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In this work, we investigate, for the first time, the melting of charmonium states within a holographic
QCD model in the context of Einstein-Maxwell-dilaton theory. In the dual field theory, the model describes
the heavy mesons inside a finite temperature and density medium. First, we calculate the spectrum at zero
temperature. Then, at finite temperature, we obtain the spectral functions, where the heavy vector meson
are represented by peaks. We show that the charmonium melts down at temperatures above the
confinement/deconfinement temperature of the quark-gluon plasma. We also observe that the chemical
potential speeds up the melting process. In the gravitational side of the theory, we solve the perturbation
equations in the hydrodynamic limit. From this result, we read off the diffusion coefficient, then the quark
number susceptibility. We show that the quark number susceptibility computed in this way does not blow
up at the critical end point. We interpret this result as the lack of backreaction on the background by the
action describing the vector mesons. To get the quasinormal frequencies, we solve the perturbation
equations numerically. We report the emergence of a new mode whose real part increases rapidly at a
certain value of the chemical potential, while its imaginary part decreases with the increasing of the
chemical potential. Finally, by comparing against results obtained in the conformal plasma, we observe that
the real part of the frequency increases, while the imaginary part decreases when we consider the
nonconformal plasma.

DOI: 10.1103/PhysRevD.105.126020

I. INTRODUCTION

Heavy-ion collisions allow us to investigate QCD in the
laboratory. The medium created after (Aþ A) collisions,
known as the quark gluon plasma (QGP), is very hot and
dense with extremely short lifetime (∼5–10 fm=c). In this
plasma, light quarks and gluons interact strongly but are not
confined inside hadrons. It is believed that one can use
heavy mesons as probes in order to extract relevant
information of the medium in such extreme conditions
[1–3]. The idea is that, in contrast to hadrons made of the

light quarks [u (up), d (down), and s (strange)] that
dissociate at the critical temperature [4] when the plasma
is formed, heavy mesons, made of c (charm) or b (bottom)
quarks survive at higher temperatures. The fraction of
heavy mesons produced in a heavy ion collision may serve
as an important source of information about the preexisting
QCD. That is the motivation for understanding how the
properties of the QGP, like temperature and density, affect
the dissociation of charmonium.
An important framework to investigate the dissociation

of heavy vector mesons is the use of holographic models
inspired in the anti-de Sitter (AdS)/CFT correspondence. In
its original form, the AdS=CFT correspondence states a
duality between super-Yang-Mills theory living on a flat
four-dimensional spacetime, with a supergravity theory
living on an AdS5 × S5 spacetime [5] (see also Refs. [6,7]).
A phenomenological approach to gauge/gravity duality,
now called AdS/QCD, was proposed in Refs. [8–10].
Since then, a considerable number of papers were pub-
lished with similar phenomenological models; see, for
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instance, Refs. [11–20] and references therein. It is worth
stressing that, in this so-called bottom-up AdS/QCD
approach, the geometry is kept as AdS space-time, neglect-
ing backreactions of the fields introduced in the models on
the geometry. The investigation of hadron dissociation in a
thermal medium in the framework of holography was
carried out, for instance, in Refs. [21–29]; see also
references therein. Finite temperature effects in the
dual field theory are related to black hole thermodynamics
in the gravitational field theory, while finite density effects
are related to the charge of the black hole solution.
Following the holographic dictionary, one may extract
relevant information about the dissociation process in
the dual field theory. Heavy vector mesons have been
studied following a bottom-up holographic approach in
Refs. [30–36].
On the other hand, a different approach is followed in the

construction of the so-called top-down holographic models.
In this case, the gravitational backgrounds are obtained
solving Einstein’s equations. In other words, backreaction
of the dilaton field on the metric is not neglected. Examples
of such Einstein-dilaton models can be found, for instance,
in Refs. [37–45] and references therein. Investigations of
finite density and magnetic field effects in the context of the
Einstein-Maxwell-dilaton models appear, for example, in
Refs. [46–53].
In this work, we follow the Einstein-Maxwell-dilaton

holographic approach in order to analyze the dissociation
of heavy charmonium in a plasma with finite temperature
and density. We analyze the thermal spectrum and the
quasinormal modes and compare our findings with
results available in the literature. The paper is organized
as follows. In Sec. II, we present a brief review of the
holographic model we are going to work with. Section III is
devoted to investigating the charmonium states within the
holographic model. We calculate the spectrum at zero
temperature; then, we introduce finite temperature effects
through a black hole embedded in the dual gravitational
background. We get the equations of motion describing two
sectors: longitudinal and transverse, which we write in the
Schrödinger-like form. In turn, in Sec. IV, we investigate
finite temperature and density effects on the effective
potential arising in the Schrödinger-like equation. The
analysis of the spectral functions for selected values of
the temperature and chemical potential are presented and
discussed in Sec. V. It is also interesting to solve the
equations of motion using perturbative techniques. This is
possible in the so-called hydrodynamic limit where the
energy and wave number are smaller than the temperature.
We present this analysis in Sec. VI. From the solutions in
the hydrodynamic limit, we calculate the correlation
functions in the dual field theory. These results allow us
to calculate the quark-number susceptibility that we present
in Sec. VII. Moreover, it is worth solving the equations of
motion numerically to get the quasinormal frequencies in
the gravitational side of the duality. We implement this

procedure in Sec. VIII. Finally, our conclusions are
presented in Sec. IX. We present complementary material
in Appendix.

II. HOLOGRAPHIC MODEL

In the following, we define the holographic QCD model
we are going to work with proposed in Ref. [46]. The five-
dimensional action describing the finite density medium in
the dual field theory is given by

Sb ¼
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

fðϕÞ
4

F2

−
1

2
ð∂mϕÞð∂mϕÞ − VðϕÞ

�
; ð1Þ

where G5 is the gravitational constant in five dimensions,
ϕ is the scalar field and VðϕÞ its potential, fðϕÞ represents
the kinetic function (nonminimal coupling), and F2 ¼
FmnFmn, with Fmn ¼ ∂mAn − ∂nAm, where Am is the gauge
field. The corresponding equations of motion are given by

Gmn −
1

2
ð∂mϕÞð∂nϕÞ þ

gmn

4
ð∂pϕÞð∂pϕÞ þ

gmn

2
V

þ f
2

�
gmn

4
F2 − FmpF

p
n

�
¼ 0; ð2aÞ

∂mð
ffiffiffiffiffiffi
−g

p
fFnmÞ ¼ 0; ð2bÞ

1ffiffiffiffiffiffi−gp ∂mð
ffiffiffiffiffiffi
−g

p
∂
mϕÞ − ∂ϕV −

f
4
F2 ¼ 0; ð2cÞ

where Gmn is the Einstein tensor. Equations (2a)–(2c) are
the Einstein equations, the Maxwell equations, and the
Klein-Gordon equation, respectively. As can be seen, these
equations are coupled and must be solved simultaneously.
As we are interested in the finite temperature and density

plasma, we need to consider the black hole solution of these
set of equations. We consider the ansatz

ds2 ¼ 1

ζðzÞ2
�
−gðzÞdt2 þ 1

gðzÞ dz
2 þ dxidxi

�
;

At ¼ AtðzÞ; Ax1 ¼ Ax2 ¼ Ax3 ¼ Az ¼ 0;

ϕ ¼ ϕðzÞ; ð3Þ

where gðzÞ is the horizon (blackening) function, ζðzÞ is a
function related to the warp factor, and AtðzÞ is the nonzero
component of the gauge field, which gives rise to finite
density in the dual field theory. The black hole solutions are
characterized by the presence of an event horizon, zh,
where the horizon function vanishes, gðzhÞ ¼ 0. Thus, the
holographic coordinate belongs to the interval 0 ≤ z ≤ zh.
Considering the ansatz (3), the Einstein equations (2a)
reduce to
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ζ00

ζ
−
1

6
ϕ02 ¼ 0;

g00 −
3ζ0

ζ
g0 − fðA0

tζÞ2 ¼ 0;

V −
f
2
ðζ2A0

tÞ2 þ 3ζ5
�
gζ0

ζ4

�0
¼ 0: ð4Þ

Meanwhile, the nontrivial Maxwell equation is given by

�
f
ζ
A0
t

�0
¼ 0: ð5Þ

As is usual in this kind of holographic models, the Klein-
Gordon equation becomes redundant and can be obtained
from the Einstein equations. We point out that these
equations are the same as presented in Ref. [46] written
in a compact form.
In turn, regularity conditions imposed on the horizon

function and gauge field at the horizon require that

gðzhÞ ¼ 0; and AtðzhÞ ¼ 0: ð6Þ

Meanwhile, at the boundary, the horizon function must
reduce to the unity, gð0Þ ¼ 1, while the asymptotic expan-
sion of the gauge field takes the form

At ¼ μ − ρz2 þOðz4Þ; z → 0; ð7Þ

where μ is the chemical potential and ρ is the baryon
density. Thus, once we solve Eq. (5), we expand the
solution close to the boundary to read off the chemical
potential and baryon density by comparing the solution
against the asymptotic expansion (7).
The coupled Eqs. (4) may be solved following different

approaches; see the discussion in Refs. [41–43] and
references therein. Thus, the warp factor and the kinetic
function are given by [46,54]

ζ ¼ z
l
e−AðzÞ; f ¼ e−cz

2−AðzÞ; ð8Þ

where AðzÞ is a function defined by

AðzÞ ¼ −
c
3
z2 − bz4: ð9Þ

It is interesting to calculate the asymptotic expansion
of the functions ζ and f close to the boundary, which
are given by

ζ ¼ z
l

�
1þ c

3
z2 þ

�
bþ c2

18

�
z4 � � �

�
; z → 0

f ¼ 1 −
2

3
cz2 þ

�
bþ 2c2

9

�
z4 � � � : z → 0: ð10Þ

In Fig. 1, we display a plot for functions A (right panel)
and f (left panel) setting c ¼ 1 and considering two
values for the parameter b, positive (b ¼ 1) and negative
(b ¼ −1). This plot was motivated by the discussion of
Ref. [47] in which a negative signal for b was consid-
ered. As can be seen, the kinetic function increases with
z for b > 0 (blue line), while it decreases with z for
b < 0 (red line). In turn, the function A decreases with z
for b > 0 (blue line), while it increases with z for b < 0
(red line).
Let us turn our attention to the free parameters c and b.

They were fixed by phenomenology in Ref. [46], their
corresponding values are

c ¼ 1.16 GeV2; b ¼ 0.273 GeV4: ð11Þ

We can now solve the background equations by
plugging (8) into (5). Thus, we get a solution for the
gauge field

At ¼ c2 þ
c1
2cl

ecz
2

: ð12Þ
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FIG. 1. Left: the kinetic function as a function of z for b ¼ 1 (blue) and b ¼ −1 (red) setting c ¼ 1. Right: the functionA as a function
of z for b ¼ 1 (blue) and b ¼ −1 (red) setting c ¼ 1.
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We fix the constants using the boundary conditions. Hence,
the gauge field and its expansion close to the boundary are
given by

At¼
ecz

2 −ecz
2
h

1−ecz
2
h

μ; At¼μ−
cμ

ecz
2
h −1

z2þOðz4Þ: ð13Þ

From the last expression, we read off the baryon (charge)
density ρ by comparing against (7). It is worth pointing out
that the gauge field does not depend on the parameter b.
Analogously, we can get a solution for the horizon
function, gðzÞ. Hence, the thermodynamic variables like
the temperature and entropy density are defined by

T ¼ −
g0ðzhÞ
4π

; s ¼ 1

4G5ζ
3ðzhÞ

: ð14Þ

A plot of the temperature as a function of zh is displayed in
the left panel of Fig. 2. As can be seen, the behavior of the
temperature depends on the value of the chemical potential.
For μ ¼ 0, there is a global minimum; this point splits up
the large black hole phase (stable phase) and the small
black hole phase (unstable phase). Moreover, for μ > 0,
there are a local minimum and a local maximum, which
merge in the same point for a critical value of the chemical
potential, μCEP, with the corresponding critical temperature,
TCEP. The point ðμCEP; TCEPÞ defines the critical end point
in the μ − T plane.
To calculate the phase diagram, we need the free energy

density, which is calculated using the first law of thermo-
dynamics,

dF
dT

¼ −s: ð15Þ

Then, the integral representation for the free energy density
is given by

F ¼
Z

∞

zh

sðz̃Þ
�
dTðz̃Þ
dz̃

�
dz̃: ð16Þ

The last result considers the free energy of the thermal gas,
which is considered to be zero. The numerical results of the
phase diagram are displayed in the right panel of Fig. 2. In
this way, we finish the short review of the holographic
model we are going to work with; for additional discussions
and details, see Ref. [46]. In the following, we are going to
calculate the spectrum of heavy-vector mesons on this
background; then, we investigate their melting.

III. HEAVY VECTOR MESONS

The heavy-vector mesons in the dual field theory are
described by five-dimensional gauge field whose action is
given by

Sm ¼ −
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p fðϕÞ
4

F2
V; ð17Þ

where the gauge field is defined by FVmn ¼ ∂mAn − ∂nAm
and fðϕÞ is the kinetic (nonminimal) function defined in
Eq. (8). It is worth mentioning that in the probe limit the
contribution of the matter field to the energy-momentum
tensor is neglected. In the dual field theory, this corresponds
to the quenched approximation, in which the quark loops in
the Feynman diagrams are neglected [57]. The equations of
motion obtained from this action are given by

∂mð
ffiffiffiffiffiffi
−g

p
fFmn

V Þ ¼ 0: ð18Þ

Let us focus in the zero temperature case where the
background metric (3) reduces to

ds2 ¼ 1

ζðzÞ2 ðdz
2 þ dxμdxμÞ: ð19Þ

To simplify the analysis, we are going to work in the radial
gauge Az ¼ 0. Setting n ¼ z in (18), we get the constraint
∂αAα ¼ 0. In turn, setting n ¼ ν, we get the equation
describing the heavy-vector mesons, which may be
written as

µ=0

µ=0.2 GeV

µ = µcµ=0.8 GeV
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FIG. 2. Left: the temperature as a function of zh for different values of the chemical potential. Right: the phase diagram of the
holographic model, where the critical end point is highlighted.
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ζ

f
∂z

�
f
ζ
∂zAν

�
þ□Aν ¼ 0: ð20Þ

Introducing the Fourier transform on the gauge field

Aνðz; xμÞ ¼
Z

d4k
ð2πÞ4 e

ikαxαAνðz; kÞ; ð21Þ

it transforms as Aνðxμ; zÞ → Aνðkμ; zÞ. The equation may
be rewritten in the Schrödinger-like form using the trans-
formation Aν ¼ ξνe−Bψ , where ξν is a polarization vector
and 2B ¼ ln ðf=ζÞ; thus, the equation becomes

−∂2zψ þ Vψ ¼ m2
nψ ; ð22Þ

where we have replaced □ → m2
n and V is the potential

given by

V ¼ ð∂zBÞ2 þ ∂
2
zB: ð23Þ

As the background was already fixed, we may solve the
eigenvalue problem using a shooting method, for example.
It is worth pointing out that the ratio f=ζ does not depend
on the parameter b; for that reason, the spectrum is
insensitive to this parameter. The way this holographic
model was built allows us to get an analytic solution for the
mass spectrum, which is given by

m2
n ¼ 4cðnþ 1Þ; n ¼ 0; 1; 2; � � � ð24Þ

In the sequence, we fix the free parameter by fitting this
formula with the first two resonances of charmonium
available from experimental data [58], and by doing so,
we get c ¼ 1.46 GeV2 [59]. A plot of the potential is
displayed in Fig. 3. The numerical results for the spectrum
compared against charmonium experimental data are dis-
played in Table I.
Having fixed the parameter c, the critical end point in the

phase diagram lies in a different position in relation to the
one obtained in Ref. [46]. Considering c ¼ 1.46 GeV, it
lies at ðμCEP; TCEPÞ ¼ ð0.708 GeV; 0.559 GeVÞ. Finally,

the eigenvalue problem solved at zero temperature has real
solutions. However, we shall see below that the black hole
embedded in the geometry will change the eigenvalues into
complex. These states shall be interpreted as quasiparticles
characterized by the complex frequencies whose real part is
interpreted as the thermal mass, while their imaginary part
is related to the decay rate of these states. The correspond-
ing field solutions are called the quasinormal modes. They
are the finite temperature version of the normal modes that
describe the states at zero temperature.
On the other hand, in the black hole background, the

problem changes completely due to Poincaré symmetry
breaking. To simplify the analysis, we are going to work in
the radial gauge, Az ¼ 0, and consider plane wave solutions
in the form Aμðxν; zÞ ¼ e−iωtþiqx3Aμðω; q; zÞ, where we are
considering the direction of propagation qμ ¼ ðω; 0; 0; qÞ.
Thus, the equations of motion (18) can be written in the
form

∂z

�
f
ζ
∂zAt

�
−
qf
gζ

ðqAt þ ωAx3Þ ¼ 0; ð25aÞ

ω∂zAt þ qg∂zAx3 ¼ 0; ð25bÞ

∂z

�
gf
ζ
∂zAx3

�
þ ωf

gζ
ðqAt þ ωAx3Þ ¼ 0; ð25cÞ

gζ
f
∂z

�
fg
ζ
∂zAα

�
þ ðω2 − q2gÞAα ¼ 0. ðα ¼ x1; x2Þ:

ð25dÞ
Next, we write the last equations in terms of gauge-
invariant fields defined by Ex1 ¼ ωAx1, Ex2 ¼ ωAx2 , and
Ex3 ¼ qAt þ ωAx3 , as

gζ
f
∂z

�
fg
ζ
∂zEα

�
þðω2−q2gÞEα¼0; ðα¼x1;x2Þ; ð26aÞ

gζ
f
∂z

�
fg

ζðω2 − q2gÞ ∂zEx3

�
þ Ex3 ¼ 0: ð26bÞ

Equations (26a) represent the propagation in the transverse
direction, while Eq. (26b) represents the propagation along
the longitudinal direction. It is also possible to rewrite each
of these equations into a Schrödinger-like form. The

0 2 4 6 8 10 12
0

50
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150

200

250

300

z(GeV–1)

V
(G
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2
)

FIG. 3. The potential of the Schrödinger-like equation.

TABLE I. The mass of the vector mesons (in MeV) obtained in
the holographic model compared against the experimental results
from the Particle Data Group [58].

n Holographic model Charmonium experimental [58]

0 2420 3096.916� 0.011
1 3422 3686.109� 0.012
2 4191 4039� 1
3 4839 4421� 4
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Schrödinger-like form allows us to investigate the potential
and how it will be deformed by the temperature and
chemical potential, which is interpreted as the melting
of the quasiparticle states. To get the Schrödinger-like
equation we need to define the tortoise coordinate,
∂r� ¼ −gðzÞ∂z, and the transformation Eα ¼ e−BTψα.
Thus, Eq. (26a) becomes

−∂2r�ψα þ VTψα ¼ ω2ψα; ð27Þ

where VT is the transverse potential defined by

VT ¼ q2gþ ð∂r�BTÞ2 þ ∂
2
r�BT; ð28Þ

with 2BT ¼ ln ðf=ζÞ. By restoring the holographic coor-
dinate, the transverse potential becomes

VT ¼ gðq2 þ gð∂zBTÞ2 þ ∂zðg∂zBTÞÞ: ð29Þ

As can be seen, the transverse potential is zero at the
horizon, where gðzhÞ ¼ 0. In the same way, we may write
Eq. (26) in the Schrödinger-like form by using the tortoise
coordinate and the transformation Ex3 ¼ e−BLψx3 getting

−∂2r�ψx3 þ VLψx3 ¼ ω2ψx3 ; ð30Þ

where VL is the longitudinal potential defined by

VL ¼ q2gþ ð∂r�BLÞ2 þ ∂
2
r�BL; ð31Þ

with 2BL ¼ ln ðf=½ζðω2 − q2gÞ�Þ. Restoring the holo-
graphic coordinate, the longitudinal potential becomes

VL ¼ gðq2 þ gð∂zBLÞ2 þ ∂zðg∂zBLÞÞ: ð32Þ

Note that VT and VL are the same when q ¼ 0. Note also
that the longitudinal potential vanishes at the horizon. The
Schrödinger-like form of the differential equations (27) and
(30) may be solved close to the horizon where gðzhÞ ¼ 0.
Thus, we have the solutions for both sectors,

ψ j ∼ Cje−iωr� þDjeþiωr� ; ðj ¼ α; x3Þ ð33Þ

where the first solution is interpreted as an incoming wave
falling into the black hole while the second one is
interpreted as an outgoing wave coming from the black
hole interior. To be more precise, we may calculate the

incoming ψ ð−Þ
j and outgoing ψ ðþÞ

j solutions including a few
subleading terms in the form

ψ ðþÞ
j ¼ eþiωr�ðaðþÞ

0j þ aðþÞ
1j ðzh − zÞ þ aðþÞ

2j ðzh − zÞ2 þ � � �Þ
ð34aÞ

ψ ð−Þ
j ¼ e−iωr� ðað−Þ0j þ að−Þ1j ðzh − zÞ þ að−Þ2j ðzh − zÞ2 þ � � �Þ:

ð34bÞ

The coefficients að�Þ
0j ; a�1j; � � �, are given by að�Þ

0j ¼ 1,

að�Þ
1j ¼ að�Þ

0j

2zhðf0ðzhÞ ∓ 2iωÞ
�
2q2zh − ð1þ 2cz2hÞf0ðzhÞ þ δjx3

q2zhðf0ðzhÞÞ2
ω2

�
;

að�Þ
2α ¼ að�Þ

0α

8z2hð2ω� if0ðzhÞÞð5ω� 4if0ðzhÞÞ
ð6ω2 − 8q4z2h þ 8c2z4hω

2 þ ½8q2ðzh þ 2cz3hÞ � ið23 − 16cz2h þ 20c2z4hÞω�f0ðzhÞ

− 4ð3þ 4c2z4hÞf0ðzhÞ2 þ 8zh½q2zh ∓ iðωþ 2cz2hωÞ�f00ðzhÞÞ;

að�Þ
2x3

¼ að�Þ
0x3

8z2hω
4ð2ω� if0ðzhÞÞð5ω� 4if0ðzhÞÞ

ðð6þ 8c2z4hÞω6 − 8q4z2hω
4 þ q2zhωð�25iq2zh þ 8ð1þ 2cz2hÞωÞf0ðzhÞ3

− 12q4z2hf
0ðzhÞ4 þ 4zhω4ð3q2zh ∓ 2iωð1þ 2cz2hÞÞf00ðzhÞ þ ½−8q2z2hω2f00ðzhÞ þ 2ω2ðq4z2h ∓ 5iq2zhð1þ 2cz2hÞω

− 2ð3þ 4c2z4hÞω2Þ�f0ðzhÞ2 þ ½ωð4q2zhð1þ 2cz2hÞ � ið23 − 16cz2h þ 20c2z4hÞωÞ � 26iq2z2hf
00ðzhÞ�ω3f0ðzhÞÞ: ð35Þ

On the other hand, we may solve the Schrödinger-like
equations close to the boundary, where the normalizable

ψ ð1Þ
k and non-normalizable ψ ð2Þ

k solutions are given by

ψ ð1Þ
j ¼ z3=2ðb0j þ b2jz2 þ b4jz4 þ � � �Þ; ð36aÞ

ψ ð2Þ
j ¼ z−1=2ðc0jþc2jz2þc4jz4 � ��Þþdjψ

ð1Þ
j lnðzÞ; ð36bÞ

where the coefficients are given by

b2j¼
ðq2−ω2Þ

8
b0j; c4α¼

1

64
ð8c2−3b0αðq2−ω2Þ2Þc0α;

dj¼
ðq2−ω2Þ

2
c0j; ð37Þ

the coefficients b4j and c4x3 are complicated expressions,
and for that reason, we do not write them here. Meanwhile,
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we have the freedom to set c2j ¼ 0. The next step forward
is to write the incoming and outgoing solutions as a linear
combination of the normalizable and non-normalizable
solutions:

ψ ðþÞ
j ¼ AðþÞ

j ψ ð2Þ
j þ BðþÞ

j ψ ð1Þ
j ; ð38aÞ

ψ ð−Þ
j ¼ Að−Þ

j ψ ð2Þ
j þ Bð−Þ

j ψ ð1Þ
j : ð38bÞ

Analogously, the normalizable and non-normalizable sol-
utions may be written as a linear combination of the
incoming and outgoing solutions in the form

ψ ð2Þ
j ¼ Cð2Þj ψ ð−Þ

j þDð2Þ
j ψ ðþÞ

j ; ð39aÞ

ψ ð1Þ
j ¼ Cð1Þj ψ ð−Þ

j þDð1Þ
j ψ ðþÞ

j : ð39bÞ

The coefficients of the last equations are related through

 
AðþÞ

j BðþÞ
j

Að−Þ
j Bð−Þ

j

!
¼
 
Cð2Þj Dð2Þ

j

Cð1Þj Dð1Þ
j

!−1

: ð40Þ

These relations shall be useful below when we calculate the
spectral functions; see Refs [22,23,25] for additional
details.

IV. EFFECTIVE POTENTIAL

Let us start by investigating the case when μ ¼ 0. In this
case, the plot of the temperature as a function of zh, see the
left panel of Fig. 2, has two branches: large and small black
holes. Considering the stable regime, i.e., the large black
hole branch, the temperature belongs to the interval
Tmin ≤ T < ∞. A plot of the potential as a function of
the tortoise coordinate for selected values of the tempera-
ture setting q ¼ 0 is displayed in the left panel of Fig. 4. As

can be seen, for T ¼ Tmin ¼ 0.612 GeV (blue line), the
potential has a small potential well; this means that
probably we will not find quasiparticle states for this
temperature. In turn, for T ¼ 0.7 GeV (red dashed line)
and T ¼ 0.8 GeV (black dashed line), there is no potential
well, meaning that the probability of finding quasiparticle
states should be practically zero. It is worth comparing the
potential at finite temperature against the potential at zero
temperature displayed in Fig. 3. As can be seen, the
temperature deforms the potential well. This deformation
is interpreted as the dissociation of bound states, which are
thermally at zero temperature.
Meanwhile, turning on the chemical potential, μ ≠ 0,

there are three branches arising in the plot of the temper-
ature as a function of zh, as seen in the left panel of Fig. 2,
depending on the value of μ. We displayed our numerical
results for μ ¼ 0.2 GeV and the isotherm at T ¼ 0.8 GeV
in the right panel of Fig. 4. The first branch of Fig. 2, where
the background is stable, is represented with a blue line.
Meanwhile, the second branch, where the background is
unstable, is represented with a red dashed line. The third
branch, where we got a stable solution, is represented with a
black dashed line. As can be seen in the right panel of
Fig. 5, it is possible to find quasiparticle states in the third
branch (black dashed line) because the potential displays a
potential well, while in the second branch (red dashed line)
they shall be in an unstable phase, while in the first branch
(solid blue line), there are no quasiparticle states. In turn, it
is also illustrative to show the effects of the chemical
potential on the deformation of the potential well. In Fig. 5,
we displayed the potential fixing the temperature at the
isotherm T ¼ Tmin ¼ 0.612 GeV and varying the chemical
potential for q ¼ 0. As can be seen, the potential is also
sensitive to the variation of the chemical potential.
In conclusion, increasing the temperature and the chemi-

cal potential, the melting process speeds up. It is also
interesting to point out that these results are qualitatively
equivalent to results obtained within the bottom-up

T=0.612 GeV
T=0.7 GeV
T=0.8 GeV
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FIG. 4. Left: the potential as a function of the tortoise coordinate r� for μ ¼ 0 and q ¼ 0. The blue line represents the results for
T ¼ Tmin ¼ 0.612 GeV, the red dashed line represents results for T ¼ 0.7 GeV, and black dashed line represents results for
T ¼ 0.8 GeV. Right: the figure shows the potential as a function of r� for μ ¼ 0.2 GeV and the isotherm T ¼ 0.8 GeV setting q ¼ 0.
The blue line represents the large black hole branch, the red dashed line represents the second branch, and the black dashed line
represents the third one. These branches can be seen in the left panel of Fig. 2.
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holographic QCD models in the literature [22,23,25,32–
36,60]; see also references therein. The difference of our
results in relation to those is that the background we are
working with was obtained solving the Einstein-Maxwell-
dilaton equations.

V. SPECTRAL FUNCTIONS

To calculate the correlation functions, we need to deter-
mine the on-shell action; then, we use the Son-Starinets
prescription [61] to read off the correlation functions. Let us
start by writing the action (17) in the form

Sm ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p fðϕÞ
2

∂mAnFmn
V : ð41Þ

Plugging the components of the gauge field, the background
metric (3), and the Fourier transform (21), the action may be
rewritten in the form

Sm ¼ 1

32πG5

Z
dqdω
ð2πÞ2

f
ζ
ðgAðz;−kÞ · ∂zAðz; kÞ

− Atðz;−kÞ∂zAtðz; kÞÞjzhz0 ; ð42Þ

whereA ¼ ðAx1 ; Ax2 ; Ax3Þ is a spatial vector. In terms of the
gauge-invariant fields, this action becomes

Sm¼−
1

32πG5

Z
dqdω
ð2πÞ2

gf
ζω2

�
ω2

ω2−q2g
Ex3ðz;−kÞE0

x3ðz;kÞ

þEx1ðz;−kÞE0
x1ðz;kÞþEx2ðz;−kÞE0

x2ðz;kÞ
�����zh

z0

: ð43Þ

To get the correlation functions, it is useful to split up the
gauge field as the product of two functions, one of them
depending only on the holographic coordinate, EjðzÞ, and
the other depending on the wave number Eð−Þ

j ðkÞ,

Ejðz; kÞ ¼ EjðzÞEð−Þ
j ðkÞ; ðj ¼ x1; x2; x3Þ; ð44Þ

where the function Ej is normalized such that
limz0→0 Ejðz0Þ ¼ 1; we also consider the ingoing solution
at the horizon such that we are computing the retarded
Green’s function. Thus, the on-shell action can be rewritten
in the form

Sm ¼ 1

32πG5

Z
dqdω
ð2πÞ2

fg
ζ

�
ω2

ω2 −q2g

�
q2

ω2
A0
t ð−kÞA0

t ðkÞþ
q
ω
A0
t ð−kÞA0

x3
ðkÞþ q

ω
A0
x3
ð−kÞA0

t ðkÞþA0
x3
ð−kÞA0

x3
ðkÞ
�
Ex3ðzÞE0

x3ðzÞ

þ
X

α¼x1;x2
A0
αð−kÞA0

αðkÞEαðzÞE0
αðzÞ

�����zh
z0

: ð45Þ

The last expression can be written in a compact form,

Sm ¼
Z

dqdω
ð2πÞ2 A

0
μð−kÞF μνðz; kÞA0

νðkÞjzhz0 : ð46Þ

Thus, we get the current-current correlators using the Son-
Starinets prescriptionCR

μνðkÞ ¼ −2ημγηνβ limz0→0 F γβðz0; kÞ,

CR
tt

q2
¼ CR

x3x3

ω2
¼ −

CR
tz

qω
¼ −

CR
zt

qω

¼ −
N2

c

16π2ðω2 − q2Þ limz0→0

1

ζðz0Þ
E0
x3ðzÞjz¼z0 ; ð47aÞ

CR
αα ¼ −

N2
c

16π2
lim
z0→0

1

ζðz0Þ
E0
αðzÞjz¼z0 : ð47bÞ

To get these results, we have considered the fact that
gðz0Þ → 1, fðz0Þ → 1, and Ejðz0Þ → 1 in the limit of
zero z0. We also considered the relation G5 ¼ π=N2

c, where
Nc is the number of colors. It is instructive to write an
explicit expression for EjðzÞ which is obtained from the
transformations

EjðzÞ¼
�
ζ

f

�
1=2
�
ω2−q2g
ω2−q2

�1
2
δjx3
�
ψ ð2Þ
j þBð−Þ

j

Að−Þ
j

ψ ð1Þ
j

�
; ð48Þ
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FIG. 5. The potential as a function of the tortoise coordinate r�
for T ¼ Tmin ¼ 0.612 GeV and different values of the chemical
potential: μ ¼ 0 (blue line), μ ¼ 0.2 GeV (red dashed line), and
μ ¼ 0.5 GeV (black dashed line).
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where we have considered Eð−Þ
j ðkÞ ¼ ðω2 − q2Þ12δjx3Að−Þ

j ðkÞ
in order to guarantee the condition Ejð0Þ ¼ 1. Plugging (48)
in (47a) and (47b), and using also (36a) and (36b), we get

CR
x3x3ðω;qÞ¼−

N2
c

8π2

�
ω2

ω2−q2

�

× lim
z0→0

�
c
2
þdþ2d lnz0þ

Bð−Þ
x3

ðω;qÞ
Að−Þ

x3
ðω;qÞ

þ���
�
;

ð49aÞ

CR
ααðω; qÞ ¼ −

N2
c

8π2
lim
z0→0

�
c
2
þ dþ 2d ln z0

þ Bð−Þ
α ðω; qÞ

Að−Þ
α ðω; qÞ

þ � � �
�
; ð49bÞ

the ellipses represent terms which are zero in the limit of zero
z0. We rule out the divergent terms, i.e., ln z0, adding
appropriate counterterms in the action (17). Thus, one may
calculate the spectral functions, which are defined as the
imaginary part of the retarded Green’s functions

Rx3x3ðω; qÞ≡ −2ImCR
x3x3ðω; qÞ

¼ N2
c

4π2

�
ω2

ω2 − q2

�
Im

�
Bð−Þ
x3 ðω; qÞ

Að−Þ
x3

ðω; qÞ

�
; ð50aÞ

Rααðω;qÞ≡−2ImCR
ααðω;qÞ¼

N2
c

4π2
Im

�
Bð−Þ
α ðω;qÞ

Að−Þ
α ðω;qÞ

�
: ð50bÞ

As can be seen, the spectral functions depend on the ratio

Bð−Þ
j =Að−Þ

j which are the coefficients related to the ingoing
solution. One may rewrite this relation in terms of the
normalizable and non-normalizable solutions using thematrix
relation (40) (for additional details, see Refs. [22,23]),

Bð−Þ
j

Að−Þ
j

¼ −
∂zψ

ð−Þ
j ψ ð2Þ

j − ψ ð−Þ
j ∂zψ

ð2Þ
j

∂zψ
ð−Þ
j ψ ð1Þ

j − ψ ð−Þ
j ∂zψ

ð1Þ
j

: ð51Þ

In the following, our strategy shall be the following, We
solve the differential Eqs. (27) and (30), integrating from the
boundary to the horizon using as “initial conditions” the
asymptotic solutions (36a) and (36b). Then, we plug these
solutions into (51), evaluate them at the horizon, and finally
extract the imaginarypart to get the retardedGreen’s function.
In the sequence, we present our results for the spectral

functions computed following the previous procedure.
These results are closely related to the results displayed
in Fig. 2. For μ ¼ 0, we obtained two branches for the
temperature, large and small black holes. The former is a
stable phase from the thermodynamic point of view, while
the last is unstable. If we investigate the melting at zero
chemical potential, we realized that solutions are only
possible for temperatures larger than the global minimum,
T ≥ 0.612 GeV. As can be seen in the figure of the
potential, see blue line in Fig. 5, there is no potential well
for this temperature. This means that no peaks are expected
in the spectral functions, meaning that the quasiparticles
were dissociated.
On the other hand, from Fig. 2, we realized that the only

way to reach low temperatures is to turn on the chemical
potential. To be more specific, for 0 < μ < μc, it is possible
to get three phases for the same temperature; see the left
panel of Fig. 2 for μ ¼ 0.2 GeV. In the following, we work
on the third branch where we can reach low temperatures.
For μ ¼ 0.2 GeV, the temperature in this branch belongs to
the interval 0 ≤ T ≤ 0.936 GeV. Our numerical results for
the spectral function for q ¼ 0 and selected values of the
temperature are displayed in Fig. 6 considering different
scales. The locations of the peaks on the horizontal axis are
interpreted as the mass of the quasiparticle states (which
also corresponds to the real part of the frequency), while the
widths of the peaks are related to the inverse of the decay
rate of these quasiparticle states (related to the imaginary
part of the frequency). As can be seen in the left panel, the
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FIG. 6. The spectral function for μ ¼ 0.2 GeV and selected values of the temperature and q ¼ 0.
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height of the peaks decreases with the increasing of the
temperature, while the width of the peaks increases,
meaning that the decay time decreases; i.e., the quasipar-
ticles melt faster when the temperature increases. These
results are in agreement with previous results obtained in
the literature; see, for instance, Refs. [22,23,33,34]. It is
worth mentioning that the background metric considered in
those holographic models is always AdS, while in the
model we are working with, the metric is asymptotically
AdS. Recently, a background obtained solving the Einstein-
Maxwell-dilaton equations was investigated in Ref. [62].
On the left panel of Fig. 6, we chose a vertical scale such
that the highest peak, corresponding to the first radial
excitation, is shown in his total height. This way one can
see the relative sizes of the peaks. On the other hand, in the
right panel of the same figure, we display the spectral
function in an expanded scale, such that one can notice the
presence of a series of additional peaks arising in the
spectral function, corresponding to the higher-order excited
states. This means that the model we consider is capable,
through numerical methods, of studying high-order exci-
tations of charmonium not previously studied in the
literature. From Fig. 6, we conclude that at temperatures
larger than the confinement/deconfinement temperature,
0.170 GeV, we still have the presence of charmonium states
in the quark-gluon plasma. This result is in agreement with
previous results in the literature indicating that heavy vector
mesons melt at temperatures above 0.170 GeV; see, for
instance, Refs. [32,33].
Now, we investigate the effects of the density on the

spectral functions. For this analysis, we fix the temperature
at T ¼ 0.4 GeV and compute the spectral functions for
selected values of the chemical potential. Our numerical
results are displayed in Fig. 7 considering different scales.
As can be seen in the left panel, the chemical potential
speeds up the melting process because the height of the
peaks decreases rapidly, and the widths of the peaks
increase; see right panel. We also realize that increasing
the chemical potential produces a stronger dissociation
effect on the quasiparticles than increasing the temperature

by the same amount. The right panel also shows the
additional peaks arising due to the sensitivity of the
numerical procedure. These results are in agreement with
previous results in the literature where holographic models
for investigating the melting of particles including finite
density effects were investigated [34,35].
Finally, it should be interesting to see the spectral

function at the critical end point of the phase diagram;
see the right panel of Fig. 2. For that reason, we calculate
the spectral functions for μ ¼ μc and selected values of the
temperature: T ¼ 0.534 GeV, T ¼ Tc ¼ 0.559 GeV, and
T ¼ 0.584 GeV.We display our numerical results in Fig. 8,
in which one can see that at the critical end point temper-
ature (red line) the spectral function does not have peaks,
meaning that quasiparticles melted. In turn, for temperature
lower than the critical one (blue line), the spectral function
shows a few peaks, meaning that a few quasiparticles states
might be present in the plasma. For a temperature above the
critical one (black line), we do not see peaks in the spectral
function.
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FIG. 7. The spectral function for T ¼ 0.4 GeV and selected values of the chemical potential and q ¼ 0.
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FIG. 8. The spectral function for μ ¼ μc ¼ 0.708 GeV and
selected values of the temperature and q ¼ 0.
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VI. HYDRODYNAMIC LIMIT

In the long-wave and low-energy regime, the theory can
be described by an effective hydrodynamic description; in
this regime, one may investigate important physical proper-
ties of the system like transport properties. The gauge/
gravity duality provides us the theoretical framework to
investigate this regime in the dual field theory by solving
the perturbation equations, arising in the gravitational side,
in the hydrodynamic limit. These perturbations are char-
acterized by a set of complex frequencies, the quasinormal
modes, which in the hydrodynamic limit are known as
hydrodynamic quasinormal modes.

A. Longitudinal sector

As described in previous sections, longitudinal pertur-
bation propagating along the direction kμ ¼ ðω; 0; 0; qÞ is
described by Eq. (26). In this section, we are going to solve
this equation in the hydrodynamic limit; for doing so, it is
convenient to normalize the parameters by the temperature
such that the new parameters and the holographic coor-
dinate become dimensionless:

w ¼ ω

πT
; q ¼ q

πT
; u ¼ μ

πT
;

c ¼ c
ðπTÞ2 ; b ¼ b

ðπTÞ4 ; u ¼ ðπTÞz: ð52Þ

Then, the dimensionless version of Eq. (26b) is given by

E00
x3ðuÞ −

�ð1þ 2cu2Þgðw2 − q2gÞ −w2ug0ðuÞ
ugðw2 − q2gÞ

�

Ex3
0ðuÞ þ ðw2 − q2gÞ

g2
Ex3ðuÞ ¼ 0: ð53Þ

Let us consider a transformation which takes into account
the ingoing boundary condition at the horizon

Ex3ðuÞ ¼ g−
iw
4Fx3ðuÞ; ð54Þ

where Fx3ðuÞ is a regular function; then, the differential
equation we must solve is

F00
x3ðuÞ þ

�
w2g0ðuÞ

gðw2 − q2gÞ −
1

u
− 2cu −

iwg0ðuÞ
2g

�
F0
x3ðuÞ þ

�
w2

g2
−
q2

g
þ iwg0ðuÞ

4ug

þ icwug0ðuÞ
2g

þ iwg0ðuÞ2
4g2

−
w2g0ðuÞ2
16g2

−
iw3g0ðuÞ2

4g2ðw2 − q2gÞ −
iwg00ðuÞ

4g

�
Fx3ðuÞ ¼ 0: ð55Þ

In the hydrodynamic limit, the energy and wave number
are smaller than the temperature such that w ≪ 1 and
q ≪ 1. Thus, we may build a multiscale perturbative
solution on these parameters. Nevertheless, here we will
use an alternative expansion considering the new para-
metrizationw → λw and q → λq such that λ ≪ 1. Then, we
use λ as the parameter controlling the expansion,

Fx3ðuÞ ¼ Fð0Þ
x3

þ λFð1Þ
x3
ðuÞ þ λ2Fð2Þ

x3
ðuÞ þ � � � : ð56Þ

Plugging (56) into (55), we get differential equations forFð0Þ
x3
,

Fð1Þ
x3
, and so on. We must solve these differential equations

and fix the integration constants imposing regularity con-
ditions at the horizon; at the end, we get the solutions

Fð0Þ
x3

¼ F0; ð57aÞ

Fð1Þ
x3

¼ iF0w
4

ln ½gðuÞ� þ iF0q2

8wc
ðecu2 − ecu

2
hÞR uh

0
ecx

2
x

gðxÞ dx
ln ½gðuÞ�

−
iF0w
4

ln ½gðuhÞ�
R
u
0

ecx
2
x

gðxÞ dxR uh
0

ecy
2
y

gðyÞ dy
; ð57bÞ

where F0 is a constant. Calculating the dispersion relation is

enough to solve up to Fð1Þ
x3
. Thus, plugging into (54) and

imposing theDirichlet condition at the boundaryEx3ð0Þ ¼ 0,
we get the dispersion relation

w ¼ i
ðecu2h − 1Þ

8c

�
ln gðuhÞR uh
0

ecx
2
x

gðxÞ dx

�
q2: ð58Þ

Note that the logarithm and integral blow up at the horizon,

lim
u→uh

ln gðuÞ ¼ −∞; lim
u→uh

Z
u

0

ecx
2

x
gðxÞ dx ¼ ∞: ð59Þ

However, one may use l’Hôpital’s rule to evaluate this ratio,
such that the result is finite,

lngðuhÞR uh
0

ecx
2
x

gðxÞ dx
¼e−cu

2
hg0ðuhÞ
uh

; → w¼ i
ðecu2h −1Þ

8c
e−cu

2
hg0ðuhÞ
uh

q2:

ð60Þ

Plugging this result into (58) and considering the definition of
the temperature g0ðuhÞ ¼ −4, one gets the dispersion relation
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ω ¼ −i
ð1 − e−cu

2
hÞ

2cuhðπTÞ
q2: ð61Þ

Result (60) represents the most general solution for this kind
of holographic models. For a check of consistency, let us
apply this formula for problems investigated previously in the
literature. Considering gðuÞ ¼ 1 − u4 and uh ¼ 1, we get
Eq. (4.16) ofRef. [63]. In turn, for the problem investigated in
Ref. [23], plugging the horizon function gðuÞ ¼ 1 − u4

and uh ¼ 1 into (60), we get the same result obtained
in Eq. (4.6) of that paper. For the last check of consistency,
we get Eq. (3.31) of Ref. [64], where gðuÞ ¼
ð1 − uÞð1þ u − ð2 − 4πTbÞu2Þ. Applying this formula in
our case, we can write the dispersion relation as

iω ¼ Dq2; ð62Þ
where the coefficient D is given by

D ¼ ð1 − e−cu
2
hÞ

2cuhðπTÞ
: ð63Þ

Meanwhile, following Ref. [63], one may rewrite the
field component Ex3ðk; uÞ given by (54) close to the
boundary in the form

Ex3ðuÞ ¼ Ax3ðw; qÞ þ � � �Bx3ðw; qÞu2 þ � � � ; ð64Þ

where the coefficients are given by

Ax3ðw; qÞ ¼ F0

�
1 − iq2

ð1 − e−cu
2
hÞ

8cw
g0ðuhÞ
uh

�
; ð65aÞ

Bx3ðw; qÞ ¼ iF0

ðq2 −w2Þ
8w

e−cu
2
hg0ðuhÞ
uh

: ð65bÞ

To write the last expressions, we have used l’Hôpital’s rule
again. Thus, one may calculate the retarded Green’s
function from (43). Considering the decomposition of

Ex3ðuÞ ¼ Eð0Þ
x3
ðkÞEx3ðuÞ, from (64), we get [setting

Eð0Þ
x3 ðkÞ ¼ Ax3ðkÞ]

Ex3ðuÞ ¼ 1þ � � �Bx3ðw; qÞ
Ax3ðw; qÞ u

2 þ � � � ð66Þ

Thus, the correlation functions may be calculated using the
functional derivative of the action (43). We have special
interest in the component CR

ttðw; qÞ, which is given by

CR
ttðw;qÞ¼

δ2S

δAð0Þ
t ðkÞδAð0Þ

t ð−kÞ
¼ q2δS

δEð0Þ
x3
ðkÞδEð0Þ

x3
ð−kÞ

: ð67Þ

Plugging (66) into the on-shell action and taking the limit
u → 0, we rewrite the correlation function in the form
depending on the coefficients of the asymptotic expansion
close to the boundary,

CR
ttðw; qÞ ¼ N2

c

8π2
q2ðπTÞ2
ðq2 − ω2Þ

Bx3ðw; qÞ
Ax3ðw; qÞ : ð68Þ

Finally, by plugging (65) into the last equation, one gets

CR
ttðω; qÞ ¼

N2
c

16π2
q2

zh

e−cz
2
h

ðiω − q2 ð1−e−cz2h Þ
2czh

Þ
: ð69Þ

Note that the correlation function has a singular point when
the denominator is zero, resulting in the dispersion relation
obtained by imposing the Dirichlet boundary condition on
the field component Ex3ðuÞ; see Eq. (61).

B. Transversal perturbation

The dimensionless version of the transverse sector is
given by Eq. (26a), which in dimensionless parameters is
given by

E00
αðuÞ−

�
g0ðuÞ
gðuÞ þ

1

u
−2cu

�
E0
αðuÞþ

ðw2−q2gÞ
g2

EαðuÞ¼0;

ðα¼x1;x2Þ: ð70Þ

Once again, we consider the transformation which takes
into account the ingoing boundary condition at the horizon,

EαðuÞ ¼ g−
iw
4FαðuÞ; ð71Þ

generating the differential equation, we must solve

F00
αðuÞþ

�
g0ðuÞ
gðuÞ −

1

u
−2cu−

iwg0ðuÞ
2g

�
F0
αðuÞþ

�
w2

g2
−
q2

g
þ iwg0ðuÞ

4ug
þ icwug0ðuÞ

2g
−
w2g0ðuÞ2
16g2

−
iwg00ðuÞ

4g

�
FαðuÞ¼0: ð72Þ

As before, we build the perturbation solution which is controlled by the parameter λ ≪ 1. Thus, we expand Fα in the form

FαðuÞ ¼ Fð0Þ
α þ λFð1Þ

α ðuÞ þ λ2Fð2Þ
α ðuÞ þ � � � : ð73Þ
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Plugging (73) into (72) and solving order by order, we
get the solutions

Fð0Þ
α ¼ F0; ð74aÞ

Fð1Þ
α ¼ iF0w

4
ln ½gðuÞ� − iF0w

4
ln ½gðuhÞ�

R
u
0

ecx
2
x

gðxÞ dxR uh
0

ecy
2
y

gðyÞ dy
: ð74bÞ

Calculating the dispersion relation is enough to solve up to

Fð1Þ
α . Thus, plugging into (71) and imposing the Dirichlet

condition at the boundary, Eαð0Þ ¼ 0, we do not get
solutions in the hydrodynamic limit, i.e., w ≪ 1 and
q ≪ 1. This means that the correlation function does not
have poles. It is not difficult to show this statement by
expanding the solution, Eq. (71), close to the boundary,

EαðuÞ ¼ Aαðw; qÞ þ � � �Bαðw; qÞu2 þ � � � ; ð75Þ

where the coefficients are given by

Aαðw; qÞ ¼ F0; ð76aÞ

Bαðw; qÞ ¼ −iF0

w
8

e−cu
2
hg0ðuhÞ
uh

: ð76bÞ

To write the last expression, we have used l’Hôpital’s rule.
Thus, one may calculate the retarded Green’s function from
(43) and the fact that (75) may be decomposed as

EαðuÞ ¼ Eð0Þ
α ðkÞEαðuÞ, where

EαðuÞ ¼ 1þ � � �Bαðw; qÞ
Aαðw; qÞ u

2 þ � � � : ð77Þ

Thus, the correlation functions may be calculated using the
functional derivative of the action (43). We are interested in
the component CR

ααðw; qÞ, which is given by

CR
ααðw;qÞ¼ δ2S

δAð0Þ
α ðkÞδAð0Þ

α ð−kÞ
¼ w2δS

δEð0Þ
α ðkÞδEð0Þ

α ð−kÞ
: ð78Þ

Plugging (77) into the on-shell action and taking the limit
u → 0, we rewrite the correlation function in the form
depending on the coefficients of the asymptotic expansion
close to the boundary,

CR
ααðw; qÞ ¼ −

N2
cT2

8

Bαðω; qÞ
Aαðω; qÞ

: ð79Þ

Finally, by plugging (76) into the last equation, one gets

CR
ααðω; qÞ ¼ −

N2
c

16π2
iωe−cz

2
h

zh
: ð80Þ

Note that the correlation function has no poles, which is
consistent with the solution in the hydrodynamic limit.

VII. QUARK NUMBER SUSCEPTIBILITY

In QCD, the response of the system to a change in the
chemical potential is measured through the quark number
susceptibility χ, and it was investigated in holographic
QCD models in Refs. [48,64–68] (see also references
therein). Once we have solved the differential equations
in the hydrodynamic limit and obtained the retarded
Green’s functions, we can then calculate the quark number
susceptibility following the procedure implemented in
Refs. [64,65], where they used the prescription

χðT; μÞ ¼ −lim
q→0

RefCttð0; qÞg: ð81Þ

Thus, from (69), we get

χðT; μÞ
N2

c
¼ 1

8π2
c

ðecz2h − 1Þ : ð82Þ

Note that, even though this result is similar to the one
obtained in Refs. [48,64], the model we are working with
has an additional parameter b and an intricate form for the
horizon function gðzÞ. In turn, one may compare this result
against the one obtained using the baryon density read off
from Eqs. (7) and (13), which is given by [46]

ρ ¼ cμ

ecz
2
h − 1

: ð83Þ

Then, we calculate the quark number susceptibility

χ ¼ ∂ρ

∂μ
¼ c

ecz
2
h − 1

−
2c2μzhecz

2
h

ðecz2h − 1Þ2
1

∂zhμ
: ð84Þ

Let us calculate the behavior of Eqs. (82) and (84) in the
conformal limit, i.e., high-temperature regime, where we
get the relation zh ¼ 1=ðπTÞ (see the left panel of Fig. 2).
Plugging this result in (82) and (83), then, considering the
approximation ec=ðπTÞ2 ≈ 1þ c=ðπTÞ2, we get

χ ¼ N2
c

8
T2 and χ ¼ π2T2; ð85Þ

respectively. This result is in agreement with the result
found in the literature; see, for instance, Refs. [64,66,67],
where the quark number susceptibility goes like χ ∼ T2.
Let us plot Eqs. (82) and (84) as a function of the
chemical potential for selected values of the temperature.
Our numerical results are displayed in Fig. 9, in which
the left panel shows Eq. (82) while right panel shows the
results for Eq. (84). It is worth mentioning that previous
investigation works showed that the quark susceptibility
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must blow up at the critical end point; for results
obtained solving the Dyson-Schwinger equation, see
Ref. [69] and references therein. Our results are showing
two different behaviors for the quark number suscep-
tibility, one obtained from Eq. (82) and another from
Eq. (84). The result displayed in the left panel of
Fig. 9 does not diverge at the critical end point. This
result may be explained because the matter action we are
considering to get Eq. (82) represents the action of probe
fields. In the dual field theory, this corresponds to the
quenched approximation [57]. In turn, the right panel of
Fig. 9 shows that χ blows up at the critical end point.
Note that Eq. (84) was obtained using the holographic
dictionary on At, which was obtained by solving
Maxwell’s equations (5). It is also worth mentioning
that the holographic model we are working with was
obtained solving differential equations numerically. This
means that we have numerical error. We made an
estimate of the error order, which is ∼10−8 close to
the boundary. Therefore, we present a qualitative instead
of quantitative comparison against results available from
the lattice and experimental measurement [70–72].

Certainly, this point can be better explored in
future works.

VIII. QUASINORMAL MODES

In this section, we calculate the quasinormal frequencies
by solving the differential equations numerically. We split
up the problem in two parts: the longitudinal and the
transverse sectors. To calculate the quasinormal frequen-
cies, we are going to use the pseudospectral method; for a
discussion, see Ref. [73], and see also Refs. [25,74–77] and
references therein, where the pseudospectral method was
applied to calculate quasinormal frequencies in different
scenarios.

A. Longitudinal sector

Our starting point is the Schrödinger-like equation (30),
with potential (32). From here on, we follow the procedure
implemented in Ref. [77]. To write the differential equation
suitable to apply the pseudospectral method, we first
implement the transformation ψα ¼ e−iωr�φ. Then, we
replace the tortoise coordinate and BL to get

ð4q2z2ω4 − 8q4z2ω2gþ 3ω4gþ 4c2z4ω4 þ 4q6z2g2 − 6q2ω2g2 − 8c2q2z4ω2g2 þ 3q4g3 þ 4c2q4z4g3 − 2zω4g0 − 4cz3ω4g0

þ 2q2zω2gg0 þ 4cq2z3ω2gg0 þ 2q2z2ω2g02 þ q4z2gg02 þ 2q2z2ω2gg00 − 2q4z2g2g00ÞφðzÞ − ð8iz2ωðω2 − q2gÞ2
þ 4z2ðω2 − q2gÞ2g0Þφ0ðzÞ − gð4z2ω4 − 8q2z2ω2gþ 4q4z2g2Þφ00ðzÞ ¼ 0: ð86Þ

To compare our results against the results obtained in Ref. [63], for μ ¼ 0, and c ¼ 0 ¼ b, we normalize the coordinate and
parameters by the temperature

u ¼ zπT; ω̃ ¼ ω

2πT
; q̃ ¼ q

2πT
; c̃ ¼ c

ðπTÞ2 ; b̃ ¼ b
ðπTÞ4 ; μ̃ ¼ μ

πT
: ð87Þ
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FIG. 9. Left: the quark number susceptibility as a function of the chemical potential for T ¼ Tc ¼ 0.599 GeV given by Eq. (82).
Right: the quark number susceptibility as a function of the chemical potential for T ¼ 0.550 GeV (blue), T ¼ 0.555 GeV (red), and
T ¼ 0.559 GeV (brown) given by Eq. (84). Both panels also show the critical value for the chemical potential represented by the vertical
dashed line.
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One may calculate the asymptotic solutions of the
last differential equation close to the horizon con-
sidering the ansatz φ ∼ ð1 − uÞα. Plugging in Eq. (86),
we get

α1 ¼ 0; α2 ¼ 4iω̃: ð88Þ

The first solution is interpreted as the ingoing solution,
falling into the black hole event horizon, while the
second solution is interpreted as the outgoing solution.
As we are interested in retarded Green‘s functions, we
choose the ingoing solution in the following analysis. In
turn, to calculate the asymptotic solution close to the

boundary, we consider the ansatz φ ∼ uβ. Plugging in
(86), we get the solutions

β1 ¼ −
1

2
; β2 ¼

3

2
; ð89Þ

where the first solution is interpreted as the non-
normalizable solution while the second the normalizable
one. As we are looking for normalizable solutions of the
eigenvalue problem, we consider the normalizable sol-
ution in the following analysis. Then, to get the final
differential equation to solve, we consider the additional
transformation, which takes into account the information
about the asymptotic solutions we got, φðuÞ ¼ u3=2ϕðuÞ,

ð8ð2q̃2u − 3iω̃Þω̃4 þ 4c̃2q̃4u3g3 − 4ð2þ c̃u2Þω̃4g0 þ 2q̃2uω̃2g02 þ 2g2ð8q̃6u − 12iq̃4ω̃ − 4c̃2q̃2u3ω̃2 − 3q̃4g0 − q̃4ug00Þ
þ gð2ω̃2ð−16q̃4uþ 24iq̃2ω̃þ 2c̃2u3ω̃2 þ q̃2ug00Þ þ 2q̃2ð7þ 2c̃u2Þω̃2g0 þ q̃4ug02ÞÞϕðuÞ
− 4iðω̃2 − q̃2gÞ2ð4uω̃ − 3ig − iug0Þϕ0ðuÞ − 4ugðω̃2 − k̃2gÞ2ϕ00ðuÞ ¼ 0: ð90Þ

As can be seen, we get an eigenvalue problem on the
frequency, to solve it we are going to use the pseudospectral
method. Nevertheless, in the holographic model, we are
working with three parameters: μ, c, and b. To see how the
quasinormal (QN) frequencies change with the chemical
potential μ̃, we set c̃ ¼ 0 ¼ b̃. It is worth mentioning that in
this case the horizon function reduces to the Reissner-
Nordström AdS solution

g ¼ 1 −
�
1þ μ̃2

3

�
u4 þ μ̃2

3
u6: ð91Þ

One of the zeros of the equation gðuÞ ¼ ðu2 − u1Þðu2 −
u2Þðu2 − u3Þ ¼ 0 represents the location of the event
horizon, which we fix at uh ¼ 1 due to the normalization
we are working with (87). Then, the solutions are

u21¼1; u22¼
3−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ12μ̃2

p
2μ̃2

; u23¼
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ12μ̃2

p
2μ̃2

:

ð92Þ

As can be seen, u21 does not depend on the chemical
potential, while u22 is always negative for μ̃ > 0. Mean-
while, u23 > 1 for μ̃ > 0, while it becomes u23 ¼ 1 for
μ̃ ¼ ffiffiffi

6
p

, and u23 < 1 for μ̃ >
ffiffiffi
6

p
. For that reason, we

restrict our numerical analysis to the region where
μ̃ ≤

ffiffiffi
6

p
. This means that the horizon lies at uh ¼ 1.

Our numerical results for q̃ ¼ 1 are displayed in Table II.
We point out that the results for μ̃ ¼ 0 are in agreement
with those results obtained in Ref. [63]. As can be seen, the
real part of the frequency decreases with the increasing of
the chemical potential in the region of small values for the
chemical potential; then, it increases with the increasing of

TABLE II. The quasinormal frequencies of the longitudinal sector for selected values of the chemical potential for q̃ ¼ 1, c̃ ¼ 0, and
b̃ ¼ 0. The results for μ̃ ¼ 0 are equivalent to those of Ref. [63].

n μ̃ ¼ 0 μ̃ ¼ 0.01 μ̃ ¼ 0.1

0 �1.1478314 − 0.5592036i �1.1478256 − 0.5592051i �1.1472503 − 0.5593576i
1 �1.9100059 − 1.7580648i �1.9099775 − 1.7580789i �1.9071552 − 1.7594740i
2 �2.9032931 − 2.8916809i �2.9032453 − 2.8917233i �2.8984967 − 2.8959528i
3 �3.9285553 − 3.9433859i �3.9284951 − 3.9434557i �3.9225172 − 3.9504090i
4 �4.9468182 − 4.9651851i �4.9467456þ 4.9652802i �4.9395555 − 4.9747681i

n μ̃ ¼ 0.2 μ̃ ¼ 0.3 μ̃ ¼ 0.5

0 �1.1455051 − 0.5598240i �1.1425904 − 0.5606158i �1.1332155 − 0.5632753i
1 �1.8985348 − 1.7637362i �1.8839332 − 1.7709573i �1.8350724 − 1.7950779i
2 �2.8839215 − 2.9090645i �2.8589691 − 2.9319886i �2.7723821 − 3.0169965i
3 �3.9042584 − 3.9721219i �3.8733809 − 4.0107026i �3.7734185 − 4.1623459i
4 �4.9177089 − 5.0045069i �4.8812902 − 5.0577870i �4.7755298 − 5.2719366i
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the chemical potential. However, the ground and first two
states deserve an additional comment. As can be seen in
Fig. 10, there is a new mode whose real part starts to grow
up at approximately μ̃ ≈ 0.637. It grows up rapidly and
crosses the ground state; however, it is not clear if this mode
crosses or stays below the first state (see the left panel of
Fig. 10). In turn, the imaginary part always increases with
the increasing of the chemical potential (see the right panel
of Fig. 10).
The hydrodynamic frequency has an imaginary part

different from zero, ω̃ ¼ −3.2506370i, which is also in
agreement with the result of Ref. [63] for μ̃ ¼ 0. The
dependence of the hydrodynamic frequency with chemical
potential deserves an additional analysis. Our numerical
results for this frequency considering selected values of the
chemical potential are displayed in Table III. As can be
seen, the frequency increases with the increasing of the
chemical potential. However, at μ̃ ≈ 0.637, it seems that the
hydrodynamic mode merges with a new mode coming from
above; see the right panel of Fig. 10. It is also worth
mentioning that a family of purely imaginary modes shows
up in the spectrum. They have a characteristic behavior,
decreasing with the increasing of the chemical potential,
and are purely imaginary; see the right panel of the same
figure. This kind of behavior was previously observed in
the literature; see, for instance, Ref. [78] (see also Ref. [79]
to see how this kind of mode behaves as a function of the
rotation parameter).

Let us now compare the analytic solution obtained in the
hydrodynamic limit, i.e., Eq. (61), against the numerical
solution. For μ̃ ¼ 0, we realized that the coefficient D ¼
πTð1 − e−cz

2
hÞ=ðczhÞ lies close to the unity when T ≥ Tmin

for the big black hole branch; see the blue line in the left
panel of Fig. 11. In turn, the coefficient D increases when
T ≥ Tmin for the small black hole branch; see the red line in
the left panel of Fig. 11. In turn, for μ ≥ μc, the diffusion
coefficient becomes zero in the limit of zero temperature;
then, it increases, converging to unity in the limit of high
temperatures where conformal symmetry must be restored;
see the blue line in the same figure. Meanwhile, the results
for the dispersion relation are displayed in the right panel of
Fig. 11, in which continuous lines represent analytic
results for the conformal (black line) and nonconformal
case (red line), while numerical solutions for the
conformal are represented by dashed black line, and non-
conformal are represented by dashed red. In the non-
conformal case, we fixed the parameters μ ¼ μc,
c ¼ 1.46 GeV2, b ¼ 0.273 GeV4, and T ¼ Tc. As can
be seen, in the nonconformal case, the frequency decreases.
It is also worth mentioning that the precision of the
numerical method gets poor in the nonconformal case.
We also calculated the quasinormal frequencies as a

function of the momentum. Our numerical results are
displayed in Fig. 12, in which black dots represent the
results obtained in the conformal case, while red squares
represent the results obtained in the nonconformal case. As
can be seen, the real part of the frequency increases when
we turn on the parameters, and we also observe that higher
states are more sensitive to the parameters than lower states.
In turn, the imaginary part decreases when we turn on the
parameters; again, higher states are more sensitive to the
parameters than lower states.

B. Transverse sector

Our starting point is the Schrödinger-like equation (27),
with the potential given by (29). First, we implement the
transformation ψα ¼ e−iωr�φ. Then, we replace the tortoise
coordinate and BT to get

FIG. 10. Left: the real part of the frequency as a function chemical potential. Right: the imaginary part of the frequency as a function of
the chemical potential. These results were obtained for q=ð2πTÞ ¼ 1 and c ¼ 0 ¼ b.

TABLE III. The hydrodynamic frequency for different values
of the chemical potential. These results were obtained consid-
ering q=ð2πTÞ ¼ 1 and c ¼ 0 ¼ b.

μ̃ ¼ 0 −3.2506370i
μ̃ ¼ 0.01 −3.2507627i
μ̃ ¼ 0.1 −3.2633614i
μ̃ ¼ 0.2 −3.3035845i
μ̃ ¼ 0.3 −3.3786204i
μ̃ ¼ 0.5 −3.7348719i
μ̃ ¼ 0.6 −4.2947702i
μ̃ ¼ 0.62 −4.5834402i
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ð4q2z2 þ 3gþ 4c2z4g − 2zg0 − 4cz3g0ÞφðzÞ
− z2ð8iωþ 4g0Þφ0ðzÞ − 4z2gφ00ðzÞ ¼ 0: ð93Þ

In the following, we normalize the variable and param-
eters as in (87). To solve the problem numerically, we also
need to calculate the asymptotic solutions close to the
horizon, u ¼ 1. Considering the ansatz φ ¼ ð1 − uÞα, then,
plugging it in the last equation, we get the solutions

α1 ¼ 0; α2 ¼ 4iω̃: ð94Þ

The first solution is interpreted as waves falling into the
black hole through the event horizon, while the second
solution represents waves coming out from the black hole
interior. Classically, nothing comes from the black hole
interior, and for that reason, we work with the first solution.
Then, the solution at the horizon reduces to a constant that
we can set to the unit.
Repeating the procedure close to the boundary, u ¼ 0,

considering the ansatz φ ¼ uβ, plugging into the differ-
ential equation, and solving the leading equation, we get the
solutions

β1 ¼ −
1

2
; β2 ¼

3

2
: ð95Þ

The first solution is interpreted as the non-normalizable (or
source), while the second is interpreted as the normalizable
[or vacuum expectation value (VEV)]. The QN frequencies
are solutions of the differential equation by imposing the
Dirichlet condition at the boundary, such that the poles of
the retarded Green’s functions correspond to the QN
frequencies; this means that we must neglect the non-
normalizable solution in (95). Thus, the last transformation
is given by φ ¼ u3=2ϕðuÞ, leading us to the final differential
equation

ð4q̃2u − 6iω̃þ c̃2u3g − ð2þ c̃u2Þg0ÞϕðuÞ
− ð4iω̃uþ 3gþ ug0Þϕ0ðuÞ − ugϕ00ðuÞ ¼ 0: ð96Þ

As a check of consistency, let us calculate the QN
frequencies setting μ̃ ¼ 0, c̃ ¼ 0, and b̃ ¼ 0. The problem
reduces to the case investigated in Ref. [63]. Our numerical
results for the frequencies are displayed in Table IV, for
μ̃ ¼ 0. As can be seen, the first four QN frequencies are in
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FIG. 11. Left: the diffusion coefficient as a function of the temperature; the colors correspond to the notation used in Fig. 2, and the
conformal case is represented by the horizontal dashed line. Right: the numerical (dashed lines) and analytic (solid lines) solutions for
the hydrodynamic frequency for μ ¼ 0 and c ¼ 0 ¼ b (black) and for μ ¼ μc, c ¼ 1.46 GeV2, b ¼ 0.273 GeV4, and T ¼ Tc (red).

FIG. 12. Left: the real part of the frequency as a function of the wave number. Right: the imaginary part of the frequency as a function
of the wave number. Black dots represent the results for μ ¼ 0 and c ¼ 0 ¼ b (conformal case), while red squares were obtained for
μ ¼ μc, c ¼ 1.46 GeV2, b ¼ 0.273 GeV4, and T ¼ Tc (nonconformal case).
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good agreement with the results displayed in the first table
of Appendix B in Ref. [63]. In turn, the fifth frequency is in
agreement up to the fourth decimal. It is worth pointing out
that the results of Ref. [63] were obtained using the
Frobenius method.

A plot of the real and imaginary parts of the frequency as
a function of the chemical potential is displayed in Fig. 13.
As can be seen, the real part decreases in the region of small
values of the chemical potential, reaches a minimum, and
then increases; see the top-left panel. This behavior is

TABLE IV. The quasinormal frequencies for selected values of the chemical potential for q=ð2πTÞ ¼ 1, c ¼ 0, and b ¼ 0. The results
for μ ¼ 0 are equivalent to those of Ref. [63].

n μ̃ ¼ 0 μ̃ ¼ 0.01 μ̃ ¼ 0.1

0 �1.5471870 − 0.8497232i �1.5471814 − 0.8497309i �1.5466297 − 0.8504960i
1 �2.3989034 − 1.8743432i �2.3988866 − 1.8743668i �2.3972277 − 1.8767126i
2 �3.3232289 − 2.8949008i �3.3231995 − 2.8949440i �3.3202938 − 2.8992378i
3 �4.2764313 − 3.9095832i �4.2763887 − 3.9096479i �4.2721793 − 3.9160847i
4 �5.2440583 − 4.9203464i �5.2440021 − 4.9204338i �5.2384548 − 4.9291372i

n μ̃ ¼ 0.2 μ̃ ¼ 0.5 μ̃ ¼ 1

0 �1.5449644 − 0.8528302i �1.5336234 − 0.8698423i �1.5010485 − 0.9401700i
1 �2.3922258 − 1.8839098i �2.3587417 − 1.9382540i �2.3025258 − 2.1792915i
2 �3.3115486 − 2.9124735i �3.2546584 − 3.0154195i �3.2350527 − 3.4380124i
3 �4.2595354 − 3.9360044i �4.1803200 − 4.0948307i �4.2135273 − 4.6768033i
4 �5.2218242 − 4.9561634i �5.1223650 − 5.1761809i �5.2107958 − 5.9057699i

n μ̃ ¼ 1.2 μ̃ ¼ 1.5 μ̃ ¼ 2

0 �1.4917208 − 0.9860494i �1.4946232 − 1.0638620i �1.5262256 − 1.1876869i
1 �2.3258501 − 2.3022563i �2.3822490 − 2.4727024i �2.5070989 − 2.7321848i
2 �3.2897756 − 3.6134830i �3.3970290 − 3.8642567i �3.6112874 − 4.2453557i
3 �4.2964798 − 4.9072267i �4.4515234 − 5.2357684i �4.7516006 − 5.7369090i
4 �5.3214206 − 6.1898699i �5.5227181 − 6.5960159i �5.9070037 − 7.2171368i

FIG. 13. Left: the real part of the frequency as a function of the chemical potential. Right: the imaginary part of the frequency as a
function of the chemical potential. These results were obtained setting q=ð2πTÞ ¼ 1, and c ¼ 0 ¼ b.
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shared by the real part of the other quasinormal frequencies.
Meanwhile, the imaginary part increases monotonically
with the increasing of the chemical potential; see the top-
right panel for the n ¼ 0 state and bottom-right panel for
the first six quasinormal frequencies. These results were
obtained considering q̃ ¼ 1 and c̃ ¼ 0 ¼ b̃. As mentioned
above, we restrict our results to the region μ̃ ≤

ffiffiffi
6

p
where

the pseudospectral method provides reliable results.
Observing carefully the imaginary part of the frequency
in Fig. 13, we can see additional frequencies which are
purely imaginary. These frequencies decrease with the
increasing of the chemical potential.
Now, one can ask about the behavior of the quasinormal

frequencies when one turns on the parameters c ¼
1.46 GeV2 and b ¼ 0.273 GeV4. To see how the quasi-
normal frequencies change in the nonconformal case, we
also consider the value of the chemical potential and
temperature as being μ ¼ μc ¼ 0.708 GeV and
T ¼ Tc ¼ 0.559 GeV, respectively. Our numerical results
for the real part of the frequency are displayed in left panel
of Fig. 14 and for the imaginary part of the frequency are
displayed in right panel of Fig. 14. In this figure, black dots
represent the results for conformal symmetry case, while
red squares represent the results for nonconformal case. As
can be seen, the real part of the frequency increases, while
the imaginary part decreases when we turn on the param-
eters of the model. Note that lower states are less sensitive
to the parameters than higher states. It is also worth
mentioning that the precision of the numerical results gets
poor when we increase the value of the parameters μ, c,
and b.

IX. CONCLUSION

In this paper, we investigated the melting of charmonium
in a holographic model describing heavy quark-antiquark
systems [46]. The holographic model provides a fit of
charmonium masses at zero temperature. For investigating
the finite temperature behavior of these states, a black hole

was embedded in the gravitational background. In this way,
we wrote the perturbation equations in the Schrödinger-like
form. This analysis allows us to investigate how the
potential well is deformed by the temperature and chemical
potential, which is interpreted as the melting/dissociation
process. To complement the analysis, we calculated the
spectral functions, where peaks are interpreted as the
quasiparticle states. We show that the height and width
of the peaks are affected by the temperature and chemical
potential. These results represent the dissociation of the
charmonium states in the finite density plasma. By com-
paring spectral functions for different temperatures and
values of the chemical potential, we observed that the
chemical potential speeds up the melting process.
In the second part of this paper, we solved the

perturbation equations in the hydrodynamic limit. By
imposing Dirichlet condition at the boundary, we calcu-
lated the dispersion relations. By comparing the
dispersion relation obtained in the longitudinal sector
against the dispersion relation obtained in fluid dynam-
ics, we were able to read off the diffusion coefficient.
We also showed that the dispersion relation of the
longitudinal sector is related to the pole of the
CR
ttðω; qÞ retarded function in the dual field theory.

Then, we calculated the quark number susceptibility
following two approaches. The first approach considers
the retarded function CR

ttðω; qÞ in the limit of zero wave
number and frequency. The second approach considers
the baryon density and its derivative. The quark number
susceptibility does not blow up at the critical end point
in the first approach, while in the second, it does. The
explanation for this apparent discrepancy is that in the
first approach one considers the matter action that was
introduced as probe fields, while in the second
approach, the quark number susceptibility is obtained
from the background equations. This result suggests to
us that considering probe fields for describing the
mesons maybe is not enough to extract full information
of the dual field theory.

FIG. 14. Left: the real part of the frequency as a function of the wave number. Right: the imaginary part of the frequency as a function
of the wave number. Black dots represent the results for μ ¼ 0 and c ¼ 0 ¼ b (conformal case), while red squares were obtained for
μ ¼ μc, c ¼ 1.46 GeV2, b ¼ 0.273 GeV4, and T ¼ Tc (nonconformal case).
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In the last part of this paper, we solved the perturbation
equations numerically using the pseudospectral method.
Imposing the ingoing condition at the horizon and Dirichlet
at the boundary, we obtained a discrete set of complex
frequencies. In the longitudinal sector, we observed very
interesting results when we fixed the momentum and
varying the chemical potential considering also the param-
eters c ¼ 0 ¼ b. The hydrodynamic mode increases with
the chemical potential up to some value of the chemical
potential where it merges with a mode whose frequency
decreases with the increasing of the chemical potential; see
the right panel of Fig. 10. This new mode has a real part
arising at exactly the same value of the chemical potential
where the hydrodynamic mode merges with this mode.
This kind of behavior was previously observed in the
literature and is interpreted as a double pole in the retarded
Green’s function [80]. We found additional frequencies
which are purely imaginary, and they decrease with the
increasing of the chemical potential. In turn, we also
calculated the QN frequencies as a function of the wave
number in the conformal and nonconformal limits. The real
part of the frequency increases when we compare results
obtained in the conformal case, i.e., c ¼ 0, b ¼ 0, and
μ ¼ 0, against results obtained in the nonconformal case,
i.e., c ≠ 0, b ≠ 0, and μ ≠ 0, while the imaginary part
decreases when we compared the conformal case against
the nonconformal case. These conclusions can be extended
for the transverse sector, where the quasinormal frequen-
cies do not bring any new information.
Finally, it would be interesting to investigate how the

results obtained in this paper are affected by magnetic field
or angular momentum [81,82]. We also are interested in the
transport coefficients, which are obtained in the hydro-
dynamic limit. For example, we believe that the diffusion
coefficient will be affected by the rotation parameter in the
same form as obtained in Ref. [78]. These problems and
further extensions will be addressed in the future.

ACKNOWLEDGMENTS

The authors would like to acknowledge Song He,
Alfonso Ballon Bayona, and Alex Miranda for discussions
throughout the development of this work. They also thank
the referee for valuable suggestions. L. A. H. M. is partially
founded by the Universidade Estadual da Região Tocantina
do Maranhão (UEMASUL, Brazil). D. F. H. is supported in
part by the National Natural Science Foundation of China
(NSFC) under Grants No. 11735007, No. 11890711,
and No. 35111890710. N. R. F. B. is partially supported
by CNPq—Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico Grant No. 307641/2015-5, by
FAPERJ—Fundação Carlos Chagas Filho de Amparo á
Pesquisa do Estado do Rio de Janeiro and by Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior—Brasil
(CAPES)—Finance Code 001.

APPENDIX: CHARMONIUM SPECTRUM

Introducing the Fourier transform on the gauge field, it
transforms as Aνðxμ; zÞ → Aνðkμ; zÞ. The resulting equation
may be written in the Schrödinger-like form using the
transformation Aν ¼ ξνe−Bψ , where ξν is a polarization
vector and 2B ¼ ln ðf=ζÞ, and the resulting equation is

−∂2zψ þ Vψ ¼ m2ψ ; ðA1Þ

where we have replaced□ → m2, the mass of the particles,
and V is the potential given by

V ¼ ð∂zBÞ2 þ ∂
2
zB: ðA2Þ

As the background was already fixed, we may solve the
eigenvalue problem using a shooting method, for example.
It is worth pointing out that the ratio f=ζ does not depend
on the parameter b, and for that reason, the spectrum is
insensitive to this parameter. Thus, in this case, the problem
has an analytic solution given by

m2
n ¼ 4cðnþ 1Þ; n ¼ 0; 1; 2;…: ðA3Þ

In the sequence, we fix the free parameter by fitting
our formula with the first two resonances of the exper-
imental data 3686.109� 0.012 MeV and 4039� 1 MeV;
thus, we get c ¼ 1.46 GeV2. We decided to fix the
parameter in this wave to avoid the lightest states. The
numerical results of the spectrum compared against
the results of Ref. [46] and experimental data are displayed
in Table. V.
Here, we presented the asymptotic solutions of the

differential equations. Let us start with the model at zero
temperature. Plugging the warp factor and kinetic function
(8) in (23), the potential of the Schrödinger-like equation
becomes

V ¼ 3

4z2
þ c2z2: ðA4Þ

As can be seen, the spectrum does not depend on the
parameter b. Plugging the potential in the Schrödinger-like

TABLE V. The mass of the heavy vector mesons (in MeV)
obtained in the holographic model, compared against the holo-
graphic model [46] and experimental results from the Particle
Data Group [58].

n
Model c ¼
1.46 GeV2

Model c ¼
1.16 GeV2 [46]

Quarkonium experimental
[58] (MeV)

0 2420 2154 3096.916� 0.011
1 3422 3046 3686.109� 0.012
2 4191 3731 4039� 1
3 4839 4421� 4
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equation (22) and considering the ansatz, ψ ¼ zα, close to
the boundary, we get the solution

ψ ¼ c1z−1=2 þ c2z3=2: ðA5Þ

As we are looking for normalizable solutions of the
eigenvalue problem, we set c1 ¼ 0.
In turn, in the IR regime, the asymptotic solution may be

obtained considering the leading term of the potential; thus,
solving the Schrödinger-like equation, we get

ψ ¼ c3e−cz
2=2: ðA6Þ

As the background does not have any singular behavior in
the intermediate region, we conclude that the solutions

of the Schrödinger-like equation are regular and
normalizable.
On the other hand, the problem changes at finite temper-

ature. At the horizon, the potential is zero due to gðzhÞ ¼ 0.
Then, the Schrödinger-like equations have the asymptotic
solution

ψk ¼ Cke−iωr� þDkeþiωr� ; ðk ¼ x1; x2; x3Þ: ðA7Þ

Considering the parameter c ¼ 1.46 GeV2, we calculate
the wave functions. Our numerical results are displayed in
the left panel of Fig. 15, while the right panel shows the
wave functions for c ¼ 1.16 GeV2 calculated in Ref. [46].
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