description in terms
of a DFT for the generalized λ-deformation model. In
Sec. II, we recollect the known background and set up the
general conventions that are to be followed in the rest of the
paper. In Sec. III, we use the aforementioned procedure for
the case of a generalized λ-deformation to get the corre-
sponding E-model and DFT description. In Sec. IV, we
follow the work of [12] to embed the asymmetrical
generalized λ-deformation model into DFT. We conclude
in Sec. V by briefly summarizing the work and discussing
some interesting directions. Some technical details are
presented in the appendixes. Appendix A introduces the
conventions used in this paper in a detailed manner.
Appendix B reviews the relationship between the bi-
Yang-Baxter model and the generalized λ-deformation that
makes the DFT embedding of Sec. III applicable to the
generalized η-deformation as well. Appendix C describes
the basics of an E-model, and Appendix D assists the work
of Sec. III by giving the details on the derivation of the
E-map, projection operator PmðEÞ, as well as the general-
ized metric HAB.

II. REVIEW

We begin by gathering the results and conventions
known and used in some of the previous works done in
[7,9]. We recall the construction of a double field theory as
well as its corresponding world sheet description given by
the E-model. We further revisit the generalized λ-model,
which will be used in the next section for constructing a
doubled framework of the deformed model.

A. Double field theory construction

The doubled theory considers a real Lie algebra D of
group D with dimension 2D equipped with an invariant,
nondegenerate, symmetric inner product ð:; :ÞD. The gen-
erators for the algebra are given by the basis TA such that

½TA; TB� ¼ FAB
CTC; ðTA; TBÞD ¼ ηAB: ð2:1Þ

The ηAB and the inverse ηAB are used to lower and raise the
indices, respectively. A DFT is anOðD;DÞ invariant theory
defined in this group D. DFT has been used to embed
nonlinear σ-models and understand nontrivial T-dualities
as transformations that combine a theory on coordinates xi

and its dual theory defined on x̃ĩ where i; ĩ ¼ 1;…; D.
Therefore, the group D is spanned by coordinates XI ¼
ðx̃ĩ; xiÞ where I ¼ 1;…; 2D. The DFT is identified by a
generalized metric HAB (that may depend on XI),

generalized dilaton, and other corresponding generalized
Ramond-Ramond (RR) fields. The DFT action constructed
from these fields is invariant under conventional 2D diffeo-
morphisms and generalized diffeomorphisms. Here, consis-
tency is ensured by implementing the section condition that
demands the fields to depend only on the physical xi

coordinates. To incorporate the embedding of a nonlinear
σ-model and the section condition, a maximally isotropic
subalgebra with respect to ð:; :ÞD is considered H̃ ⊂ D
corresponding to the subgroup H̃ ⊂ D. It has been known
[6] that such a setup implies that there exists a nonlinear σ-
model on the target space D=H̃. The basis is now written as
TA ¼ ðT̃a; TaÞ, where T̃a are the generators of H̃ and Ta are
the generators for D=H̃. Therefore, in this basis,

ηAB ¼
�

0 δab

δa
b 0

�
: ð2:2Þ

It is not necessary forD=H̃ to be either a groupmanifold or a
symmetric space; however, to relate this formalism with the
deformed models that will be the case. The DFT is now
identified by xi dependent generalized metric ĤÎ ĴðxiÞ,
generalized dilaton d̂ and other modified fields. The infor-
mation of metric G and B-field of the physical theory
embedded in the doubled framework of DFT can be seen
in this generalized metric,

ĤÎ ĴðxÞ ¼
�

G−1 −G−1B

BG−1 G − BG−1B

�
Î Ĵ

: ð2:3Þ

The hatted indices indicate that the objects depend only on
the coordinates xi and not on x̃ĩ. The two generalizedmetrics
HAB and ĤÎ ĴðxÞ are related by the coordinate dependent
generalized frame fields ÊA

Î whose existence is ensured by
the way the target space D=H̃ is constructed [7],

ĤÎ ĴðxÞ ¼ ÊA
ÎðxÞHABÊ

B
ĴðxÞ: ð2:4Þ

The generalized metric HAB is used to describe the world
sheet description corresponding to DFT known as the
E-model. The E-model is a world sheet theory defined by
a real linear map E∶D → D such that it is self-adjoint under
the inner product ð:; :ÞD and idempotent, which implies

ðEx; yÞD ¼ ðx;EyÞD ∀ x; y ∈D; E2x¼ x ∀ x ∈D:

ð2:5Þ
Note that, in terms of the basis, EðTAÞ ¼ EA

BTB. The map E
is parametrized in terms of a generalized metric H,

EA
B ¼ HACη

CB: ð2:6Þ

The generalized metric is symmetric and also obeys the
relation
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HAB ¼ HBA; HACη
CDHDB ¼ ηAB: ð2:7Þ

The following action of the E-model describes the
corresponding nonlinear σ-model defined by the E-map
on the target space D=H̃:

SD=H̃¼ k̃SWZW ½f�−
k̃
π

Z
dσdτðPfðEÞðf−1∂þfÞ;f−1∂−fÞ;

SWZW ½f�¼
1

2π

Z
dσdτðf−1∂þf;f−1∂−fÞ

þ 1

24π

Z
bulk

ðf−1df; ½f−1df;f−1df�Þ: ð2:8Þ

Here, for an element gðXIÞ ∈ D, it is decomposed as
gðXIÞ ¼ h̃ðx̃ĩÞfðxiÞ such that h̃ðx̃ĩÞ ∈ H̃ and fðxiÞ ∈
D=H̃. The PfðEÞ is a projection operator constructed as
follows:

PfðEÞ∶D → D; ImPfðEÞ ¼ H̃;

KerPfðEÞ ¼ ðI þ Adf−1EAdfÞH̃: ð2:9Þ

The E-model is constructed to obtain the generalized metric
HAB for the corresponding embedded model. Nonlinear
σ-models for η- and λ-deformations have been established
as an E-model and hence as a DFT earlier in [7,9]. An
important step in writing a σ-model in the doubled
framework is to construct an appropriate E-map, as per
the given conditions, which would correctly reproduce the
action of the desired model from the E-model action (2.8).
In the next section, this background setup will be used to
build a similar structure of the E-model and DFT for the
specific case of the generalized λ-model.

B. Generalized λ-model

Here we briefly review the generalized λ-deformed model
that will be embedded in a doubled formalism in the next
section. The integrable generalized λ-deformed model was
constructed [19] to treat nontrivial matrix deformations λ as
compared to the model where λ was considered to be a
number [18]. The known integrable principal chiral model
(PCM) and Wess-Zumino-Witten (WZW) model are com-
bined to obtain the generalized λ-model. A PCMmodel and a
WZWmodel defined on group G are considered as follows:

SPCMðĝÞ ¼
1

2π

Z
d2σF̂abvaþðĝÞvb−ðĝÞ; ĝ ∈ G; ð2:10Þ

SWZWðgÞ ¼
k
4π

Z
P d2σvaþvb− −

k
24π

Z
bulk

fabcva ∧ vb ∧ vc;

g ∈G; ð2:11Þ

where the F̂ab is an arbitrary matrix deformation in the PCM
and the adjoint action and left-right invariant Maurer-Cartan

forms are given belowwhere ta are the generators and fabc is
the structure constant of algebraG for corresponding groupG

Dab ¼Tr½tagtbg−1�; ea� ¼ iTr½tag−1∂�g�; vaμ ¼Dabebμ:

ð2:12Þ

The two actions are added and the following subgroup H
of symmetry is gauged by introducing a gauge field
A → h−1Ahþ h−1dh:

ĝ → ĝh; g → h−1gh; h ∈ G: ð2:13Þ

The gauge is further fixed by ĝ ¼ I and the gauge fields are
integrated out to give the action for the generalized λ-model,

SλðgÞ ¼ SWZWðgÞ þ
k
2π

Z
d2σeaþðλ−1 −DÞ−1abvb−;

where λ−1 ¼ 1

k
ðF̂ þ kIÞ: ð2:14Þ

It should be noted that this model is integrable only for
particular choices of the matrix F̂ab and hence for specific λ
[19]. In particular, in Appendix B, we review the incorpo-
ration of the integrable bi-Yang-Baxter model into the
framework of the generalized λ-deformation, making the
results of this article on embedding of integrable models into
DFT formalism applicable to the bi-Yang-Baxter deforma-
tion.2 In the next section, we develop a DFTwhich embeds
the system (2.14) in a doubled formalism; however,we treat λ
as an arbitrary matrix in the construction without assuming
any specific choice.

III. GENERALIZED λ-MODEL
IN DOUBLED FORMALISM

In this section, we construct the nonlinear σ-model of the
generalized λ-deformation in the doubled framework of the
E-model and DFT. We follow a procedure similar to [7,9]
where η- and λ-deformed models were formulated as
E-models. However, we employ this procedure here for
a generalized λ-model where λ is considered a matrix. This
results in the corresponding E-model that is further used to
determine the generalized metric ĤÎ ĴðxÞ which identifies
the DFT for the generalized λ-model. Therefore, we first
develop the E-model in Sec. III A and obtain the DFT
generalized metric and address the embedding of the
generalized λ-model in Sec. III B.

A. E-model for generalized λ-model

To establish the E-model first, we begin by constructing
an E-map for the generalized λ-deformed model. Our main
aim in this section is to obtain a projection operator PfðEÞ

2We thank the referee for suggesting this addition.
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using the E-map, such that upon substitution the E-model
action (2.8) gives the known action [18,19] of the gener-
alized λ-deformation model. The generalized λ-model
action from (2.14) is rewritten in terms of the group
element as follows (refer to Appendix A for details):

SλðgÞ ¼ SWZWðgÞ

þ
Z

dξþdξ−ð∂þgg−1; ðλ−1 − Adg−1Þ−1g−1∂−gÞ;

SWZWðgÞ ¼
1

2

Z
dξþdξ−ðg−1∂þg; g−1∂−gÞ

þ 1

12

Z
d−1ðdgg−1; ½dgg−1; dgg−1�Þ: ð3:1Þ

Following [7,9,12], we consider the Drinfeld double D
and the direct sum G ⊕ G, where G is the real Lie algebra
for the group G. The generators for G are given by ta such
that κab ¼ hta; tbi. For the coset M ¼ D=H̃, the corre-
sponding maximally isotropic subalgebra H̃ is chosen to
be the diagonal subalgebra, Gdiag embedded in G ⊕ G
by the map X → 1ffiffi

2
p fX;Xg for X ∈ G. On the other hand,

the antidiagonal subspace Gantidiag is embedded as X →
1ffiffi
2

p fX;−Xg. Here, the isotropic subspace Gantidiag, M ¼
D=H̃ does not form a subgroup; however, it is still
a symmetric space allowing us to construct a nonlinear
σ-model on it.
Instead of working on the double D, we work on the

direct sum G ⊕ G [9]. A map between the algebras D and
G ⊕ G is required since the action (2.8) is constructed using
the algebra D. It is known that for each λ there exists an
isomorphism Φλ∶D → G ⊕ G such that it preserves the
inner product on D and G ⊕ G up to a constant factor
dependent on λ where the inner product for the double D is
given by [9]

ðx1 _þx2; y1 _þy2ÞD ≔ ðx2; y1Þ þ ðx1; y2Þ; ð3:2Þ

elements of the type ðx1 _þx2Þ belong to D, whereas the
elements of the direct sum G ⊕ G are written as fα; βg, with
xi; yi ∈ G, and the inner product for G ⊕ G is as follows:

ðfα1; α2g; fβ1; β2gÞG⊕G ≔ ðα1; β1Þ − ðα2; β2Þ: ð3:3Þ

This isomorphism Φλ is used to go from E to Eλ where
E∶D → D and Eλ∶G ⊕ G → G ⊕ G such that

Eλ ∘ Φλ ¼ Φλ ∘ E; where Eðx1 _þx2Þ ¼ ðx2 _þx1Þ: ð3:4Þ

The real linear map Eλ∶G ⊕ G → G ⊕ G that depends on λ
is constructed by demanding it is idempotent and self-
adjoint under the inner product of the algebra G ⊕ G as
described in (2.5). A generic form in terms of arbitrary
matrices acting on X; Y ∈ G is assumed for Eλ, and the

constraints (2.5) are solved for these matrices to obtain the
mapping explicitly (detailed derivation can be found in
Appendix D):

EλðfX; YgÞ ¼ f½ð1 − λλTÞ−1 þ ðλ−Tλ−1 − 1Þ−1�X
− 2ðλ−1 − λTÞ−1Y;

2ðλ−T − λÞ−1X − ½ð1 − λTλÞ−1
þ ðλ−1λ−T − 1Þ−1�Yg; ð3:5Þ

where X; Y ∈ G. The above map Eλ is related to the map E
(3.4) via the following isomorphism Φλ:

Φλðx1 _þx2Þ ¼ fx1 þ ð1 − λλTÞ−1½1þ λλT − 2λ�x2;
x1 − ð1 − λTλÞ−1½1þ λTλ − 2λT �x2g: ð3:6Þ

This isomorphism as desired respects the inner product of
the doubleD as well as the inner product for the direct sum
G ⊕ G. We aim to compute the action for this E-model
given by (2.8) which requires a projection operator PfðEλÞ
such that

ImPfðEλÞ ¼ Gδ ¼ ðα; αÞ;
KerPfðEλÞ ¼ ðI þDf−1EλDfÞGδ; ð3:7Þ

where H̃ ¼ Gδ is the Lie algebra for the diagonal subgroup
Gdiag of G ×G, which has the elements of the type fα; αg
where α ∈ G. The projection operator is uniquely deter-
mined by using the constraints given above in (3.7) to get
the generalized λ-model action and is given by

Pfg;egðEλÞðα; βÞ ¼ ðð1 −D−1λ−TÞ−1αþ ð1 − λTDÞ−1β;
ð1 −D−1λ−TÞ−1αþ ð1 − λTDÞ−1βÞ: ð3:8Þ

Using this projection operator in the action from (2.8)
for f ¼ fg; eg ∈ G × G=Gdiag where g ∈ G and e is the
identity,

SD=H̃¼SWZW½f�−
1

π

Z
dσdτðPfðEλÞðf−1∂þfÞ;f−1∂−fÞG⊕G;

ð3:9Þ

we reproduce the action for the generalized λ-deformed
model given by (3.1),

SλðgÞ¼SWZWðgÞþ
Z
dξþdξ−ð∂þgg−1;ðλ−1−Adg−1Þ−1g−1∂−gÞ:

ð3:10Þ

This shows how we can embed the generalized λ-model
into a E-model by constructing an appropriate E-map.
The E-map (3.5) and the isomorphism Φλ (3.6) obtained
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here are consistent with the results obtained in [9] as they
boil down to the following corresponding mappings for the
case when λ is assumed to be a number (denoted by λ̃ to
distinguish from the case when λ is a matrix),

E λ̃ðfX; YgÞ ¼
1

2

�
1 − λ̃

1þ λ̃
þ 1þ λ̃

1 − λ̃

�
fX;−Yg

þ 1

2

�
1 − λ̃

1þ λ̃
−
1þ λ̃

1 − λ̃

�
fY;−Xg;

Φλ̃ðx1 _þx2Þ ¼
�
x1 þ

1 − λ̃

1þ λ̃
x2; x1 −

1 − λ̃

1þ λ̃
x2

�
: ð3:11Þ

To find the DFT description of the generalized λ-model we
further use the derived E-map to obtain the generalized
metric HAB in the following section.

B. Generalized metric HAB and ĤÎ Ĵ

The generalized metric HAB along with the generalized
frame fields will be used to obtain the coordinate dependent
generalized metric ĤÎ ĴðxÞ which defines the DFT corre-
sponding to the world sheet E-model derived earlier. We
use the derived E-map (3.5) and the constraint (2.6) that
parametrizes EA

B in terms of the generalized metric to
determineHAB as follows (detailed derivation can be found
in Appendix D):

HAB¼
1

2

�ðA1−A2þB1−B2Þκ−1 ðA1þA2þB1þB2Þκ−1
ðA1−A2−B1þB2Þκ ðA1þA2−B1−B2Þκ

�
;

ð3:12Þ

where

A1¼½ð1−λλTÞ−1þðλ−Tλ−1−1Þ−1�; A2¼−2ðλ−1−λTÞ−1;
B2¼−½ð1−λTλÞ−1þðλ−1λ−T −1Þ−1�; B1¼2ðλ−T−λÞ−1;

ð3:13Þ

where ηAB is given by (2.2). It has been established in [7]
that for each group D with a nondegenerate, ad-invariant
bilinear form η and a maximally isotropic subgroup H̃, a

generalized frame field ÊA
Î ∈ OðD;DÞ that depends only

on the coordinates xi can be defined on the symmetric
space D=H̃.
Here, such a generalized frame field can be defined

on the space G ×G=Gdiag which is parametrized by
f ∈ G ×G=Gdiag. The authors of Ref. [7] use the para-
metrization f ¼ fḡ; ḡ−1g for ḡ ∈ G, which defers to the
convention f ¼ fg; eg followed here [9] in defining the
E-model. To match the conventions, an identification ḡ2 ¼
g ∈ G is employed. The generalized frame field ÊA

Î is
ultimately given by [7]

ÊI
A ¼ 1

2

 1ffiffi
2

p ð1þDÞ ffiffiffi
2

p
κ−1ð1 −DÞ

1ffiffi
2

p ð1 −DÞκ ffiffiffi
2

p ð1þDÞ

!
A

B� e 0

0 e−T

�
B

Î
;

ð3:14Þ

where e is the left-invariant form and D ¼ Adg is the
adjoint action of G. The adjoint action D is orthogonal,
DT ¼ D−1, and hence commutes with κ and κ−1. The
generalized frame field can be decomposed in terms of
ρ, b, β as

ÊAÎ ¼
�
ρ−T 0

0 ρ

��
1 0

b 1

��
1 β

0 1

��
e 0

0 e−T

�
; ð3:15Þ

where

ρ−T ¼ 1

2
ffiffiffi
2

p ð1þDÞ; b ¼ 1

8
ðD−1 −DÞκ;

and β ¼ 2κ−1
1 −D
1þD

: ð3:16Þ

This decomposition will be used for comparing with
the generalized frame fields used in [12] and in the
following section. This decomposition in terms of the
parameters ρ, b, and β is the most general parametrization
for OðD;DÞ where βij and bij are antisymmetric and the
matrix ρ ∈ GLðDÞ.
We can now gather the generalized frame field as stated

above (3.15) and the generalized metric HAB obtained in
(3.12), in the following relation to determine the DFT

coordinate dependent metric ĤÎ ĴðxÞ:

ĤÎ ĴðxÞ ¼ ÊA
ÎHABÊB

Ĵ: ð3:17Þ

To visualize the embedding of the nonlinear σ-model we

can compare the known metric ĤÎ ĴðxÞ obtained from
(3.17) to the known format of the metric to read off the
metric G and B-field of the σ-model,

ĤÎ ĴðxÞ ¼
�

G−1 −G−1B

BG−1 G − BG−1B

�
Î Ĵ

: ð3:18Þ

This gives the following metric and B-field which precisely
match with the results known for a generalized λ-deformed
model in [19,21,22]

ds2 ¼ 1

2
½ðÔg−1 þ Ôg − 1Þκ�abea ⊗ eb; ð3:19Þ

B ¼ BWZW þ 1

4
½Ôg−1 − Ôg�abea ∧ eb; ð3:20Þ

where
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Ôg ¼ ð1 − λDÞ−1; Ôg−1 ¼ ð1 −D−1λTÞ−1: ð3:21Þ

The above expressions (3.18), (3.19), and (3.20) provide
the supergravity embedding of the generalized λ-deformed
model in the doubled formalism of a DFT. Here, we have
only focused on finding the metric, and the B-field and
evaluation of the RR fields require separate investigation.

IV. ASYMMETRICAL GENERALIZED
λ-DEFORMATION

The generalized λ-deformed model on a symmetric space
D=H̃ ¼ G × G=Gdiag is extended to incorporate the pos-
sibility of deforming the left-right asymmetrically gauged
WZW model [23,24]. This modified model is constructed
by gauging the following:

g → h−1gh0; ĝ → h−1ĝ; ð4:1Þ

instead of

g → h−1gh; ĝ → ĝh; ð4:2Þ

where the WZWand PCMmodels are defined as (2.11) and
(2.10), respectively, along with h ¼ eG

ata ∈ G and h0 ¼
eG

at0a ∈ G such that t0a ¼ Wta. The W is a constant outer
automorphism of the algebra that preserves κ. Upon gauge
fixing by setting ĝ ¼ I, the asymmetrical λ-model is given
by [23]

Sλðg;WÞ¼SWZWþ1

π

Z
dσdτh∂þgg−1;ðλ−1−DgWÞ−1∂−gg−1i:

ð4:3Þ

This deforms the left-right asymmetrically gauged D=H̃AS

WZW model instead of the vectorially gauged D=H̃ WZW
model. As followed in the previous section, we aim here to
give a doubled framework in terms of an E-model and DFT
for the asymmetrical generalized λ-deformed model
described by (4.3). It has been suggested in [12] that the
parametrization and hence the generalized frame field that
describes the DFT for the symmetrically gauged λ-model (λ
as a number) can also be used to describe the asymmetrical
extension of the model. Hence, we shall use the results
obtained in the previous section for the asymmetrically
gauged generalized model.
Following the same procedure, we develop the E-model

to find the generalized metric HAB. The action (4.3) is
obtained by first using the parametrization f ¼ fḡ; ḡ−1g
with the corresponding left-right form, and ḡ2 ¼ g̃ ∈ G is
set to respect the conventions. Another parametrization is
considered to incorporate the W such that f ¼ fg; g−1g
such that the adjoint action is nontrivially related to the
parametrization as Adg̃ ¼ Adg:W. The authors of Ref. [12]
visualize the working of W by considering a constant W ∈

expG such that g̃ ¼ gw and defines WðtiÞ ¼ wtiw−1 indi-
cating that W is orthogonal. The E-map (3.5) and the
projection operator (3.8) written for the element g̃ are used
to compute the action. To address the embedding and DFT,
we require the generalized frame field that by using the
parametrization (3.15)3 is redefined in terms of ρ, β, and b
to be [12]

ρ−1 ¼ 1ffiffiffi
2

p ð1þ AdgWÞv−1; β ¼ −κ−1
1 − AdgW

1þ AdgW
;

b ¼ 1

4
ðAdgW −W−1Ad−1g Þκ: ð4:5Þ

Since the same E-map from (3.5) is used, we work with the
same generalized metric HAB as given in (3.12), and the
relation (2.6) to find the coordinate dependent generalized
metric ĤÎ Ĵ to identify the DFT for the asymmetrical model.
The following information of the embedded metric G and
B-field is read off from the known format of ĤÎ Ĵ (3.18),

G ¼ 1

2
½ðÔw

g−1 þ Ôw
g − 1Þκ�abea ⊗ eb; ð4:6Þ

B ¼ BWZW þ 1

2
½Ôw

g−1 − Ôw
g �abea ∧ eb; ð4:7Þ

where

Ôw
g ¼ ð1− λDWÞ−1; Ôw

g−1 ¼ ð1−W−1D−1λTÞ−1: ð4:8Þ

The above match the previously obtained results in (3.19)
and (3.20) for the symmetric case (considering the change
in conventions) when W is set to 1. Therefore this extends
the doubled framework of DFT for the asymmetrical
generalized λ-deformed model as well.
Given a DFT formulation in terms of the generalized

frame field and the underlying Drinfeld algebra, article [12]
classified various parametrizations into orbits identified by
the nonzero generalized flux components. The algebraic
structures involved in this classification were expressed in
terms of frame fields and Drinfeld doubles, and these
ingredients do not depend on the deformation parameters.
Therefore, the classification of [12] works for the gener-
alized λ-deformation as well. For completeness, we briefly
review this construction here.

3There are slight differences in how the decomposition is used
in [12] as compared to the one used in the previous section, and
the change has been incorporated in the (ρ, β, b) given here. The
decomposition is as follows (e ¼ g−1dg is replaced by v ¼ dgg−1
here):

E ∼
�
1 β
0 1

��
1 0

b 1

��
ρT 0

0 ρ−1

��
vT 0

0 v

�
: ð4:4Þ
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To classify the orbits, the authors of [12] began with
writing the commutation relations (2.1) in more explicit
form as4

½Ta;Tb�¼Fab
cTcþHabcT̃c; ½Ta;T̃b�¼Qa

bcTc−Fac
bT̃c;

½T̃a;T̃b�¼Qc
abT̃cþRabcTc: ð4:9Þ

The orbits were labeled by the nonvanishing fluxes out of
F, Q, H, R. A particular orbit covered all the different
parametrizations (generalized frame fields) that gave the
same generalized fluxes.
For the generalized λ-deformation model, we considered

the double G ⊕ G and took the maximally isotropic sub-
group to be the diagonal Gdiag. The fluxes for the unde-
formed theory are given by [7]

Habc ¼
1ffiffiffi
2

p fabdκdc; Qa
bc ¼ 1ffiffiffi

2
p κadκ

beκcgfegd;

Fab
c ¼ 0; Rabc ¼ 0; ð4:10Þ

where fabc are the structure constants of G. Since the
classification of orbits depends only on the generalized
frame fields (parametrization) and the Drinfeld double
structure, but not on the deformation parameters, the authors
of [12] concluded that the (asymmetrical) λ-deformation
model falls into the ðH;QÞ-orbit, which has only H and Q
fluxes. The generalized λ-deformation has the same
underlying algebraic structure (4.10); therefore, it also falls
into the ðH;QÞ-orbit, for both symmetric and asymmetric
deformations.

V. CONCLUSION AND OUTLOOK

In this work, we extended the doubled formalism of the
E-model and DFT for the generalized λ-deformation. Our
results (3.12)–(3.13) and (3.19)–(3.20) are in agreementwith
the supergravity equations as the section condition was
satisfied by ensuring the manifold was created by cosetting
amaximally isotropic subgroup H̃ ofD.We also commented
on the asymmetrical generalized λ-deformation and its
embedding into DFT. It was worth noting to see that the
parametrization used for usual the λ-model also resulted in
the DFT for the generalized model. Correspondingly, the
results obtained in this paper boil down to theoutcomes of the
usual model when λ is assumed to be a simple parameter
instead of a matrix.
Here, we only focused on obtaining the metric and the

Kalb-Ramond field from the DFT framework. However,
this can be further continued to a complicated calculation
of finding the dilaton and the RR fields as performed in [7].

T-dualities in nonisometric directions are also made pos-
sible in the framework of DFT by having dependence on
the dual coordinates. Since the doubled formalism high-
lights hidden symmetries, it would be interesting to use the
methods developed in this article to identify such nonlocal
symmetries for the generalized λ-deformations of specific
manifolds such as AdSp × Sq [25–28].
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APPENDIX A: CONVENTIONS

We follow the notations used in [7,29] throughout this
paper. The indices A;B;… ¼ 1; 2;…; 2D are the flat
Oð1; D − 1Þ ×OðD − 1; 1Þ indices and I; J; Î; Ĵ;… ¼
1; 2;…; 2D are the algebra indices where the hatted indices
Î; Ĵ;…, indicate their dependence strictly on the coordi-
nates xi and not on the dual coordinates x̃ĩ. The indices
M;N;…, are the curved OðD;DÞ indices.
The real Lie algebra D has the corresponding group D

with generators fTAg that obey the commutation rela-
tions as given in (2.1). The doubled coordinates here are
denoted by XI ¼ ðxi; x̃ĩÞ. The maximally isotropic sub-
group forD is denoted by H̃ with the corresponding algebra
H̃. The generators for H are given by fT̃ag with structure
constants F̃ab

c and the space is spanned by the dual
coordinates x̃ĩ.
The generalized λ-model is defined on the group G with

corresponding algebra denoted by G. The generators of the
algebra are ftag with inner product ðta; tbÞ ¼ κab and
structure constants fabc. The maximally isotropic subgroup
for the double G × G is given by the diagonal subgroup
Gdiag generated by x → fx; xg= ffiffiffi

2
p

. The complementary
isotropic symmetric space is the antidiagonal group
Gantidiag. The left (e) and right (v) invariant Maurer-
Cartan forms in terms of the element g ∈ G for algebra
G obey the following:

g−1dg ¼ eata ¼ eaidxita; dgg−1 ¼ vata ¼ vaidxita;

Adgh ¼ Dh ¼ Dgh ¼ ghg−1;

Adg−1h ¼ D−1h ¼ Dg−1h ¼ g−1hg;

v ¼ De; DT ¼ D−1; κD ¼ Dκ; κDT ¼ DTκ:

ðA1Þ

In literature, the generalized λ-deformation is sometimes
also identified by the following action [19]:

4Recall that the generators of the Lie algebra D are given by
TA ¼ ðT̃a; TaÞ, where fT̃ag are the generators of H̃, the max-
imally isotropic subgroup of D, and fTag span the complemen-
tary D=H̃.
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SλðgÞ ¼
1

2

Z
dξþdξ−ðg−1∂þg; g−1∂−gÞ

þ 1

12

Z
d−1ðdgg−1; ½dgg−1; dgg−1�Þ

þ
Z

dξþdξ−ðg−1∂þg; ðλ−1 − AdgÞ−1∂−gg−1Þ:

ðA2Þ

The actions in (A2) and (3.1) can both be used as they are
related by the element inversion given below. To respect
the conventions followed throughout the paper, we shall
consider the action to be given by (3.1) as per [18];
however, the following transformation can be used to get
the results aiming for the action in (A2):

g → g−1∶ La ↔ −Ra D ↔ DT ea ↔ −ẽa:

ðA3Þ

APPENDIX B: EMBEDDING bi-YB σ-MODEL
INTO GENERALIZED λ-MODEL

In this appendix, we summarize the connection between
the bi-Yang-Baxter (bi-YB) σ-model and the generalized
λ-deformation [19,30]. The bi-YB model was introduced in
[31] and the action reads

Sbi−YB ¼ 1

2πt

Z
d2σðg−1∂þg; ð1 − ηR − ρRgÞ−1g−1∂−gÞ:

ðB1Þ

Here, η and ρ are the two deformation parameters and
Rg ¼ Dg−1RDg. The antisymmetric matrix R is a solution
of the modified YB equation,

½RA;RB� −Rð½RA;B� þ ½A;RB�Þ ¼ −c2½A;B�
for A;B ∈ G; c ∈ C: ðB2Þ

Following earlier studies of relationship between a single
parameter YB σ-model and λ-deformation [9], article [30]
related the generalized λ-deformation of a YB σ-model to a
bi-YB σ-model by a Poisson-Lie T-duality and analytic
continuation.5 Specifically starting with the bi-YB model
and rewriting its PL T-dual as

SPLT-dualðpÞ ¼ −iSWZWðp2Þ

− ik
Z

d2σ

��
1þ iηþ ρR
1 − iηþ ρR

−Dp2

�
−1

× ∂þðp2Þp−2; p−2
∂−ðp2Þ

�
; ðB3Þ

the author of [30] demonstrated that this is an analytically
continued generalized λ-model (2.14),6

Sgen:λðgÞ¼SWZWðgÞþk
Z
d2σððλ−1−DgÞ−1∂þgg−1;g−1∂−gÞ

ðB4Þ

with

λ−1 ¼ 1þ iηþ ρR
1 − iηþ ρR

: ðB5Þ

On the other hand, starting with the YB-model

SYB ¼ 1

2πt̃

Z
d2σðg−1∂þg; ð1 − η̃RÞ−1g−1∂−gÞ; ðB6Þ

and deforming it according to (2.14) with

F̂ ¼ 1

t̃
ðI − η̃RÞ−1; ðB7Þ

one finds (B4) with

λ−1 ¼ 1

kt̃
ðI − η̃RÞ−1 þ I; ðB8Þ

and the deformation parameters (B5) and (B8) are related
by an analytic continuation,

ρ ¼ −
2kt̃ η̃

2kt̃þ 1
; η ¼ −

i
2kt̃þ 1

: ðB9Þ

To summarize, in this appendix we have incorporated the
generalized η-model into the framework of the generalized
λ-deformation. In Sec. III, we embed the latter into the DFT
formalism, thus providing such embedding for the inte-
grable generalized η-model as well.

APPENDIX C: BACKGROUND ON E-MODEL

In this appendix, we review some of the basics of the
E-model. For a real linear algebra D as defined above, an
infinite dimensional Poisson manifold PD is constructed,
parametrized by coordinates jAðσÞ such that the Poisson
bracket is given by

fjAðσÞ; jBðσ0ÞgP:B: ¼ FAB
CjCðσÞδðσ− σ0Þþ ηAB∂σδðσ− σ0Þ;

ðC1Þ
where FAB

C are the structure constants ofD, indicating that
the PD plays the role of the current algebra for D. The map
j ¼ jATA takes values in D. A Hamiltonian HE in jAðσÞ is
obtained using the E-map

5For the SUð2Þ group and SUð2Þ=Uð1Þ coset, this was done
earlier in [19].

6The explicit analytic continuation between p and g can be
found in [30].
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HE ≔
1

2

I
dσðjðσÞ; EðjðσÞÞÞD: ðC2Þ

The E-model is defined as the dynamical system on the
phase space given by PD and the Hamiltonian HE , giving a
doubled description for a world sheet theory. The Lie
algebraD is assumed to have a linear one-parameter family
of the structure constants such that

FAB
C ¼ FAB

0 C þ εFAB
1 C; ε ∈ R; ðC3Þ

with the corresponding Poisson brackets given by

fjAðσÞ; jBðσ0ÞgP:B: ¼ fjAðσÞ; jBðσ0Þg0þ εfjAðσÞ; jBðσ0Þg1:
ðC4Þ

The parameter ϵ holds quite a significance in the context of
E-models. The author of Ref. [9] describes how the ϵ acts as
an umbrella for various σ-models that are described by the
E-models. The principal chiral model is embedded into the
formalism of the E-model for the case when ϵ ¼ 0, while
for negative ϵ values, the η-deformed model is addressed. ϵ
can also be thought of as the parameter involved such as λ
or η when dealing with the corresponding model. The
author of Ref. [9] has described ϵ in terms of λ̃ for the
λ-deformed model as ϵ ¼ 1−λ̃

1þλ̃
, and it was observed that in

this doubled formalism ϵ could see more values of λ̃ as λ̃
could now range between f−1; 1g instead of f0; 1g for a
positive ϵ. This emphasizes one of the benefits of working
in E-models and DFTs.

APPENDIX D: DERIVING Eλ-MAP
AND ISOMORPHISM Φλ

In Sec. III, we work in the double algebra G ⊕ G instead
of the algebra D and use the isomorphism Φλ to map the
two algebras. Therefore, we look at the derivation for the
real linear map Eλ∶G ⊕ G → G ⊕ G here. We assume a
general form for Eλ-map as follows for some arbitrary
matrices Ai and Bi:

EλðfX;YgÞ ¼ fA1XþA2Y;B1XþB2Yg; where X;Y ∈ G:

ðD1Þ

The Eλ-map is required to be idempotent and self-adjoint
under ð:; :ÞG⊕G (3.3) which can be written as follows for
x; y ∈ G ⊕ G:

ðEλx; yÞG⊕G ¼ ðx; EλyÞG⊕G; Eλx2 ¼ x: ðD2Þ

We use the general form (D1) to rewrite the above
equations as constraints on the matrices Ai and Bi,

AT
1 ¼ A1; BT

2 ¼ B2; A2 ¼ −BT
1 ;

A1A2 þ A2B2 ¼ 0; B1A1 þ B2B1 ¼ 0;

B1A2 þ B2B2 ¼ 1; A1A1 þ A2B1 ¼ 1: ðD3Þ
The authors of Ref. [7] make a particular choice for the
isomorphism Φλ

7 to develop the E-model for the λ-model.
Here, we derive the isomorphism Φλ using the Eλ-map;
hence we make the following choice for matrix B1 instead:

B1 ¼ 2ðλ−T − λÞ−1 ¼ 2ð1 − λTλÞ−1λT ¼ 2λTð1 − λλTÞ−1:
ðD4Þ

Using the constraints (D3), the other matrices can be
obtained by solving

A2 ¼ −2ðλ−1 − λTÞ−1 ¼ −2λð1 − λTλÞ−1
¼ −2ð1 − λλTÞ−1λ;

B2B2 ¼ 1 − B1A2; A1A1 ¼ 1 − A2B1: ðD5Þ
The result is

B2 ¼ −½ð1 − λTλÞ−1 þ ðλ−1λ−T − 1Þ−1�;
A1 ¼ ½ð1 − λλTÞ−1 þ ðλ−Tλ−1 − 1Þ−1�: ðD6Þ

This results in the Eλ-map to be

EλðfX; YgÞ ¼ f½ð1 − λλTÞ−1 þ ðλ−Tλ−1 − 1Þ−1�X
− 2ðλ−1 − λTÞ−1Y;

2ðλ−T − λÞ−1X − ½ð1 − λTλÞ−1
þ ðλ−1λ−T − 1Þ−1�Yg: ðD7Þ

This choice for matrix B1 (D4) is motivated by the known
form of Eλ-map considered in [7] for the case when λ is
assumed to be a number. The matrices Ai and Bi agree with
the mapping used in [7] as they simplify as follows for λ
being a number,

A1 ¼ −B2 ¼
1þ λ2

1 − λ2
; −A2 ¼ B1 ¼

2λ

1 − λ2
: ðD8Þ

The Eλ-map is related to E∶D → D via the isomorphism
Φλ∶D → G ⊕ G where we obtain the constraints

Eλ ∘Φλ ¼ Φλ ∘ E; where Eðx1 _þx2Þ ¼ ðx2 _þx1Þ: ðD9Þ
We now determine this isomorphism Φλ using the structure
considered for Eλ-map in (D1). Let us also assume a general
form for Φλ for α _þβ ∈ D, where we shall use the known
conditions (D3) to find the Ci and Di,

Φϵðα _þβÞ ¼ fC1αþ C2β; D1αþD2βg: ðD10Þ

7The isomorphism Φλ and Eλ-map here are denoted by Φϵ and
Eϵ, respectively, in [7].
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Substituting the above and the form of Eλ-map in the
constraint (D9), we obtain the following relations:

A1C1 þ A2D1 ¼ C2; A1C2 þ A2D2 ¼ C1;

B1C1 þ B2D1 ¼ D2; B1C2 þ B2D2 ¼ D1: ðD11Þ
Further demanding that the inner product with respect to D
is preserved up to a constant factor (Λ) by the isomorphism
Φλ we obtain the constraints

ðΦλðxÞ;ΦλðyÞÞG⊕G ¼ Λðx; yÞD; x; y ∈ D; ðD12Þ
CT
1C1 −DT

1D1 ¼ 0; CT
2C2 −DT

2D2 ¼ 0;

CT
1C2 −DT

1D2 ¼ CT
2C1 −DT

2D1 ¼ Λ: ðD13Þ
Choosing C1 ¼ 1 and D1 ¼ 1, we determine C2 and D2

using the conditions in (D11) as

C2 ¼ A1 þ A2 ¼ ð1 − λλTÞ−1 þ ðλ−Tλ−1 − 1Þ−1
− 2ðλ−1 − λTÞ−1

¼ ð1 − λλTÞ−1½1þ λλT − 2λ�;
D2 ¼ B1 þ B2 ¼ −ð1 − λTλÞ−1 − ðλ−1λ−T − 1Þ−1

þ 2ðλ−T − λÞ−1
¼ −ð1 − λTλÞ−1½1þ λTλ − 2λT �: ðD14Þ

These choices of Ci and Di satisfy all the above-mentioned
conditions in the isomorphism Φλ for ðx − 1 _þx2Þ ∈ D,

Φϵðx1 _þx2Þ ¼ fx1 þ ð1 − λλTÞ−1½1þ λλT − 2λ�x2; x1
− ð1 − λTλÞ−1½1þ λTλ − 2λT �x2g; ðD15Þ

which respecting consistency also boils down to the case
considered in [7] for when λ is simply a number,

Φϵðx1 _þx2Þ ¼
�
x1 þ

1 − λ

1þ λ
x2; x1 −

1 − λ

1þ λ
x2

�
;

where
1 − λ

1þ λ
¼ ϵ: ðD16Þ

As a check on the procedure, we can look at the conditions
in (D13) for Ci and Di when written in terms of Ai and Bi
and the assumed values

CT
1C1 −DT

1D1 ¼ 1 − 1 ¼ 0;

C2 −D2 ¼ CT
2 −DT

2 ¼ ð1 − λλTÞ−1
þ ðλ−Tλ−1 − 1Þ−1 − 2ðλ−1 − λTÞ−1
þ ð1 − λTλÞ−1 þ ðλ−1λ−T − 1Þ−1
− 2ðλ−T − λÞ−1;

CT
2C2 ¼ DT

2D2 ¼ ðAT
1 þ AT

2 ÞðA1 þ A2Þ
¼ ðBT

1 þ BT
2 ÞðB1 þ B2Þ: ðD17Þ

The final condition above is satisfied only when we assume
the constraints obtained on Ai and Bi in (D3) providing a
good consistency check. To derive the generalized metric
HAB, we look at the following relation where Eλ-map is
written as a matrix EA

B,

EA
B ¼ HACη

CB: ðD18Þ

The matrix EA
B is obtained by using the inner product

ðTA; TBÞD ¼ ηAB, where the basis is formed by the diago-

nal and antidiagonal generators x → fx;xgffiffi
2

p and x → fx;−xgffiffi
2

p ,

respectively, along with

ηCB ¼
�

0 δc
b

δcb 0

�
: ðD19Þ

This results in the following generalized metricHAB where
Ai and Bi are as defined earlier in (D4), (D5), and (D6):

HAB¼
1

2

�ðA1−A2þB1−B2Þκ−1 ðA1þA2þB1þB2Þκ−1
ðA1−A2−B1þB2Þκ ðA1þA2−B1−B2Þκ

�
:

ðD20Þ

This generalized metric is acted on by the generalized
frame fields EA

I (3.15) to obtain the coordinate dependent
generalized metric ĤÎ Ĵ. The information of the embedded
theory is further read off from this metric ĤÎ Ĵ,

ĤÎ Ĵ ¼ ðEA
ÎÞTHABEB

Ĵ: ðD21Þ
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