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Schwarzschild–de Sitter black holes have two horizons that are at different temperatures for generic
values of the black hole mass. Since the horizons are out of equilibrium, the solutions do not admit a
smooth Euclidean continuation, and it is not immediately clear what role they play in the gravitational path
integral. We show that Euclidean Schwarzschild–de Sitter is a genuine saddle point of a certain constrained
path integral, providing a consistent Euclidean computation of the probability ∼e−ðSdS−SSdSÞ to find a black
hole in the de Sitter bath.
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I. INTRODUCTION

A surprising property of de Sitter space is that local
excitation lowers the total entropy. In the case of black
holes, the sum of the cosmological and black hole horizon
areas in Schwarzschild–de Sitter (SdS) solutions decreases
as the black hole mass increases. On these grounds, it has
been suggested that local excitations should be thought
of as constrained states of horizon degrees of freedom in
empty de Sitter [1,2] (see also more recently Refs. [3–7].
Here, we show that the constrained state idea is also useful
to describe the contribution of black holes to the bulk
Euclidean path integral.
In static coordinates, the Euclidean continuation of SdS is

ds2 ¼ fðρÞdt2 þ fðρÞ−1dρ2 þ ρ2dΩ2

fðρÞ ¼ 1 − 2M=ρ − ðρ=LÞ2: ð1Þ
L is the de Sitter radius, and M is the black hole mass
parameter. The black hole and cosmological horizons rb;c
are located at the zeros of f, and this metric has an
irremovable conical singularity at one of them. More
precisely, each horizon has a potential conical singularity,
and typically only one of the two can be removed by a choice
of periodicity of t. For this reason, Euclidean SdS does not
provide a useful saddle point of the ordinary path integral,
except in the Nariai limit, where the temperatures coincide
and the solution is smooth [8].
However, Euclidean SdS does provide a genuine saddle

point of a constrained path integral. The constraint is the

specification of boundary data on a sphere that uniquely
determines the mass of the enclosed black hole. This
constraint can easily be imposed if the path integral is
decomposed into path integrals over fields in the two
regions separated by the sphere, similarly to the factoriza-
tion of transition amplitudes into regions separated by a
time slice. In this paper, we study this factorization and use
it to show that black holes contribute to the de Sitter
partition function with the probability weight eSSdS−SdS . This
result can be anticipated on other grounds, but our goal is to
explain how it arises from the semiclassical approximation
to the Euclidean gravitational path integral.
Previous work has also interpreted SdS in terms of

constrained path integrals [9]. Reference [9] placed one of
the conical singularities on a spatial slice continued to
Lorentzian signature. Our treatment differs by working
purely in the Euclidean signature, with a fixed mass
constraint applied geometrically at a finite radius (which
would become a timelike surface after continuation). Our
constrained instanton exhibits a discontinuous lapse func-
tion instead of a conical singularity; however, the semi-
classical actions obtained by the two methods agree. For
other uses of constrained instantons in gravitational path
integrals, see Refs. [10,11].
This paper is a companion to Ref. [12] in which we

discuss some other properties of Euclidean SdS in four
dimensions, focusing on cavity partition functions and
equilibrium thermodynamics. Recent interesting work
related to this includes Ref. [13], which considers similar
physics in two dimensions and in finite causal diamonds
[14,15], and Refs. [16,17], which address the stability
problem for cavity black holes with zero or negative
cosmological constant.
Recently, we became aware of an analysis of the same

problem by Morvan et al., which subsequently appeared in
Ref. [18]. The results in Ref. [18] are in agreement with
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ours, although the methods differ in the details; our focus is
on the factorization properties of path integrals and the
geometrical imposition of the constraint.

II. FACTORIZATION AND BOUNDARY TERMS
IN THE PATH INTEGRAL

Before examining SdS specifically, let us take a step
back and review some properties of the gravitational path
integral, particularly the factorization properties with fixed
boundary data in the Hamiltonian formalism. In writing the
path integral, we can use either the Euclidean Lagrangian
action IL, containing both the Einstein-Hilbert (EH) action
and the Gibbons-Hawking-York (GHY) boundary term or
the Euclidean Arnowitt-Deser-Misner (ADM) action with
certain boundary terms BN and BNa

:

IL ¼ −
1

16π

Z
M

d4x
ffiffiffi
g

p ðR − 2ΛÞ − 1

8π

Z
∂M

d3x
ffiffiffi
γ

p
K; ð2Þ

IADM ¼ 1

16π

Z
t2

t1

dt
Z
Σt

d3xðπab∂thab − NH − NaHaÞ

þ BN þ BNa
: ð3Þ

For our purposes, it will be sufficient to focus on manifolds
of fixed topology. The path integral in the Hamiltonian
formalism is

Z ¼
Z

DhabDπabDNDNae−IADM½hab;π
ab;N;Na�: ð4Þ

The Hamiltonian and momentum constraints are1

H ¼ ð3ÞRþ 1

h

�
πabπab −

1

2
π2
�
; ð5Þ

Hb ¼ −2
ffiffiffi
h

p
Da

�
πabffiffiffi
h

p
�
; ð6Þ

where Da is the covariant derivative compatible with
the metric hab on the slice Σt induced by the spacetime
metric gab.
We will be interested in the path integral over metrics on

M ¼ S4, for which the saddle point is empty Euclidean
de Sitter, and we denote the partition function by ZdS, as well
as in path integrals on subregions of S4. In the former case,
there are no boundaries, and so boundary terms play no role,
but in the latter case, therewill be boundaries that partition the
manifold. The Euclidean time foliation is also periodic, and
therefore we omit the limits on the t integrals going forward.
Different choices for the boundary terms BN and BNa

correspond not only to different classical variational prob-
lems but also to different ways in which the full path integral

can be split into path integrals over fields in different parts
ofM.We discuss first the standard choice of boundary terms,
related to the canonical ensemble, and then an alternate
choice, related to the microcanonical ensemble.

A. Canonical boundary data

The boundary terms BN and BNa
are usually chosen so

that IADM has a well-posed variational problem with fixed
hab, N, and Na at the boundary. They can be derived by
requiring that their variations cancel the surface terms
generated by the variations of the bulk term. Let us
introduce a radial coordinate ρ, analogous to the one that
appears in the static coordinate representation of de Sitter,
although we make no assumptions about metric symmetries
at this stage. Using the Gauss-Codazzi relations, we can
write the spatial curvature scalar ð3ÞR as

ð3ÞR¼ ð2ÞRþk2−kabkab−2DaðrakÞþ2DaðrbDbraÞ; ð7Þ
where ra is the unit normal to surfaces of fixed ρ, sab
and ð2ÞR are the induced metric and curvature scalar,
kab ¼ scaDcrb is the extrinsic curvature, and k ¼ kaa. Let
T be a surface defined by ρ ¼ r, and consider the action on
one side of T . Using Eq. (7), the integral of NH can be
written as the bulk integral of an expression containing at
most first-order radial derivatives of N and hab, plus a
boundary term

2

Z
dt

Z
St

d2x
ffiffiffi
s

p ðNk − rarbDbraÞ; ð8Þ

where St is the intersection of T and Σt. Since rara ¼ 1, the
second term in the integrand vanishes. So, we can cancel
the contribution of (8) to the action by the choice

BN ¼ −
1

8π

Z
dt

Z
St

d2x
ffiffiffi
s

p
Nk ðcanonicalÞ: ð9Þ

Similarly, the sum of the momentum constraint term in
IADM and the boundary term

BNa
¼ −

1

8π

Z
dt

Z
St

d2x
ffiffiffi
s

p
Na

πabffiffiffi
h

p rb ð10Þ

is proportional to the bulk integral of
ffiffiffi
s

p
πabDaNb.

Therefore, the boundary terms (9) and (10) allow us to
write IADM as the bulk integral of a function of the field
variables and their derivatives, with at most first-order
radial derivatives. A related property is that the variational
problem of IADM with these boundary terms is well posed
with fixed hab, N, and Na on T .
Now, let us consider both sides of T . T divides M into

two regions, M1 and M2. We would like to write the path
integral over fields defined on M as a product of path
integrals over fields on M1 and M2, with a path integral

1Note that the relative sign of the curvature and momentum
terms differs between Euclidean and Lorentzian signature.
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over data at the interface. The result, given below in
Eq. (13), is in some sense what we might expect, but in
fact, it is intricately tied to the choice of the boundary terms.
Since we will change the boundary terms in the next
section, we start by elaborating on this connection.
One way to approach the problem of factorization is to

consider the domain of the action functional appearing in the
path integral.2 Of course, the action is well defined—i.e.,
without specifying additional UV data—for smooth metrics,
but it is also well defined in this sense for a larger space of
field variables. We have some freedom in this extension.
We focus on the continuity properties of the fields at T .

If we take hab, N, and Na to be continuous (in ρ) at T , then
it is not necessary for k and πab to be continuous (in ρ) at T
in order for the ADM action to be well defined. There may
be Dirac delta functions in the bulk integrand, but they
are multiplied by continuous functions of ρ and so are
integrable without regularization.
Furthermore, we have seen that the action can be written

as a bulk integral with at most first-order radial derivatives
of the field variables (in fact no derivatives of πab). In this
form, there will be no Dirac delta functions in the action
density in M even if k and πab are discontinuous, merely
products of discontinuous functions. The action on all of
M can be written in this way, as can the action on each of
the subregions M1 and M2. Therefore, in this form, the
action functional manifestly satisfies the additivity property

IADMðMÞ ¼ IADMðM1Þ þ IADMðM2Þ: ð11Þ

This decomposition is immediate when using the “purely
bulk” form of the action in the subregions, and therefore it
also holds in the equivalent bulkþ boundary form, for
boundaries placed just on either side of T .
Let us illustrate these comments more explicitly with

the example of discontinuous k. Using Eq. (7), the ADM
action of a metric on all of M contains terms that can be
expressed in different ways:

IADM ⊃ þ 1

8π

Z
M

NDaðrakÞ

¼ −
1

8π

Z
M
ðDaNÞrak

¼ −
1

8π

Z
M1

ðDaNÞrak − 1

8π

Z
M2

ðDaNÞrak

¼ þ 1

8π

Z
M1

NDaðrakÞ þ
1

8π

Z
M2

NDaðrakÞ

−
1

8π

Z
T −

d3x
ffiffiffi
s

p
Nk −

1

8π

Z
T þ

d3x
ffiffiffi
s

p
Nk: ð12Þ

There are no boundary terms in the first line because M
does not have a boundary. In this line, the integrand
contains radial derivatives of k and so exhibits a delta
function singularity if k has a discontinuity in ρ at T .
However, it is multiplied by N, which is continuous at the
singularity, and so the integral remains well defined. In the
second line, both ∂ρN and k can be discontinuous in ρ at T ,
but again the action functional is well defined, and more-
over there is no delta function singularity. This makes the
split into subregions trivial in the third line. In the fourth
line, we return to the original form of the action in the
subregions, which has boundary terms on both sides of T ,
denoted T �. The boundaries excise the delta function
singularity, and its contribution is reproduced by the
boundary terms.
With Eq. (11), it is clear how the path integral decom-

poses. Variables that are required to be continuous in ρ at T
are shared between the two regions and therefore must be
integrated over only once. We can write the factorization as

ZdS¼
Z
T
DsabDNDNaZðM1jsab;N;NaÞZðsab;N;NajM2Þ;

ð13Þ

where T in the subscript of the integral is a mnemonic that
integration variables are defined on the boundary T . We
indicated explicitly the dependence of the path integrals
in M1 and M2 on the boundary data at T , using notation
suggestive of the insertion of a complete set of states in
quantum mechanics. Since ZðM1Þ and ZðM2Þ are other-
wise independent, it is clear that ZdS receives contributions
from metrics on M in which some properties can be
discontinuous—for example, hρρ may be discontinuous in
ρ at T , leading to discontinuous k, as discussed above. In
the next section, we will consider a different but analogous
factorization.
The boundary data over which we integrate in Eq. (13)

includes only the metric sab induced on St ¼ Σt ∩ T , even
though the discussion above suggests that the entire spatial
metric hab needs to be continuous at T in order for Eq. (11)
to hold. The difference arises because of a choice of gauge,
which we now discuss in some detail.
In the Hamiltonian formalism, it is convenient to impose

the gauge condition

gρα ¼ 0 for α ≠ ρ at T ; ð14Þ

and then there is no integration with respect to the boundary
value of these components (i.e., with respect to hρα, α ≠ ρ,
andNρ). This condition is not restrictive; since it is imposed
only on the boundary, the stationarity of the action still
provides the full set of field equations in the bulk. Also,
for any solution, the gauge condition (14) can always be
satisfied by an appropriate foliation in the neighborhood of
T . We will assume that this gauge condition is satisfied.

2The importance of boundary terms that allow us to write the
action in a purely bulk form satisfying Eq. (11) was already noted in
the context of the usual factorization of transition amplitudes [19].
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This leaves only the question of the continuity properties
of hρρ.
To address the question of hρρ, it is convenient to look

first at the Lagrangian form of the action. As is well known,
the variational problem of IL is well posed even if only the
induced metric on the boundary is fixed. Therefore, in the
Lagrangian formalism, gρα does not need to be continuous
in ρ at T , and the factorization property analogous to
Eq. (13) has an integral only over the induced metric on T .
To see that the same is true in the Hamiltonian formalism,
first note that the terms containing the momentum in the
purely bulk form of the ADM action (terms proportional to
DðaNbÞ, ∂thab, and πab) do not contain radial derivatives of
hab at T . This is because the gauge condition Eq. (14) sets
Nρ ¼ 0 on T . Another useful consequence of (14) is that it
ensures that IADM with the boundary terms (9) and (10) is
equal to IL after πab is eliminated by Hamilton’s equation.
It follows that hρρ does not need to be continuous for the
factorization in the Hamiltonian formalism with boundary
terms (9) and (10) if Eq. (14) is satisfied.
This is the reason why we integrate only over sab, N, and

Na in Eq. (13). (Our notation for the path integral measure
is schematic and does not indicate explicitly inDNa thatNρ

is not integrated over.) The path integral over the boundary
values of the remaining field variables [i.e., hρρ and πab if
Eq. (14) holds] can be performed independently in the two
regions. Therefore, these integrations are automatically
included in the definition of ZðM1Þ and ZðM2Þ.

B. Microcanonical boundary data

The factorization in (13) is not the only interesting
case. Now, we discuss a different decomposition which is
connected to a different set of boundary terms. First, note
that Eq. (7) contains only first-order radial derivatives of
the metric, apart from the term proportional to DaðrakÞ.3
Instead of the boundary term in (9), let us take

BN ¼ 0 ðmicrocanonicalÞ: ð15Þ

With this choice, the term −2NDaðrakÞ in the action
density is no longer effectively integrated by parts. We
still choose BNa

as in Eq. (10) [this is why “canonical”
appears in Eq. (9) but not in Eq. (10)], and then we only
need to integrate by parts in the momentum constraint term
to cancel out BNa

and write IADM as a purely bulk integral.
What are the factorization properties of the path integral

with these boundary terms? Again, let us appeal to the
action functional. Take sab, k, and Na to be continuous in ρ
at T . Then, in the gauge (14), the action is well defined

without additional UV data, even if N and hρρ are
discontinuous.4 The additivity property (11) is manifest
already in the ordinary form of the ADM action,

IADM ⊃
1

8π

Z
M

NDaðrakÞ

¼ 1

8π

Z
M1

NDaðrakÞ þ
1

8π

Z
M2

NDaðrakÞ; ð16Þ

and it implies the following factorization of the path
integral:

ZdS ¼
Z
T
DsabDkDNaZðM1jsab;k;NaÞZðsab;k;NajM2Þ:

ð17Þ

This holds already in the ordinary form of the ADM action,
Eq. (3), with the new choice of boundary term BN ¼ 0
on either side of T . [The measure in (17) is somewhat
schematic, but it is not important for our purposes.]
Let us pause and make two comments:
(i) Equations (17) and (13) may be thought of as giving

two different “complete set of states” insertions into
the same partition function ZdS.

(ii) The temporal foliation of T need not have a
continuation into the bulk of both M1 and M2 that
is nonsingular everywhere. That will be the case
for Euclidean SdS, and we will deal with this
mild complication below. Although we used the
Hamiltonian formalism in the derivation above, once
a foliation is defined on T , we can specify the
boundary data with which ZðM1jsab; k; NaÞ and
Zðsab; k; NajM2Þ are well defined. Then, they can
be computed using the Lagrangian formulation with
action IL, for which no bulk foliation is required,
plus appropriate boundary terms.

3The radial derivatives in the last term in Eq. (7) are only first
order because rara ¼ 1 implies that Aa ¼ rbDbra is orthogonal
to ra, so its divergence DaAa contains derivatives of Aa only in
directions tangent to the constant ρ surfaces.

4hρρ is not fixed on T in the canonical factorization, and
therefore it can be discontinuous in the path integration. In the
microcanonical factorization, with the purely bulk form of the
action, essentially we require continuity of k, relax continuity of
N, and swap a ðDaNÞrak term in the action for an NDaðrakÞ
term. By inspecting these terms, one can see that this swap does
not introduce a singularity even if hρρ is discontinuous as long as
k and sab are continuous. (k does not depend on ∂ρhρρ, so it is
nonsingular even if hρρ is discontinuous; furthermore, it can still
be continuous even if hρρ is not because k also depends on ∂ρsab,
which is unfixed.) All the other terms in the action are the same as
in the canonical factorization. It follows that hρρ is not fixed on T
in the microcanonical factorization and can be integrated over
independently in the two regions. However, we will see hρρ is
actually continuous in the saddle point solution. Physically, this is
because a discontinuous hρρ implies the presence of a shell of
matter, which gravitates and pulls the cosmological horizon
inward, lowering the total entropy [12].

PATRICK DRAPER and SZILARD FARKAS PHYS. REV. D 105, 126022 (2022)

126022-4



III. SdS AS A CONSTRAINED STATE

Now, let us discuss constrained states. The restriction to a
black hole of mass M is obtained formally by inserting a
delta functional at T , concentrated on the boundary data
(sMab, k

M, NM
a ) of the black hole. This gives

ZM
SdS ¼ ZðM1jsMab; kM; NM

a ÞZðsMab; kM; NM
a jM2Þ: ð18Þ

Before we proceed, let us elaborate on the motivation for
fixing k instead of N. A priori, we could do either, and no
particular justification is required for choosing one or the
other. However, there is a reason to preferentially fix k.
With the canonical factorization and a shared fixed boun-
dary metric, we obtain two products of canonical partition
functions. However, the canonical ensemble is not well
defined for spherical cavities at positive cosmological
constant. The lowest-action solution in each region con-
sistent with the boundary conditions contains a cosmo-
logical horizon and possesses a negative heat capacity [12].
In contrast, the cavity solutions with fixed k have a
consistent microcanonical thermodynamic interpretation
[12]. This is one reason we proceed with the micro-
canonical factorization.
As in the more general discussion of Sec. II, we adopt a

coordinate system where T lies at a fixed radial coordinate
ρ ¼ r. On T , we set Na ¼ NM

a ¼ 0, we fix sab ¼ sMab to
the ordinary round metric r2dΩ2

2, and we take k ¼ kM ¼
2

ffiffiffiffiffiffiffiffiffi
fðrÞp

=r with f given in Eq. (1).
The semiclassical approximation can now be applied to

each region separately. Euclidean SdS is a solution in each
region, and now both conical singularities can be removed
by an appropriate rescaling of the lapse function. Let the
periodicity of the time coordinate be such that the metric (1)
is smooth for ρ < r; i.e., t ∼ tþ 1=Tb, where the black hole
temperature TbðMÞ is determined by the massM consistent
with the fixed value of k. The corresponding cosmological
horizon temperature Tc is likewise determined byM. Then,
the smooth semiclassical solution for ρ > r and the same
temporal periodicity is

ds2 ¼ fðρÞ
�
Tb

Tc

�
2

dt2 þ fðρÞ−1dρ2 þ ρ2dΩ2: ð19Þ

There is no conical singularity at the cosmological horizon
ρ ¼ rc. The lapse is not continuous at T , but it does not
need to be.
The momenta vanish in SdS, and so one might conclude

that the semiclassical action (3) vanishes. This is not quite
correct for reasons described in Refs. [20,21]. As alluded to
in the bullet points above, the problem is the time foliation
used in the ADM action above cannot be extended every-
where into the bulk; the foliation breaks down at the two
horizons. The SdS solutions are smooth at these points, but
the ADM action cannot be evaluated. Fortunately, there is a

trick whereby we can still take advantage of the simplicity
of the ADM form in the evaluation of the action on a
stationary solution. We start with the EH action in the entire
spacetime, which has no boundaries. The EH form is valid
everywhere. We draw infinitesimal boundaries T b and T c
around the black hole and cosmological horizons. If
Eq. (14) holds, the EH action between T b and T c is equal
to the ADM action with the canonical boundary terms (9)
and (10) minus the GHY terms at T b and T c. (This follows
from the equality of IL and the canonical ADM action on a
solution.) As a mnemonic, we may think of this trick as
removing the coordinate singularities of the ADM formal-
ism by switching to the Lagrangian formalism very close
to the singularities, with suitable boundary terms at the
interfaces.
In this form, the on-shell action is particularly simple to

evaluate. In the limit that the boundaries T b;c are taken
infinitesimally close to the horizons, all of the bulk
contributions to the SdS action vanish. The bulk ADM
contributions in Eq. (3) vanish because of the constraints
and πab ¼ 0, and the EH contributions inside the infini-
tesimal boundaries T b;c vanish because the curvature is
finite and integrated over a region of zero volume in the
limit. The BNa

boundary terms near the horizons are also
zero on SdS, and the canonical Hamiltonian boundary
terms at each horizon vanish because Nk → 0 at those
points. Thus, the entirety of the classical action is due to
GHY terms on the infinitesimal boundaries T b;c:

Itot ¼ IGHYðT bÞ þ IGHYðT cÞ
¼ −ðAb þ AcÞ=4: ð20Þ

Happily, the result does not depend on the radius r where
we placed the constraint; the total action is just minus the
total entropy.5 Regardless of where the constraint is placed,
the boundary data correspond to the same physical state
in Lorentzian signature—the unique Lorentzian SdS sol-
ution with that value of M—and so the r-independence of
Eq. (20) means that ZM

SdS is a well-defined property of this
state. More generally, it is not necessary to construct it with
a spherically symmetric constraint. T can be any static
surface enclosing the black hole, and for suitable boundary
data, we will still obtain the same ZM

SdS.
As a formal prescription for performing a continuation

of the full discontinuous Euclidean solution to Lorentzian
signature, we can proceed as follows. First, we change the t
coordinate in one region so that the lapse is continuous
but the coordinate periodicity is not. Then, in each region,

5It is also possible to obtain the same result for the action by
regulating the conical singularities by an arbitrary smooth metric,
then taking the limit [22]. This fact follows from the Gauss-
Bonnet theorem, but it does not appear to shed light on the role of
SdS as a constrained state in the semiclassical approximation.
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we perform the naive continuation, which erases the
discontinuity in the periodicity by decompactifying t in
both regions. The result is the unique SdS solution of the
given mass, which is smooth apart from the black hole
singularity.

IV. CONCLUSIONS

Thus, the saddle point of the constrained path integral
computes the probability of finding a black hole of massM
in the de Sitter ensemble,

P ¼ ZM
SdS=ZdS ∼ eSbþSc−πL2

; ð21Þ

normalizing to the unconstrained partition function. This
interpretation offers a resolution to the semiclassical

meaning of Euclidean SdS. The usual conical singularity
can be exchanged for a discontinuity in the local temper-
ature at some radius, encoding the absence of thermal
equilibrium. The discontinuous geometry is a stationary
point of the action with the constraint, and it yields the
expected result that fluctuating a black hole into existence
is exponentially rare in the entropy deficit.
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