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We study the perturbation due to rotating shockwaves in Banados-Teitelboim-Zanelli geometries at late
times and analyze the change in mutual information between the two subsystems belonging to the dual
CFTL and CFTR. We find that the scrambling of mutual information is in general governed by the
Lyapunov index λL which is bounded by κ ¼ 2π

βð1−μLÞ ≥
2π
β , where μ ¼ r−=rþ and L is the angular

momentum of the shockwave. For the special case of L ¼ 1 we find the mutual information analytically
and show that it is characterized by λL ¼ κ=2 with the scrambling time for large black holes given as

t� ¼ βð1−μÞ
π log S.

DOI: 10.1103/PhysRevD.105.126019

I. INTRODUCTION

In recent times quantum chaos has been used as an
important tool to understand novel qualitative features in
quantum gravity via holography. The phenomena of
quantum chaos emerges in the study of how initial
perturbations grow and disrupt entanglement between
different subsystems of a large N thermal quantum system
]1 ]. This is reflected in what is known as the “scrambling
time” t� in which the mutual information between two
subsystems is disrupted substantially due to a perturbation
of a few degrees of freedom. In systems which exhibit fast
scrambling, the rate of growth of this perturbation is
exponential, with black holes being amongst the fastest
scramblers of this early perturbation [2–5]. The index of
this exponential behavior in time is termed as the Lyapunov
index λL and in large N thermal systems λL is found to be
bounded by the temperature of the system [6]. This bound
constrains the maximum value that λL can attain at any
instant of time as the perturbation grows in the system,
while the eventual growth of the perturbation until the
scrambling time depends on observable which is being
studied. One usually computes λL by computing the out of
time ordered correlators (OTOCs) [6,7] or by computing
the perturbations in the mutual information IðA∶BÞ
between two subsystems in the theory [8–11]. It is
important to note that the later provides an upper bound

on the correlators of the theory [12].1 It was found that for
the case of Schwarzschild black holes in AdS3 that λL is
indeed the temperature of the black hole [8,13] thus
validating the conjecture that black holes are among the
fastest scramblers of infallen information. This along with
the study of the simple 1d strongly coupled solvable SYK
model [14,15] and Jackiw-Teitelboim (JT) gravity as the
near horizon effective gravitational action for near extremal
black holes [16,17] has led to a flurry of activity especially
in understanding the entropic black hole information para-
dox and contributions from wormholes to the gravity path
integral cf. [18–21].
Rotating black hole geometries in anti–de Sitter (AdS)

correspond to a boundary conformal field theory (CFT)
with a fixed temperature TH and chemical potential μ, thus
the bound investigated in [6] does not apply. For the case of
rotating black holes in AdS3 it was found that λL can be the
greater of the two temperatures in the CFT2 [10,22,23].
This also lead to an analysis [7] of the arguments in [6] in
the presence of chemical potential μ for globally conserved
charge which also found that the instantaneous Lyapunov
exponent to be bounded by

λL ≤
2π

βð1 − μ=μcÞ
; ð1:1Þ

where μc is the maximum value attainable by μ. It was
additionally found [24–26] that the OTOC in rotating
Banados-Teitelboim-Zanelli (BTZ) had a scrambling time
governed by the smaller of the two temperatures of the
CFT2 with the growth in OTOC exhibiting a sawtooth
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pattern where for small timescales λL was found to be
greater of the two temperatures. This does not seem to
contradict the results in [7] as the arguments of [6,7] only
constrain λL and not its average, which may govern the
scrambling time. The scrambling time for large (fast
scrambling) systems at temperature TH typically is
expected to scale with the degrees of freedom of the
system i.e., t� ∼ 1

TH
logS which can be parametrically larger

than the dissipation time of the system tdis ¼ T−1
H .

Therefore simply determining the instantaneous value of
λLð∼THÞ can only constrain t� from above.
The computation of OTOCs in the bulk essentially

involves knowing the bulk to boundary propagators in a
desired black hole background and therefore is only feasible
in locally AdS3 geometries [13,27]. On the other hand,
measuring scrambling via disruption of mutual information
between two subsystems in the left and right CFTs in a
thermofield double (TFD) state involves computing relevant
Ryu-Takayanagi [28,29] or the covariantized Hubeny-
Ranganmani-Takayanagi (HRT) surfaces [30] [8–10]. See
also [30–34] for the use of RT and HRT surfaces in
holography. For the case of rotating BTZ this was essen-
tially done in the bulk in [10] by utilizing embedding
coordinates to write down a perturbed BTZ background.
This method cannot be utilized in higher dimensions as once
again only global AdS (or patches of it) can be described in
terms of embedding coordinates. It would be useful to
understand the results of [10,22,23] and [24–26] in terms of
the setup described in [8] which uses a shockwave to perturb
a Schwarzschild black hole. This setup has the advantage of
understanding the Lyapunov index due to the blueshift
suffered by the infalling shockwave and the subsequent
change in the black hole’s geometry at late times via
knowing the Dray-’t Hooft solution [35,36].
We investigate how a generic BTZ background can be

perturbed by a shockwave originating in the past from one
of the boundaries with a nonzero angular momentumL. We
then compute the disruption of mutual information IðA∶BÞ
between two intervals to discern the Lyapunov index and
scrambling time when analytical solutions are possible. The
essential physics of scrambling can be explained by the
blueshift of the infalling quanta of energy E ∼ E0eκt0 as
seen by the boundary observer at late times at t ≫ t0. As
this perturbation grows it disrupts the fine-tuned entangle-
ment of the left and right CFTs specifying the TFD state.
For static geometries κ ¼ 2π

β and does not depend on the
angular momentum of the perturbation.2 However for
rotating geometries we find

κ ¼ 2π

βð1 − μLÞ ð1:2Þ

which essentially depends on both the angular momentum
L (per unit energy) of the perturbation and the horizon
velocity μ ¼ r−=rþ of the black hole. This is similar to the
bound proposed in [7], i.e., the rhs of (1.1). It is known that
L has to lie within a range determined by the black hole’s
M, J in order to start at the boundary and end up in its
interior. For the case of BTZ this range is given by [37]

2rþr−
r2þ þ r2−

≤ L ≤ 1: ð1:3Þ

The dependence of κ or the blueshift suffered by an
infalling quanta of energy with angular momenta L in
rotating geometries has not been investigated in the context
of chaos in black holes. We find that for the case of L ¼ 1

the scrambling time is governed by a λL ¼ κ=2 where κ ¼
2π

βð1−μÞ with μ ¼ r−=rþ, thus implying that for μ > 1=2 the

disruption of mutual information happens at a rate gov-
erned by λL > 2π

β even for late times. The methods of [8]
were applied for the case of rotating BTZ in [38] where it
was concluded that the scrambling time for rotating black
holes is governed by an exponent λL ¼ TH as in [8]. This
result can be regarded as a special case of our result for
L ¼ 0. However we do comment on the contrasting
technique used here for computing the shockwave solutions
in rotating geometries in Sec. II B. The equivalent CFT2

computation in [10] determines both scrambling time and
λL to be controlled by the smaller of the two temperatures in
CFT2, however one can easily observe that it could also
have been controlled by the larger of the two temperatures
if the location of perturbation were to change with respect
to the entangling surface; cf. Sec. II B of this paper.
The analysis of the OTOCs in rotating BTZ [24,25] and

its CFT dual [26] essentially find that scrambling time is
governed by the smaller of the two temperatures associated
with the boundary CFT even though the instantaneous λL
could be the greater of the two temperatures. In contrast, we
find that if one were to measure the scrambling of mutual
information between large enough subsystems belonging to
the left and the right CFTs of the TFD state by rotating
shockwaves then the scrambling time is clearly found to be
greater than the temperature of the black hole. This does not
seem to contradict any of the computations in the literature
measuring OTOCs as a measurement of entanglement
entropy is nonlocal in its nature. We find that our results
are consistent with the bound (1.1) found in [7].
The paper is summarized as follows: In Sec. II we review

the essential setup of the computation by Shenker and
Stanford [8] and also briefly review the result of [38] which
attempts to do the same in rotating BTZ. In Sec. III we
construct Kruskal coordinates along null geodesics with
nonzero angular momentum L and find that the blueshift at
the outer horizon at t ¼ 0 associated to the infalling null
particle released in the far past at t0 from the boundary is

2Here we are assuming that the angular momentum is small
enough for the perturbation to fall into the black hole.
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E ∼ E0eκt0 ; κ ¼ 2π

βð1 − μLÞ ≥
2π

β
; ð1:4Þ

where μ ¼ r−=rþ and 1 ≥ L ≥ 2μ=ð1þ μ2Þ. We also con-
struct the Dray-t’Hooft solution due to such a shockwave
resulting from an axisymmetric shell of null particles. We
analyze the case for a single null particle in an Appendix. In
Sec. IVwe compute and analyze the change in IðA∶BÞ due to
the shell of null particles at late times and find that in general
λL < κ. We are able to analytically solve for IðA∶BÞ for the
case L ¼ 1wherein we find λL ¼ κ=2, which can be greater
than the black holes temperature when μ > 1=2. As ana-
lytical solutions are obtained we also see that the scrambling
time is indeed given by t� ∼ 2

κ logS. This also includes
extremal case of μ ¼ 1. We plot IðA∶BÞ numerically to
show that for certain cases with 2π=β < κ=2 < λL < κ. We
conclude with discussions in Sec. V.

II. NONROTATING SHOCKWAVES IN AdS3

The shockwave computation of [8] can be easily summa-
rized for the case of nonrotating BTZ. The basic idea is to
imagine the Kruskal extension of the eternal black hole with
the two boundaries forming the thermofield double (TFD)
(CFTL ⊗ CFTR) state. The black hole in the bulk is an
entangledTFDstate of theboundaryCFT.This entanglement
can bemeasured by themutual information between any two
subregions of the boundary CFT (each for CFTL and CFTR)
by using the Ryu-Takayangi prescription. This basically
implies measuring the extremal area of a codimension 2
surface homologous to the two boundary subregions. When
the subregions are large enough, the extremal surface in the
bulk traverses from one boundary to the other. The Shenker-
Stanford computation then simply measures the time taken
by a shockwave emanating in the past to grow in time in the
bulk and perturb this minimal area.
The computation then can roughly be demarcated into

two parts: Computation of the metric in response to the
shockwave setup in the distant past, and computing the
geodesic distances in nonrotating BTZ with and without the
shockwave background. The Lyapunov index λL is then
read off by observing the growth of this perturbation as it is
regarded to scramble the entanglement between the two
CFTs. We begin by expressing the Schwarzschild metric in
Kruskal coordinates which are suitable for describing
infalling (out-going) null trajectories:

ds2

l2
¼ dr2

fðrÞ−fðrÞdt2þ r2dϕ2; with fðrÞ ¼ r2− r2þ

¼−4dUdVþ r2þð1−UVÞ2dϕ2

ð1þUVÞ2
with U¼−e−κu; V ¼ eκv and u; v¼ t� r�;

r� ¼
Z

dr
fðrÞ ¼

1

2rþ
log

�
r− rþ
rþ rþ

�
; κ¼ rþ: ð2:1Þ

Here κ ¼ 2π=β is the temperature of the black hole and is
obtained in order to define affine coordinates fU;Vg at rþ.
The shockwave metric is quite a simple one if the Kruskal
coordinates are known [35,36]. One then needs to solve the
Einstein’s equation

Rμν −
1

2
Rgμν þ Λgμν ¼ 4πGNTμν;

Tμν ¼ TUU ∼ δðUÞδd−2ðϕ − ϕ0Þ: ð2:2Þ

It turns out that the stress tensor on the right can be
absorbed into the left (i.e., the above equation would look
like vacuum Einstein’s equation) if we just shifted

V → Ṽ ¼ V þ hðϕ − ϕ0ÞΘðUÞ; ð2:3Þ

where hðϕÞ- a function of transverse coordinates; solves a
Laplace(like) equation with a source. The analysis of
Shenker and Stanford [8] assume a spherically symmetric
shockwave, therefore the response hðϕÞ ∼ 1 due to spheri-
cal symmetry.
In the rest of our article, we would be working with the

Kruskal extension of the black hole’s spacetime. The left
exterior of the spacetime is characterized by U > 0 and
V < 0 and vice versa for the right with the boundaries at
UV ¼ −1 and the singularities at r ¼ 0 implied by
UV ¼ 1. The flow of time on the left boundary is down-
wards whereas it is upwards on the right boundary with the
horizontal spacelike surface passing through the bifurcate
point defining t ¼ 0 on both boundaries. We would refer to
the shockwave released from the left boundary at t > 0
with U ¼ const as being released from the past as com-
pared to the system on the right boundary.
Let the shockwaveemanateat sometime t0 at theboundary

r → ∞. Therefore themetric before and after the shockwave
is given by the Kruskal coordinates fU;Vg and fŨ; Ṽg
respectively and is of the form (2.1). The shockwave being
null would be parametrized by (r� → 0 as r → ∞)

U¼−e−κt0 ; Ũ¼−e−κ̃t0 and r̃þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MþE
M

r
rþ ð2:4Þ

in the two coordinates with κ̃ denoting the change in the
horizon due to infallen shockwave andE being the energy of
the shockwave at the boundary. One then demands that the
line element along the spherical shockwave is continuous:

rþ

�
1 − UV
1þUV

�
¼ r̃þ

�
1 − Ũ Ṽ

1þ Ũ Ṽ

�
: ð2:5Þ

Expanding the above equation for E=M → 0 and t0 → ∞
yields3

3One needs to keep α fixed as this limit is taken.
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Ṽ ¼ V þ α; α ¼ E
4M

erþt0 : ð2:6Þ

Therefore the perturbation grows as t0 → ∞ with the
exponent being rþ ¼ κ, i.e., the surface gravity or the
temperature of the black hole.
One then computes the change in the mutual information

IðA∶BÞ between equal angular intervals A in CFTL andB in
CFTR. In order to have a nonzero unperturbed IðA∶BÞ the
angular intervals are less than π. It is then found that the
change in IðA∶BÞ is given by

IðA∶BÞ ¼ SA þ SB − SAB

¼ l
GN

�
log sinh

πϕ

β
− logð1þ αÞ

�
; ð2:7Þ

where SAB is the sum of the lengths of the two geodesics
traversing the two boundaries of the TFD state in the bulk.
The Lyapunov index λL can be easily read off from the t0
dependence of IðA∶BÞ using (2.6) for large black holes:

IðA∶BÞ ∼ l
GN

�
log sinh

πϕ

β
− κt0 þ log

M
E0

�
: ð2:8Þ

The scrambling time is also determined accordingly to be
proportional to κ−1 ¼ β=2π.
It becomes quite clear that the essential feature relevant to

finding the Lyapunov index is the first part of the

computation, in that one merely needs to compute the time
required for the perturbation in the bulk due to the shockwave
to grow exponentially in time. Thiswas also used byShenker
and Stanford to predict the Lyapunov index in arbitrary
higher dimensional AdS-Schwarzschild geometries.4

A. Rotating BTZ

The above computation was generalized for rotating
BTZ by Reynolds and Ross [38]. The BTZ metric is

ds2

l2
¼ dr2

fðrÞ − fðrÞdt2 þ r2
�
dϕ −

rþr−
r2

dt

�
2

with

fðrÞ ¼ ðr2 − r2þÞðr2 − r2−Þ
r2

: ð2:9Þ

The authors of [38] then choose to redefine

φ ¼ ϕ −
r−
rþ

t ð2:10Þ

which corotates the boundary with the horizon’s angular
velocity thus yielding

ds2

l2
¼ dr2

fðrÞ − fðrÞdt2 þ r2
�
dφþ r−ðr2 − r2þÞ

rþr2
dt

�
2

:

ð2:11Þ

Going to Kruskal coordinates implies

ds2

l2
¼ −4dUdV − 4r−ðUdV − VdUÞdφþ ½r2þð1 −UVÞ2 þ 4UVr2−�dφ2

ð1þ UVÞ2

with U ¼ −e−κu; V ¼ eκv; u; v ¼ t� r�; r� ¼
1

2κ
log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2−

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2−

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2−

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2−

p
!

and κ ¼ r2þ − r2−
r2þ

¼ 2π

β
; ð2:12Þ

where κ is indeed the temperature of the BTZ black hole
and repeating the Shenker-Stanford analysis in the above
coordinates yields λL ≤ κ ¼ 2π=β for cases where analyti-
cal solutions are possible to study IðA∶BÞ.

B. Possible caveats

CFT2 has two temperatures β−1� (one for each: left moving
and right moving)5 and therefore two different λLs. This was

shown in [10,22,23] using variousmethods. Here the authors
were primarily concerned with computing out of time
ordered correlators (OTOCs) in CFT2. Therefore the above
result of [38] seems to be at odds with these results.
Particularly the analysis in [10] does compute the change
in IðA∶BÞ via two methods: (1) in the CFT2 using the
prescription of twist operators to compute IðA∶BÞ in a TFD
being perturbed by an operator ψ ; and (2) a corresponding
bulk analysis where the perturbation due to ψ on rotating
BTZ is obtained by mapping the global AdS3 metric
perturbed by a massive particle at its origin. This is possible
because of the enhanced symmetries of lower dimensional
AdS3, i.e., locally AdS3 metrics having no local degrees of
freedom.

4Here, in Appendix A of [8] the authors only compute the
backreaction due to an infalling shockwave in Schwarzschild
AdS.

5Note βþβ−
2π ¼ β ¼ 2π

rþð1−μ2Þ ; β� ¼ 2π
rþð1∓μÞ, where μ ¼ r−=rþ.
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In the first approach the author of [10] finds the lower of
the two temperatures governing the Lyapunov index and
the scrambling time, however it becomes apparent from the
analysis that the other (higher) temperature could similarly
be obtained by choosing a different placement for the
perturbation relative to the entangling intervals. We explain
this briefly here with reference to Sec. 2 of [10]. The work
in [10] analyzes the perturbation due to an operator ψ on
the mutual information between two identical intervals
½y; yþ L� for y > 0 in CFTL and CFTR in a TFD state with
unequal left (antiholomorphic) and right (holomorphic)
moving temperatures, i.e., β− ≠ βþ. Here y is the spatial
coordinate and the operator ψ is located at yw ¼ 0 and time
−tw < 0. Furthermore, the entanglement entropy is mea-
sured for times t > tw. The holomorphic and antiholomor-
phic contributions can be analyzed separately and are
controlled by their respective cross ratios. The result is
analyzed as t increases from tþ tw < y to y < tþ tw <
yþ L to late times y < tþ tw. As this happens the
antiholomorphic cross ratio z̃—sensitive to β−—stays close
to 1, while the holomorphic cross ratio z—sensitive to βþ—
flips sign thus capturing the effect of the perturbation at late
times.6 This is the essential reason for βþ appearing in the
perturbed mutual information as against β−. This can be
easily reversed by placing the perturbation ψ at yw > yþ L
instead of y > yw ¼ 0, i.e., right of the entangling surface
(as depicted in Fig. 1 in [10]) as against the left. One would
then find that it is the antiholomorphic cross ratio that flips
its sign as one increases t thus making the perturbed mutual
information depend on β−. Therefore the CFT analysis
in [10] is consistent with the scrambling time being
controlled by

λL ¼ 2π

β−
> 2πTH: ð2:13Þ

This method in the second approach is finely tuned to only
work in AdS3 unlike the one described in [8] and cannot
offer insights as to what may happen in rotating AdS black
holes in higher dimensions. As the second method used in
[9,10] have a one-to-one map with the first, the change in
the placement of the operator ψ must also produce a λL >
2πTH and subsequently a scrambling time controlled by it.
We would next like to understand the coordinates used in

[38] better as they seem to lead to a result which is in
contradiction with [10]. As the analysis in [8] relies on
shockwaves produced by infalling null particles, care must
be taken to set up Kruskal coordinates which trace null
infalling geodesics. It is easily seen that the fU;Vg
coordinates used in (2.1) are indeed affine coordinates at
rþ and are along infalling null geodesics with zero angular

momenta outside the horizon. However, the fU;Vg coor-
dinates used in (2.12) are not along null geodesics; i.e.,
ξ ¼ ∂U (or ξ ¼ ∂V) are not vector fields along null geo-
desics. These however do furnish good Kruskal coordinates
as they are obtained embedding the coordinate description
of BTZ black holes. This can be seen from the fact that

ξμ∇μξ
α ¼ 0 only at r ¼ rþ: ð2:14Þ

Therefore they can be used to extend the coordinates past
the horizon onto the other exterior of the Kruskal extension.
However, the above vector fields fail to satisfy the geodesic
equations infinitesimally outside the horizon. The analysis
of [8] requires one to take the limit of the shockwave
solution as the perturbation approaches the horizon. It is
precisely this timescale involved in reaching the outer
horizon from the boundary and the subsequent blueshift
involved that gives rise to the effect of scrambling of mutual
information. A similar analysis for nonrotating BTZ in [9]
does ensure this. Therefore the null coordinates in (2.12)
used in [38] are not suited for obtaining the Dray-’t Hooft
solution. The result of the scrambling time and Lyapunov
index as seen in [38] comes from the exponent used in
defining the null coordinates (2.12) which as we shall see in
the next subsection can also be obtained by working with
null geodesics with zero angular momentum, cf. (3.5). Note
that it is not that the coordinates (2.12) are the problem but
the fact that the Dray-’t Hooft solution was obtained by
working with trajectories which are not null geodesics in
[38]. The geodesic equation is coordinate invariant. One
could have very well worked with the coordinates (2.12)
but then the Dray-’t Hooft solution utilizing null geodesics
would subsequently appear cumbersome.
It is also important to note that for rotating geometries one

needs to consider null geodesics with nonzero angular
momentum in order to describe null particles released from
the AdS boundary and falling into the rotating black hole’s
singularity. In particular we note that in [37] it was demon-
strated that for rotating BTZ, at unit energy the null geodesic
must have positive angular momenta L bounded by7

1 ≥ L ≥
2μ

1þ μ2
; μ ¼ r−

rþ
: ð2:15Þ

In the next section we set up coordinates along infalling null
geodesics with arbitraryL and define correspondingKruskal

6We refer the reader to comments above Eq. (2.21) in Sec. II C 1
and above Eq. (2.40) in Sec. II C 3 in [10] for the explicit behavior
of the cross ratios.

7As 2μ
1þμ2

> μ ≥ 0; ∀ μ ∈ ½0; 1� therefore a nonrotating null
geodesic in the corotating coordinates (2.10) having L ¼ 0
cannot start from the boundary and fall into the black hole.
However, since we would be working in the limit of late times
since the release of the perturbation, we only ought to approxi-
mate the trajectory by a null geodesic at late times; that is ideally
we need to look at timelike trajectories falling in from the
boundary with angular momenta L which tend to null geodesics
at late time as it passes through the horizon. It is reasonable to
expect that the lower bound on L is relaxed.
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coordinates fU;Vg by demanding them to be affine at rþ.
We would then set up the Dray-t’Hooft solution in these
coordinates for shockwaves with the same value of L as is
required according to the setup described in [8].

III. ROTATING SHOCKWAVES

In this section we first set up coordinates along infalling
null rotating geodesics which are affine at the outer
horizon. We then set up the Dray-t’Hooft solution for null
rotating shock-waves with the same angular momentum L.
We do this for a single null particle and for a thick shell of
null particles which is axisymmetric. We also compute the
backreaction for both of them in terms of the time t0 (or
τ0 ¼ t0 − Lϕ0) in the far past of the left boundary.

A. Affine coordinates

We would like to compute the blueshift and the back-
reaction at late times associated to a null rotating shock
wave with angular momenta L. We would be interested in
those values of L for which the null geodesic is able to
reach the singularity from the boundary of AdS. For the
case of BTZ geometries this implies [37]

1 ≥
L
E
>

2μ

1þ μ2
; μ ¼ r−

rþ
; ð3:1Þ

where E is the energy of the geodesic.
The shockwave computations of Shenker-Stanford for

nonrotating BTZ and that of [38] yield κ as the λL. This
comes about because of the way the Kruskal coordinates
are constructed out of ft; r�g. The reason why fU;Vg
coordinates are exponentially related to fu; vg via the index
κ has to do with the fact that fU;Vg are affine coordinates
at the horizon.
The choice of coordinates depends on the trajectory of the

particlewhich for late enough times is approximated by a null
geodesic. Indeed the coordinate system set about a non-
rotating null geodesic for a Schwarzschild black hole is the
Kruskal coordinatefU;Vg used above in [8]. The blueshift is
then simply determined by defining coordinates fU;Vg that
are affine at the required region, in this case the (near)
horizon. Therefore we first need to set up coordinates about
rotating null geodesics in rotating BTZ. We first define the
vector ξμ∂μ along an arbitrary null geodesic with energy E
and angularmomentumL defined along thekilling vectors of
the rotating geometry ζE ¼ ∂t and ζL ¼ ∂ϕ:

ξ2 ¼ 0; gμνξμζνE ¼ E; gμνξμζνL ¼ L

⇒ ξ ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðE2 − L2Þ þ LðLðr2þ þ r2−Þ − 2rþr−EÞ

q
∂r þ

E −NL
fðrÞ ∂t þ

ð1 − ðr2þ þ r2−Þ=r2ÞL −NE
fðrÞ ∂ϕ: ð3:2Þ

This also implies that thevector ξ is affine i.e., ξ · ∇ξμ ¼ 0. To describe themetric alongnull vector fieldsweneed todefineboth
in-going and out-going null geodesics. One can be obtained from the other by reversing the direction of the geodesic,8 i.e.,
E → −E andL → −L. We denote this pair as ξ� and note that themetric can be expressed in terms of the line elements dual to
these vector fields for unit energy (E ¼ 1)

ds2BTZ ¼ FðrÞξþμ dxμξ−ν dxν þ hðrÞðdϕþ h̃1ðrÞdτÞ2
¼ FðrÞdudvþ hðrÞðdϕþ h̃1ðrÞdτÞ2

where ξ� · dx ¼ dr� � dτ; and u ¼ r� − τ; v ¼ r� þ τ; τ ¼ t − Lϕ;

r� ¼
Z

∞

r

dr
rfðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð1 − L2Þ þ LðLðr2þ þ r2−Þ − 2rþr−Þ

q
;

FðrÞ ¼ ðr2 − r2þÞðr2 − r2þμ2Þ
r2ð1 − L2Þ þ r2þðLð1þ μ2Þ − 2μÞ : ð3:3Þ

Here r� is the relevant tortoise coordinate for such a coordinate along rotating null geodesics. As can be checked the light-cone
coordinates fu; vg are not affine, i.e., χu · ∇χμu ¼ Kχμu for χu ¼ ∂u; similarly for χv ¼ ∂v. Note ∂u is not the same as ξþ but is
indeed proportional to ξþ, i.e., χu ¼ Fξþ. This in turn implies

K ¼
���� 12 ξ� · ∂F

����: ð3:4Þ

8The change in the sign of E reverses infalling to out-going while the change in the sign of L is simply due to time reversal.
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We can now define affine coordinates fU;Vg at the horizon by

U ¼ −eκu; V ¼ eκv; where κ ¼ Kjrþ ¼ rþð1 − μ2Þ
ð1 − μLÞ ¼ 2π

βð1 − μLÞ : ð3:5Þ

The above coordinates capture the right exterior defined byU < 0 < V. The left exteriorU > 0 > V is obtained by reversing
the signs offU;Vg. This is the analogofKruskal coordinates as seenby a null particle falling into theblackholewith an angular
momentumL.We see that for nonrotatingBTZ (μ ¼ 0), κ is theblack hole’s temperature for any value ofL. Themetric can then
be written in terms of the above coordinates as

ds2 ¼ F
κ2UV

dUdV þ h

�
dzþ h1

2κUV
ðUdV − VdUÞ

�
2

;

with z ¼ ϕ − μt; τ ¼ t − Lϕ; ð3:6Þ

where the functions F, h and h1 depend only on r via UV.
The choice of z is forced by demanding that h1=UV be finite
asU → 0 (or V → 0). The instantaneous angular coordinate
of the particle zp falling alongU ¼ U0 is given by vanishing
of the transverse direction in (3.6):

dzp þ h1ðU0VÞ
dV
2κV

¼ 0

as h1 →
U0→0

0 ⇒ dzp →
U0→0

0: ð3:7Þ

We note its value as U0 → 0 for later purposes. The fact
h1 !

U0→0
0 can be seen as a consequence of having the

transverse line element finite at the horizon [cf. (3.9)].
We mention the blueshift along rotating geodesics for

Reissner-Nordstrom AdS4 (RN-AdS4) and Kerr-AdS4 in
Appendices B and C respectively as preliminary results of
ongoing work [39].

1. Tortoise close to the horizon

It would be useful that we have a relation between the
Boyer-Lindquist and tortoise coordinates close to the
horizon for later purposes. We note that the relation
(3.4) using (3.3) can be written as

K ¼ 1

2
gr�r�ξ�r�∂r�F ⇒ ∂r� logFjrþ ¼ 2κ: ð3:8Þ

Expanding F to linear order at the horizon rþ we have9

FðrÞ ∼ ðr − rþÞF0ðrþÞ ¼ −4κ2e2κr� ¼ −4κ2UV: ð3:9Þ

This allows us to express ðr − rþÞ in terms of the
combination UV. This relation can be further used in

FðrÞ ∼ ðr − rþÞF0ðrþÞ þ
1

2
ðr − rþÞ2F00ðrþÞ ð3:10Þ

to obtain the value of

∂UV

�
FðrÞ
κ2UV

�����
rþ

¼ 16κ2

F0ðrþÞ2
F00ðrþÞ ð3:11Þ

which would be used later for computing the backreaction
to a shock wave.

2. Blueshift

An intuitive argument to understand the result of [8] is to
compute the blueshift seen by an infalling null particle as a
function of the time t0 at which it was released into the bulk
with infinitesimally small energy E0:

E ∼ E0e
2π
β t0 : ð3:12Þ

The Lyapunov index and the time taken to disrupt a
nonzero mutual information between the two CFTs in a
TFD state is then found to be governed by this time
dependence. We try to understand this intuition by com-
puting the blueshift suffered by a null particle falling into
the black hole with arbitrary angular momentum L.
For an infalling particle along the affine coordinate V the

trajectory is defined by U ¼ U0 and initial angular coor-
dinate ϕpjr¼∞ ¼ ϕ0. This is most easily obtained by noting
that the light-cone coordinates close to the horizon fu; vg
and that on the boundary are related by a Rindler trans-
formation (3.5). For this we only need to analyze the light-
cone directions of the metric and note that close to the
boundary the metric in the fu; vg directions is of the form

ds2 ¼ 1

ϵ2
dudv; ð3:13Þ

where ϵ → 0 defines the boundary. The same is true of the
metric written in terms of the affine coordinates at the
horizon, i.e.,

9Note that for F
κ2UV dUdV in (3.6) to be finite atU → 0, Fjrþ has

a zero ofOðr−rþÞ as can be seen from (3.3). It is the coefficient of
this zero that determines the relation between r andUV in the near
horizon.
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ds2 ¼ dU dV ð3:14Þ

while the metric at the horizon written in terms of fu; vg
vanishes as FðrþÞ ¼ 0. Therefore the affine coordinates at
the horizon represent the Minkowski coordinates similar to
those at the boundary. In other words we ought to work
with those sets of coordinates which are smooth at the
horizon. The blueshift at the horizon can be hence read off
from the Rindler transformation (3.5) relating the fU;Vg to
the fu; vg coordinates. If the null momentum of the particle
in the affine frame is E0kV then we have

Epkv ¼
E0

κV
kV; ð3:15Þ

thus the boosted energy Ep at the horizon along U ¼ U0 is

Ep ¼
E0

κV

����
U0

¼ E0e−2κτ

U0

¼τ¼0E0eκτ0 ; with κ ¼ 2π

βð1− μLÞ :

ð3:16Þ

This has the expected 1=U0 ¼ eκτ0 behavior for the blue-
shift of the particle as it passes the t ¼ 0 slice when thrown

in at a time t0 ¼ τ0 þ Lϕ0 in the past from the right
boundary. The above result smoothly reproduces the results
expected for nonrotating black holes and nonrotating null
geodesics.
It is important to note that this value of κ is not simply an

artifact of having to work with fτ; zg instead of ft;ϕg, it is
physical as can be seen from the blueshift above and
survives the extremal limit for μ → 1;L → 1, in which
case κ ¼ 2rþ.
Given the above behavior of blueshift along null infal-

ling geodesics with angular momentum L we expect—like
in the analysis in [8]—that the backreacted metric must also
capture the dependence on κ at late times. The shockwave
solution at late times is obtained by using the Dray–’t Hooft
solution as seen next.

B. Shockwave solution

We next write down a shockwave solution for the metric
which suffers a backreaction owing to an infalling null
particle and a thick shell of null particles released in the far
past. For this we first note the Dray–’t Hooft solution for a
shockwave along the infalling affine coordinate V atU ¼ 0
is given by

ds2 ¼ F
κ2UV

dUdV þ h

�
dzþ h1

2κUV
ðUdV − VdUÞ

�
2

→ ds2 þ α
F

κ2UṼ
δðUÞfðzÞdU2;

where V → Ṽ ¼ V þ αfðzÞΘðUÞ; ∂V
F
UV

����
U¼0

¼ 0; ∂VhjU¼0 ¼ 0: ð3:17Þ

Here α is the energy of the shockwave measured locally. Here the transverse line element is not effected by the
diffeomorphism V → Ṽ as h1 vanishes at U ¼ 0 [due to our choice of z, cf. below (3.6)].

1. Single particle

We first write an anzatz for the metric with a null particle at U ¼ U0 ≠ 0:

ds2 ¼ F
κ2UV

dUdV þ h

�
dzþ h1

2κUV
ðUdV − VdUÞ

�
2

þ α
F

κ2UṼ
δðU −U0ÞfðzÞdU2;

where V → Ṽ ¼ V þ αfðzÞΘðU −U0Þ; ð3:18Þ

where U0 ¼ e−κτ0 and τ0 ¼ t0 − Lϕ0 defines the time and
space coordinate on the left boundary at which the null
particle is released. We expect the above metric to match
the metric (3.17) as we take U0 → 0, i.e., as τ0 → ∞. This
would correspond to sending in the shockwave at t ≫ 0
from the left boundary which corresponds to the far past
with respect to the right exterior. We determine α to be
demanding continuity in the transverse volume along the
shockwave

hðUVÞjU−
0
¼ hðUṼÞjUþ

0
: ð3:19Þ

We simplify the above condition in the limit

U0 → 0;
δrþ
rþ

→ 0;

with
δrþ
U0rþ

∼ finite; ð3:20Þ

where δrþ is the infinitesimal change in the outer horizon
rþ. We expect this change to be small and is equivalent to
demanding E0=M ∼ 0, E0 being the energy of the shock-
wave as measured at the boundary andM being the mass of
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the black hole. We thus get a relation between V and Ṽ in
this limit to be

Ṽ ¼ V þ δrþ
U0rþ

�
rþF0ðrþÞ

κ2

�
: ð3:21Þ

Comparing with the shift in V in (3.17) we note

αfðzÞ ∼ δrþ
U0rþ

: ð3:22Þ

It is worth pausing and noting the following facts: (a) The
shift in the outer horizon at late times only depends on z via
fðzÞ. (b) The shift in the V coordinate along the shockwave
at late times is independent of V and goes as 1=U0. The
precise nature of the relation between E0 and δrþ although
interesting would not effect the physics that concerns us.
We therefore write α as

α ¼ Eeff

U0

; ð3:23Þ

where Eeff ¼ j δrþrþ j ∼ E0

M with jj being the average over z.

The limit (3.24) is then equivalent to

U0 → 0; Eeff → 0; with
Eeff

U0

∼ finite: ð3:24Þ

Einstein’s equation can then be solved for backreaction
fðzÞ in the transverse direction

αδðU−U0ÞDfðzÞ¼ 4πGNTUU ¼Eeff

U0

δðU−U0Þδðz− zpÞ;

ð3:25Þ

where we absorb GN in the definition of Eeff as it defines
the energy scale with which we perturbed the system at late
times. The above equation constrains the backreaction in
the z direction given by the instantaneous location zp of the
null particle.
The position of the null particle is governed by vanishing

of the transverse line element dy ¼ ½dzþ h1dτ�. At late
times (U0 → 0) this implies (3.7), i.e.,

yp ¼ zp ¼ const: ð3:26Þ

Evaluating the line element dy in terms of the fdt; dϕg for
r → ∞; tconst implies

dypjr→∞;t ¼ ð1 − ð1 − μLÞh1ð1ÞLÞdϕ: ð3:27Þ

As the transverse position of the shockwave is always given
by dyp ¼ 0 we have

zp ¼ 1

1 − L2
ϕ0 ¼ z0; ð3:28Þ

where ϕ0 is the position of the shockwave as it starts out
from the boundary and h1ð1Þ is the value of h1 at the
boundary. Therefore we have

DfðzÞ ¼ δðz − z0Þ ð3:29Þ

wherein crucially there is no dependence on the time t0 ∼
log U0 at which the shockwave was sent in from the
boundary. We analyze the solution for the single particle
backreaction in the Appendix A.

2. Thick-thin shell

We next analyze the backreaction due to null particles
released from every point on the boundary simultaneously
at time t0 from the left boundary with angular momentum
L. This would imply a thick shell of null particles defined
by τsh ¼ ½t0; t0 − 2πL�; in terms of the Kruskal coordinates
we have

Ush ¼ ½U0; U0e2πκL�; U0 ¼ e−κt0 : ð3:30Þ

However we would be interested in releasing the particles
in the far past t0 → ∞, thus as U0 → 0 the thick shell in U
atUsh becomes a thin shell atU ¼ 0. Therefore at late times
we expect the metric to take the form (3.17) with fðzÞ ¼
const ∼ 1 as z is the comoving periodic coordinate and the
shockwave is present at every value of z. For intermediate
times we write down the metric due to the thick shell as

ds2 ¼ F
κ2UV

dUdV þ h

�
dzþ h1

2κUV
ðUdV − VdUÞ

�
2

þ α
F

κ2UV

�
ΘðU − U0e2πLκÞ − ΘðU −U0Þ

U0ðe2πLκ − 1Þ
�
dU2;

ð3:31Þ

where we can see that the quantity in the box brackets
above tends to δðUÞ as U0 → 0, in which case the metric
after the shock wave becomes

ds2 → ds2 ¼ F
κ2UV

dUdV

þ h

�
dzþ h1

2κUV
ðUdV − VdUÞ

�
2

þ α
F

κ2UṼ
δðUÞdU2;

where V → Ṽ ¼ V þ αΘðUÞ: ð3:32Þ

The smoothness of the transverse direction can similarly be
imposed across the thick shell to obtain the U0 dependence
of α. Like (3.19) this implies
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hðUVÞjU−
0
þ ΔhðUVÞjU−

0
¼ hðUṼÞjUþ

1
; ð3:33Þ

where U1 ¼ U0e2πLκ and ΔhðUVÞjU−
0
is the change in

hðU−
0VÞ due to change in Ush across the shell. Simplifying

the above matching condition in the limit (3.24) we find

Ṽ ¼ V þ δrþ
rþU0e2πκL

�
rþF0ðrþÞ

κ2

�
: ð3:34Þ

Comparing with (3.32) we find

α ∼
δrþ

rþU0e2πκL
∼
Eeff

U0

: ð3:35Þ

Here, like in the single particle case δrþ is the change in
outer horizon due to the collapsed shell and would be
proportional to the total energy E0 with which the shell
started out from the boundary.
The inverse dependence of α on U0 is the same as

expected from the blueshift of an infalling null particle at
late times. It is this dependence on κ via U0 ¼ e−κτ0 that
captures the required dependence of the backreacted
metric. However like in [8] this change is only perceptible
if one probes lengths across the future horizon from the
right exterior. Therefore RT surfaces measuring mutual
information between large enough subsystems in the left
and right dual CFTs should be sensitive to this κ ≥ 2π

β .

IV. MUTUAL INFORMATION

As described earlier we are going to compute the effect
of the shockwave on the holographic mutual information
between two subregions A and B, one on each boundary
CFT, i.e., let us say A is in CFTL and B is in CFTR. The
mutual information is an algebraic sum of entanglement
entropies SA, SB and SAB given as follows:

IðA∶BÞ ¼ SA þ SB − SAB: ð4:1Þ

In the context of AdS3=CFT2, the subregions are angular
intervals and each of the entanglement entropies are given
by the length of geodesic/geodesics homologous to the
corresponding interval. We will choose the intervals A and
B of equal length and take them large enough such that the
entanglement wedge of the subsystem AB is connected [if
the entanglement wedge is disconnected IðA∶BÞ ¼ 0] and
the geodesics corresponding to SAB traverse from one
boundary CFT to another. As these surfaces cross the
future horizon of the right exterior they will notice the
abrupt coordinate change at U ¼ 0 in V. Note that at late
times the RT surfaces/geodesics corresponding to the
subregions A and B are unaffected by the presence of
shockwaves and are given by

SA ¼ SB ¼ γAB
4GN

¼ l
4GN

log

�
4r20

ðr2þ − r2−Þ
sinh

�ðrþ þ r−ÞϕL

2

�
sinh

�ðrþ − r−ÞϕL

2

��
; ð4:2Þ

¼ c
6
log

�
β−βþ
π2ϵ2

sinh

�
πϕL

β−

�
sinh

�
πϕL

βþ

��
; ð4:3Þ

where ϕL is the angular length of the intervals A and B
which we have chosen to be the same and βþ; β− are the
left- and right-moving temperatures of the boundary CFT
and are related to rþ and r− as β� ¼ 2π

rþ�r−
. Note that in

order to arrive from the first line to the second we have
utilized the Brown-Henneaux [40] formula c ¼ 3l

2GN
and the

UV-IR relation r0 ∼ 1
ϵ where r0 is the bulk infrared cutoff

and ϵ is the UV cutoff of the boundary CFT.
We would also find it convenient to compute the mutual

information in terms of the comoving frame defined by
z ¼ ϕ − μt and τ ¼ t − Lϕ at the boundary. Since we
would be interested in computing IðA∶BÞ at a fixed time
t ¼ 0 at both boundaries we have δzL;R ¼ δϕL;R. This is
crucial as it is the z coordinate that is left unaffected by the

shockwave at late times. Therefore the expression (4.3)
holds true in the presence of a shockwave.

A. Computation of SAB
Let us now focus on the geodesic that traverses from

one boundary CFT to another through the bulk black hole
spacetime. Since AdS3 enjoys symmetries of a group
manifold, any BTZ geometry can be obtained from the
embedding coordinates in R2;2 describing a timelike
hyperbola −T2

−1 − T2
0 þ X2

1 þ X2
2 ¼ −l2 with l being the

radius of AdS3. Any BTZ metric is obtained by the R2;2

metric pulled back on this surface. The embedding
coordinates can be parametrized in terms of BTZ coor-
dinates as
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T0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ
r2þ − r2−

s
sinhðrþt − r−ϕÞ; T−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2−
r2þ − r2−

s
coshðrþϕ − r−tÞ

X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ
r2þ − r2−

s
coshðrþt − r−ϕÞ; X2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2−
r2þ − r2−

s
sinhðrþϕ − r−tÞ: ð4:4Þ

For any point close to the horizon the above embedding coordinates can be expressed in terms of fU;V; xg, where we use
(3.5), (3.6), and (3.9). At the horizon U ¼ 0 we have

T0 ¼ X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rþ

r2þ − r2−

s
κe−rþ

ðμ−LÞ
1−μLz

F0ðrþÞ
V; T−1 ¼ coshðzÞ; X2 ¼ sinhðzÞ: ð4:5Þ

We first find the geodesic distance from a point p∂R
¼ ðr; tR;ϕRÞ ≃ ðr; τR; zRÞ on the boundary at ðr → ∞Þ to a point

prþ ¼ ð0; V; zÞ on the horizon (U ¼ 0). This is

cosh

�dðprþ ;p∂R
Þ

l

�
∼

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2−

p �
coshðrþðzR − zÞÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rþ

r2þ − r2−

s
κerþ

μ−L
1−μLðzR−zÞe−κτLffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðrþÞ

p V

�
; ð4:6Þ

where we have kept only the divergent contribution as p∂R
→ ∂R. Similarly, the geodesic from the left boundary point

p∂L
¼ ðr → ∞; tR;ϕRÞ can be obtained by changing the signs of T0 and X1. This is

cosh

�dðprþ ;p∂L
Þ

l

�
∼

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2−

p �
coshðrþðzL − zÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rþ

r2þ − r2−

s
κerþ

μ−L
1−μLðzL−zÞe−κτRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðrþÞ

p ðV þ αfðzÞÞ
�
; ð4:7Þ

where we have shifted the V coordinate as this region falls in the past of the light cone of the null particle. For convenience
we take zR ¼ zL and τL ¼ τR. Extremizing with respect to V yields V ¼ − 1

2
αfðzÞ. This implies that the two lengths are

equal, and for large values of r for the boundary points, it is given by

dL þ dR
l

¼ 2 log

�
2

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2−

p �
þ 2 log

�
coshðrþðzL − zÞÞ þ erþ

μ−L
1−μLðzL−zÞ αe

−κτL

2
fðzÞ

�
; ð4:8Þ

where we have yet to extremize the intermediate point z at
the horizon. Here the second line captures the effect of the
shock wave. We next need to minimize

coshðrþðzL − zÞÞ þ erþ
μ−L
1−μLðzL−zÞ αe

−κτL

2
fðzÞ ð4:9Þ

for fðzÞ given in (A3) for a single particle and fðzÞ ¼ 1 for
the thick-thin shell. Here we have assumed without loss of
generality that the shockwave due to a single particle is
present at z0 at t ¼ 0. We also need to impose the
condition (3.1) on L for the shockwave as we would
be interested in only those null trajectories that can fall
into the black hole from the boundary. Therefore we
choose an L constrained by

1 ≥ L ≥
2μ

1þ μ2
ð4:10Þ

and then extremize with respect to z.

1. L = 1 shell

Analytic solutions can be easily found for the shell with
L ¼ 1. Equation (4.9) reduces to extremizing the following
expression:

coshðrþðzL − zÞÞ þ αe−κτL

2
e−rþðzL−zÞ ð4:11Þ

which implies erþðz−zLÞ ¼ ð1þ αe−κτLÞ−1=2. The length of
the traversing geodesic at tL ¼ 0ð⇒ τL ¼ κLzLÞ is then
given by
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⇒
dLþR

l
¼ 2 log

�
2rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þ − r2−
p �

þ 2 log
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ αeκLzL
p i

:

ð4:12Þ
B. Mutual information

We first analyze the change in IðA∶BÞ due to the shockwave shell with L ¼ 1. The mutual information for large enough
intervals is therefore

IðA∶BÞL¼1 ¼ SA þ SB − SAB

¼ l
2GN

log

�
sinh

�
πδϕ

β−

�
sinh

�
πδϕ

βþ

��
−

l
4GN

log ½ð1þ αeκLzL2 Þð1þ αeκLzL2 Þ�

with α ¼ Eeff

M
eκt0 ; δϕ ¼ ðϕL1

− ϕL2
Þ ¼ zL1

− zL2
at t ¼ 0: ð4:13Þ

Wewould like to compare this with the case originally studied by Shenker and Stanford [8] with μ ¼ 0 ¼ Lð⇒ κ ¼ 2π=βÞ
where mutual information is given by

IðA∶BÞμ¼0¼L ¼ l
GN

�
log sinh

�
πδϕL

β

�
− log½1þ α�

	

with α ¼ E0

M
eκt0 : ð4:14Þ

The Lyapunov exponent can be simply read off from the t0 dependence of IðA∶BÞμ¼0¼L for large black holes

IðA∶BÞμ¼0¼L∼SAþSB−
lκ
GN

t0− log
E0

M
⇒ λL ¼ κ¼ 2π

β
:

ð4:15Þ

The scrambling time is also determined by κ ¼ 2π=β in this
case. We see from (4.13) that

IðA∶BÞL¼1 ∼ SA þ SB −
lκ

2GN
t0 − log

Eeffe
κLðzL1þzL2 Þ

M

⇒ λL ¼ κ

2
¼ π

βð1 − μÞ : ð4:16Þ

Taking zL1
þ zL2

¼ 0, i.e., an interval equidistant from z ¼
0 and writing M ∼ S=β we have

t� ¼
βð1 − μÞ

π
log

S
βEeff

: ð4:17Þ

The scrambling time in this case is therefore determined by
κ=2 as Eeff ∼ E0 can be taken to be of the order of the black
hole’s temperature. We particularly note that for μ > 1=2
this is greater than the temperature of the black hole, i.e.,

L ¼ 1; μ >
1

2
⇒

κ

2
>

2π

β
: ð4:18Þ

Given the analysis in the previous section of how the
blueshift is determined by κ one would expect λL to be
bounded by κ and not κ=2. We can see this in the specific
example of μ ¼ 0, i.e., Schwarzschild black hole that
λLjL¼0 ¼ κ while λLjL¼1 ¼ κ=2 (4.14). Therefore one
may suspect that the Lyapunov index being half the
blueshift at the horizon may be related to peculiarities of
the geometry of the subsystem and L ¼ 1.
To analyze cases with L < 1 we would have to plot SAB

numerically as analytic solutions to finding minima of (4.9)
are not possible. For this we note that SAB ¼ logð1þ gðαÞÞ
where gðαÞ is some unknown function to be analyzed
numerically such that gð0Þ ¼ 0 as the geodesics traversing
the black holes would have zero lengths without the
perturbation. gðαÞ in particular is given by

gðαÞ ¼ kðzL1;αÞkðzL2
; αÞ − 1

kðzL; zÞ ¼ Minz

�
coshðrþðzL − zÞÞ þ erþ

μ−L
1−μLðzL−zÞ αe

κLzL

2

�
:

ð4:19Þ

Since mutual information is given by
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IðA∶BÞ ¼ l
2GN

½SA þ SB − logð1þ gðαÞÞ� ð4:20Þ

therefore λL would be given by the highest power of α in the
function gðαÞ. For example, gðαÞ ∼ α2 implies λL ¼ κ as in
the case for μ ¼ 0 ¼ L, while gðαÞ ∼ α implies λ ¼ κ=2 as
in the L ¼ 1 case. Plotting α∂α log g we find for certain
cases (Fig. 1)

κ

2
<

2π

β
< λL < κ

or
2π

β
<

κ

2
< λL < κ ð4:21Þ

i.e., we do find that the Lyapunov index is greater than the
temperature but bounded by κ. There are also values of
parameters which imply λL < 2π=β; in Fig. 1 we have only
shown the plots for cases where it is greater than the
temperature.
To determine the scrambling time one also needs to

know how the coefficient of the exponentially growing
term depends on the black hole parameters. More specifi-
cally it would be required to know its dependence on the
black hole’s entropy. Since this coefficient, i.e., that of the
highest power of α in gðαÞ, cannot be determined as a

function of black hole parameters we cannot estimate how
the scrambling time for IðA∶BÞ scales with t0 for generic L.

V. CONCLUSION AND DISCUSSION

We have analyzed the effect of rotating shockwaves on
mutual information between the left and right CFTs in a
TFD state dual to a generic eternal BTZ black hole. We
learn that in general the Lyapunov index is bounded by the
blueshift seen along the shockwave which is the greater of
the 2 two temperatures of the dual CFT2. For the case with
L ¼ 1 we are able to solve for the mutual information at
late times analytically and we find that λL ¼ κ=2, which for
μ > 1=2 is greater than the temperature of the black hole.
For this case we also see that the scrambling time is indeed
given by t� ∼ 2

κ log S. This conclusively shows that at large
timescales the disruption of mutual information can be
governed by the temperatures greater than that of the
system’s temperature depending upon the perturbation.
We have also plotted the values of the Lyapunov index
where analytical solutions are not possible and find that λL
is bounded by κ and not κ=2 or the black hole’s
temperature.
Our results seem to obey the bound (1.1) computed in [7]

which is applicable to rotating geometries in holographic

FIG. 1. Plots in blue for different values of μ and L such that 1 > L ≥ 2μ=ð1þ μ2Þ. Here the y axis measures 2λL=κ, therefore the line
at y ¼ 2 (orange) implies λL ¼ κ while y ¼ 1 implies λL ¼ κ

2
(red) and at y ¼ 2ð1 − μLÞ implies λL ¼ 2π=β (brown). The ranges of α on

the x axis are such that SAB ≤ SA þ SB and hence are different for different values of parameters. From top left clockwise:
rþ ¼ 35; μ ¼ 0.45;L ¼ 0.75;ϕL1

¼ π;ϕL2
¼ π=4; rþ ¼ 25; μ ¼ 0.5; L ¼ 0.8; ϕL1

¼ π; ϕL2
¼ π=2; rþ ¼ 30; μ ¼ 0.6; L ¼ 0.88;

ϕL1
¼ π;ϕL2

¼ π=2; rþ ¼ 35; μ ¼ 0.55;L ¼ 0.84; zL1
¼ π;ϕL2

¼ π=4.
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theories as the Maldacena-Shenker-Stanford bound [6]
holds only for nonrotating geometries. Our results are also
consistent with the similar CFT2 computations done in [10]
as explained in Sec. II B. Note that although the results of
[38] can be regarded as a special case of our analysis with
L ¼ 0, the technique used there to obtain the shockwave
solution seems to be at odds with our analysis cf. Sec. II B.
The four-point. OTOCs computed for rotating geometries
in [24–26] find that the scrambling time is governed by the
smaller of the two temperatures; this does not seem to
contradict our findings here as entanglement entropy is
inherently nonlocal in its nature.
It is nonetheless interesting to juxtapose the results of

this paper with earlier works which have computed 4pt.
OTOCs in extremal [24] and nonextremal BTZ [25,26] for
longer timescales. The authors in these works found that
although momentarily λL is the greater of the two temper-
atures of the dual CFT2, the OTOC decreases at a rate
primarily controlled by the smaller of the two temperatures.
It is important to point out that the analytic arguments used
in [6] for large N thermal QFT and its generalization to
include chemical potential in [7] do not in any way restrict
the behavior of λL averaged over large timescales but only
the instantaneous value of λL. In other words there is no
universal bound on the average of λL other than the one
imposed by it instantaneous value. The results summarized
above indicate that the long time behavior of chaotic
dynamics crucially depends upon the type of perturbation
used to instigate the change along with the quantity being
measured. Pole-skipping is yet another measure of chaotic
phenomena [27,41–47] and it would be interesting to see if
it can be used to deduce information about chaos in higher
dimensional black holes, cf. [27] for attempts at under-
standing pole-skipping and OTOCs in Kerr-AdS4. We also
point out the pole-skipping computed for rotating BTZ in
[46] does see a λL� ¼ 2π=β� consistent with [22,23].
The JT model describes an effective gravitational theory

for near horizon dynamics of large near extremal black holes
[16,17] which captures the chaotic behavior characterized by
λL ¼ 2π=β. This being obtained from dimensional reduction
to two dimensions from higher dimensional near extremal
black holes seems to be sensitive to only those chaoticmodes
which correspond to λL ¼ 2π=β. For the case of BTZ this
corresponds to the lower of the temperatures of the CFT2.
The JT model as described in [16,17] cannot explain the
chaotic behavior characterized by the larger of the two CFT2

temperatures especially since this temperature does not
vanish at extremality. For black holes in AdSd>3 there has
not been any direct calculation of scrambling or the
Lyapunov index except for via the JT model [48–50]. As
evident fromour analysis in the present article, if the intuition
that λL is generally bounded by the blueshift seen by an
infalling null trajectory holds true even in higher dimensions
then we can expect that λL ≤ 2π=β for RN and
Schwarzschild black holes. It would be interesting to

understand a similar computation for scrambling of infallen
information in Kerr-AdS which is a work we leave for the
near future. The JT model arising in the near horizon region
of near extremal Kerr in four and five dimensions were
investigated in [51] and later in [52,53] and were found to
have many interesting nonuniversal features. The Lyapunov
index was also computed in three dimensional flat geom-
etrieswith a cosmological horizonboth byusing shockwaves
and the dual Galilean CFT and was found to be the temper-
ature associated with the horizon [54]. It would be also
interesting to investigate a possible effective lower dimen-
sional gravitational theory like the JTmodel explaining these
chaotic modes which at least for the case of rotating BTZ
gives rise to fast scrambling even at zero temperature. The
butterfly velocity is the spread of this disruption in the
transverse coordinates and has interesting physics contained
in it, cf. [24,55]. It would be interesting to probe these issues
for rotating geometries in a similar manner.
Recently subleading bounds on chaos were investigated

in [56,57] where if the Lyapunov exponent—as defined by
first subleading correction in GN (or 1=c)—saturates the
chaos bound then analyticity of OTOCs places bounds on
similar exponents occurring in the subsequent subsublead-
ing orders. It would be interesting to understand these
bounds in terms of mutual information wherein the sub-
leading corrections to the RT and the HRT surfaces are
given by the generalized quantum extremal surfaces
[58,59]. These surfaces have lead to the resolution of the
entropic black hole information paradox [20,60,61]. It
would be very interesting to understand how a shockwave
triggered by infinitesimal infalling quanta at very late times
effects the generalized quantum extremal surface.
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APPENDIX A: SINGLE PARTICLE
BACKREACTION

Here we note the backreaction due to a single particle for
completeness. The backreaction in the transverse direction
for a single null particle is captured by fðzÞ obeying (3.29).
Here the differential operator D is of the form

A∂2z þ B∂z þ C; ðA1Þ

where the coefficients are given in terms of finite quantities
at the horizon f F

UV ; ð F
UVÞ0; h; h1

UV ; κg:
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A ¼ −
�

F
κ2UV

��
1

2h

�
; B ¼ h1

κUV
; C ¼ 2κ2UV

F

��
F

κ2UV

�
2

− 4hh21 þ
�

F
κ2UV

�0�
;

where atrþ∶
�

F
κ2UV

�
¼ −4; h ¼ rp2;

h1
κUV

¼ −4ðμ − LÞ
rþð1 − μLÞ3 ;�

F
κ2UV

�0
¼ 16κ2F00ðrþÞ

F0ðrþÞ2
¼ 8ð1 − μLÞð1 − 4L2Þ: ðA2Þ

As z ¼ ðϕ − μtÞ, at fixed t, z has a periodicity of 2π. Therefore we express the solution to (3.29) as

fðxÞ ¼
X∞
n¼−∞

einðz−zpÞ

−An2 þ iBnþ C
¼ ð2πiÞ

I
ewðz−zpÞ2πdw

ðAw2 þ Bwþ CÞðe2πw − 1Þ

¼ 2π

ðwþ − w−Þ
�
−

ewþðz−zpÞ

ðe2πwþ − 1Þ þ
ew−ðz−zpÞ

ðe2πw− − 1Þ
�

with w� ¼ rþ

�
μ − L
λ3

�
� rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 8L3μþ L2

�
5

λ6
− 8

�
þ 2Lμ

�
1 −

5

λ6

�
þ 5

μ2

λ6

s

¼ �
ffiffiffi
2

p
rþ; for μ ¼ L ¼ 0; ðA3Þ

where λ ¼ ð1 − μLÞ, and w� solve Aw2 þ Bwþ C ¼ 0. It
is important to note that this backreaction in the transverse
direction at late times is again independent of U0.

APPENDIX B: RN-AdS4

One can similarly analyze affine coordinates for rotating
shockwaves for charged static black holes in higher
dimensions. We note here the resulting κ close to the
horizon of a Reissner-Nordström black hole in AdS4 for a
generic null shockwave with arbitrary L as in the previous
case. The metric for RN-AdS4 in Boyer Lindquist coor-
dinates takes the form

ds2RN ¼ dr2

fðrÞ2 − dt2fðrÞ2 þ r2ðdθ2 þ sin2 θdϕ2Þ2

where fðrÞ ¼ 1 −
2M
r

þ 4πQ2

r2
þ r2: ðB1Þ

We then find infalling and out-going null geodesic vector
fields ξ� · ∂ by solving (3.2) for the above metric. Here we
take the ξθ component to be zero as the geometry is
spherically symmetric. We then write the metric in terms of
the line elements along these null vector field pairs like
(3.3) as

ds2RN ¼ FðrÞdudvþ hðrÞ sin2 θðdϕþ h1ðrÞdtÞ2 þ r2dθ2:

ðB2Þ

Defining K as in (3.4) and evaluating it at the outer horizon
we find

κ ¼ Kjrþ ¼
���� 12 ξ�:∂F

����
rþ

¼ 2π

β
: ðB3Þ

Therefore we find that rotating null geodesics see the same
extrinsic curvature at the horizon as nonrotating ones, i.e.,
the temperature of the RN-AdS4. One can easily see that the
analysis is essentially dimension independent.

APPENDIX C: Kerr-AdS4

The above analysis can be similarly repeated for Kerr-
AdS4 by taking into account an additional conserved
charge Q—the Carter’s constant—associated with the
Killing-Yano tensor for a null geodesic:

ξμKμνξ
ν ¼ Q: ðC1Þ

Wemention here that the κ computed at the outer horizon is
independent of Q and the polar coordinate θ but like in the
rotating BTZ case depends on L and can be greater than its
temperature 2π=β. We postpone the analysis of perturbation
of mutual information in Kerr-AdS4 for the near future [39].
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