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We perform a manifestly covariant quantization of a Weyl-invariant (i.e., a locally scale-invariant) scalar-
tensor gravity in the extended de Donder gauge condition (or harmonic gauge condition) for general
coordinate invariance and a new scalar gauge for Weyl invariance within the framework of the BRST
formalism. We show that choral symmetry, which is a Poincaré-like IOSpð8j8Þ supersymmetry in the case
of Einstein gravity, is extended to a Poincaré-like IOSpð10j10Þ supersymmetry. We point out that there is a
gravitational conformal symmetry in quantum gravity and account for how conventional conformal
symmetry in a flat Minkowski space-time is related to the gravitational conformal symmetry. Moreover, we
examine the mechanism of the spontaneous symmetry breaking of the choral symmetry, and show that the
gravitational conformal symmetry is spontaneously broken to the Poincaré symmetry and the correspond-
ing massless Nambu-Goldstone bosons are the graviton and the dilaton. We also prove the unitarity of the
physical S matrix on the basis of the BRST quartet mechanism.
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I. INTRODUCTION

There is no question that symmetry plays the central role
in both elementary particle physics and quantum gravity.
For instance, in Yang-Mills theory it has been found that we
have a non-Abelian gauge symmetry and that this sym-
metry gives rise to physically significant effects, such as
asymptotic freedom and quark confinement.
It is well known that there are two kinds of symmetries in

nature: global symmetry and gauge symmetry. In order to
understand nature more deeply, it is necessary to under-
stand the meaning of both symmetries. The meaning of
global symmetry is clear in the sense that it operates on
physical observables in a direct manner and shows the real
symmetry of a physical system. On the other hand, the
meaning of gauge symmetry is more elusive than that of
global symmetry since it does not operate on physical
observables directly. To treat gauge symmetry properly in
quantum field theory, it is essential to fix the gauge
symmetry by a suitable gauge condition, and consequently
physical observables are defined as BRST-invariant oper-
ators. Thus, it is sometimes said that gauge symmetry is a
redundancy in the mathematical description of a physical
system rather than a property of the system itself.

Another important property of symmetries is that many
global symmetries are not exact, but rather only approxi-
mate, whereas gauge symmetry is exact. For instance, there
is a clear prediction of violation of baryon and lepton
numbers by a quantum anomaly in the standard model. This
fact is also supported by the theory of quantum gravity. In
particular, when a black hole evaporates at the quantum
level the baryon and lepton numbers are not conserved,
whereas gauge quantum numbers such as electric and
magnetic charges are precisely conserved since they are
measured by the flux integrals at infinity.
Thus, if a certain global symmetry plays a critical role in

physics, it must be promoted to a gauge symmetry. This
statement holds in particular when constructing theories
involving quantum gravity. In our previous work [1], we
presented a quantum theory of globally scale-invariant
gravity with a real scalar field, which is equivalent to
the well-known Brans-Dicke gravity [2], by constructing its
manifestly covariant BRST formalism. Since many studies
of Brans-Dicke gravity have been limited to a classical
analysis, our theory has provided us with some useful
information on the quantum aspects of Brans-Dicke grav-
ity. Indeed, based on this quantum gravity we have
elucidated a mechanism of how scale invariance is sponta-
neously broken, and consequently how a massless “dila-
ton” emerges thanks to the Nambu-Goldstone theorem in
quantum gravity [1,3]. Then, it is natural to generalize our
formulation to the case of locally scale-invariant (or,
equivalently, Weyl-invariant) scalar-tensor gravity and
ask if we can get some useful knowledge about the
quantum aspects of the theory.
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In this article, we perform a manifestly covariant BRST
quantization of Weyl-invariant scalar-tensor gravity with a
real scalar field in addition to the metric tensor field,
investigate the remaining global symmetries and their
spontaneous symmetry breaking, prove the unitarity of the
S matrix, and elucidate that there exists a gravitational
analog of conformal symmetry in our theory. Long ago, in
pioneering work by Nakanishi [4,5], on the basis of the
Einstein-Hilbert action in the de Donder gauge (harmonic
gauge) for a general coordinate transformation (GCT), it was
shown that there remains a huge residual symmetry—which
is a Poincaré-like ISOpð8j8Þ supersymmetry called “choral
symmetry”—in addition to the BRST symmetry and GLð4Þ
symmetry, etc. In our present formulation, adopting the
extended de Donder gauge condition for the GCT and a
new scalar gauge condition for the Weyl transformation,
the choral symmetry is extended to a Poincaré-like
ISOpð10j10Þ supersymmetry, which includes the scale
symmetry and gravitational special conformal symmetry.
It is of interest that, as in a flat Minkowski space-time, both
the scale symmetry and special conformal symmetry are
spontaneously broken, and not only is the dilation a Nambu-
Goldstone boson for the scale symmetry, but its derivative
also provides a Nambu-Goldstone boson for the special
conformal transformation.
The paper is organized as follows. In Sec. II we discuss a

general gravitational theory for which there are two local
symmetries: the general coordinate invariance and the Weyl
symmetry. We point out that in such a theory we must
choose a gauge-fixing condition for the GCT carefully in
such a way that it does not violate the Weyl symmetry, and
similarly a gauge-fixing condition for the Weyl trans-
formation should be selected in order not to break the
GCT. In Sec. III, beginning with Weyl-invariant scalar-
tensor gravity [6], we fix the GCT and the Weyl trans-
formation by the extended de Donder gauge and the new
scalar gauge conditions, and construct a gauge-fixed,
BRST-invariant quantum Lagrangian. In Sec. IV we cal-
culate various equal-time (anti)commutation relations
(ETCRs) among the fundamental fields, in particular, the
Nakanishi-Lautrup auxiliary field and the Faddeev-Popov
(FP) ghosts. In Sec. V we derive the ETCRs involving the
gravitational field. In Sec. VI we prove the unitarity of the
physical S matrix by means of the BRST quartet mecha-
nism. In Sec. VII we show that there is a choral symmetry
—which is an IOSpð10j10Þ supersymmetry—in our
theory. In Sec. VIII we point out the existence of a
gravitational conformal symmetry even in quantum gravity,
and we investigate its spontaneous symmetry breaking in
Sec. IX. The final section is devoted to a discussion.
Two appendices are included for technical details. In

Appendix A a derivation of the equation for the bρ field is
given, and in Appendix B we account for the relationship
between the gravitational conformal symmetry and conven-
tional conformal symmetry.

II. CONSISTENCY BETWEEN TWO BRST
SYMMETRIES

We wish to perform a manifestly covariant BRST
quantization of a gravitational theory that is invariant under
both a GCT and Weyl transformation or, equivalently, a
local scale transformation. To take a more general theory
into consideration, without specifying the concrete expres-
sion of the gravitational Lagrangian density, we start with
the classical Lagrangian density1

Lc ¼ Lcðgμν;ϕÞ; ð2:1Þ

which includes the metric tensor field gμν and a scalar field
ϕ as dynamical variables.2 We assume that Lc does not
involve more than first-order derivatives of the metric and
matter fields.
We have a physical situation in mind where we fix the

general coordinate symmetry and Weyl symmetry by
suitable gauge conditions. It is a familiar fact that after
introducing the gauge conditions, instead of two local
gauge symmetries, we are left with two kinds of global
symmetries, which are called the BRST symmetries. The
BRST transformation δB corresponding to the GCT is
defined as

δBgμν ¼ −ð∇μcν þ∇νcμÞ
¼ −ðcα∂αgμν þ ∂μcαgαν þ ∂νcαgμαÞ;

δBg̃μν ¼ hð∇μcν þ∇νcμ − gμν∇ρcρÞ;
δBϕ ¼ −cλ∂λϕ; δBcρ ¼ −cλ∂λcρ;

δBc̄ρ ¼ iBρ; δBBρ ¼ 0; ð2:2Þ

where cρ and c̄ρ are the FP ghost and antighost, respec-
tively, Bρ is the Nakanishi-Lautrup (NL) field, and we have
defined g̃μν ≡ ffiffiffiffiffiffi−gp

gμν ≡ hgμν. For later convenience, in
place of the NL field Bρ we introduce a new NL field
defined as

bρ ¼ Bρ − icλ∂λc̄ρ; ð2:3Þ

and its BRST transformation reads

δBbρ ¼ −cλ∂λbρ: ð2:4Þ

1We follow the notation and conventions of Ref. [7]. Lower-
case greek (μ; ν; � � �) and Latin letters (i; j; � � �) are used for space-
time and spatial indices, respectively; for instance, μ ¼ 0, 1, 2, 3
and i ¼ 1, 2, 3. The Riemann curvature tensor and Ricci tensor
are defined by Rρ

σμν ¼ ∂μΓ
ρ
σν − ∂νΓ

ρ
σμ þ Γρ

λμΓλ
σν − Γρ

λνΓλ
σμ and

Rμν ¼ Rρ
μρν, respectively. The Minkowski metric tensor is

denoted by ημν; η00 ¼ −η11 ¼ −η22 ¼ −η33 ¼ −1 and ημν ¼ 0
for μ ≠ ν.

2It is straightforward to add the other fields, such as gauge
fields and spinors.
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The other BRST transformation δ̄B corresponding to the
Weyl transformation is defined as

δ̄Bgμν ¼ 2cgμν; δ̄Bg̃μν ¼ 2cg̃μν;

δ̄Bϕ ¼ −cϕ; δ̄Bc̄ ¼ iB; δ̄Bc ¼ δ̄BB ¼ 0; ð2:5Þ

where c and c̄ are the FP ghost and antighost, respectively,
and B is the NL field. Note that the two BRST trans-
formations are nilpotent, i.e.,

δ2B ¼ δ̄2B ¼ 0: ð2:6Þ

To complete the two BRST transformations, we have
to fix not only the GCT BRST transformation δB on
c; c̄, and B, but also the Weyl BRST transformation
δB on cρ; c̄ρ, and bρ. It is easy to determine the former
BRST transformation since the fields c; c̄, and B are all
scalar fields, so their BRST transformations should take
the form

δBB¼−cλ∂λB; δBc¼−cλ∂λc; δBc̄¼−cλ∂λc̄: ð2:7Þ

On the other hand, there is an ambiguity in fixing the latter
BRST transformation, but we would like to propose a
recipe for achieving this goal. The recipe is to just assume
that the two BRST transformations anticommute with each
other, that is,

fδB; δ̄Bg≡ δBδ̄B þ δ̄BδB ¼ 0; ð2:8Þ

which requires us to take

δ̄Bbρ ¼ δ̄Bcρ ¼ δ̄Bc̄ρ ¼ 0: ð2:9Þ

Now we would like to explain an important point that is
occasionally missed in the theoretical physics literature,
when two BRST transformations coexist in a theory.
Suppose we fix the GCT by a gauge condition Fαðgμν;ϕÞ ¼
0 and the Weyl transformation by a gauge condition
Fðgμν;ϕÞ ¼ 0. Then, the gauge-fixed and BRST-invariant
Lagrangian density is given by

Lq ¼ Lc þ δBðc̄αFαÞ þ δ̄Bðc̄FÞ; ð2:10Þ

where the first term is the classical Lagrangian density
(2.1). In this situation, a natural question arises about the
gauge-fixing conditions: can we take any gauge-fixing
conditions if they fix gauge symmetries anyway? If not,
what gauge conditions are suitable for Fα and F?
In order to answer these questions, let us take the two

BRST transformations separately and check whether the
quantum Lagrangian density (2.10) is really invariant under

the BRST transformations up to surface terms. First, taking
the Weyl BRST transformation leads to

δ̄BLq ¼ δ̄BδBðc̄αFαÞ ¼ −δBδ̄Bðc̄αFαÞ
¼ −δB½ðδ̄Bc̄αÞFα − c̄αδ̄BFα�; ð2:11Þ

where we have used δ̄BLc ¼ 0 and Eqs. (2.6) and (2.8).
This equation clearly shows that the conditions

δ̄Bc̄α ¼ 0; δ̄BFα ¼ 0 ð2:12Þ

are sufficient conditions such that the Lagrangian density
(2.10) is invariant under the Weyl BRST transformation.
It is of interest to notice that the former condition in

Eq. (2.12) leads to two remaining equations in Eq. (2.9). To
see this fact, let us take the GCT BRST transformation of
the former equation as

0 ¼ δBδ̄Bc̄α ¼ −δ̄BδBc̄α ¼ −iδ̄BBα

¼ −i½δ̄Bbα þ iðδ̄BcλÞ∂λc̄α�; ð2:13Þ
which implies δ̄Bbα ¼ δ̄Bcλ ¼ 0, which coincide with the
remaining two equations in Eq. (2.9).
On the other hand, the latter condition in Eq. (2.12) gives

rise to important information on the gauge condition for
the GCT: the gauge-fixing condition for the GCT must be
invariant under theWeyl transformation. Thus, for instance,
the conventional de Donder gauge condition (or harmonic
gauge condition),

∂μg̃μν ¼ 0; ð2:14Þ

is not suitable when there is Weyl invariance.3

Next, let us apply the GCT BRST transformation to Lq.
To do this, since the Lagrangian density is in general a
quantity with density, it is more convenient to write it as
Lq ≡ ffiffiffiffiffiffi−gp

L0
q and F ¼ ffiffiffiffiffiffi−gp

F0, where F and F0 are scalars.
Then, taking the GCT BRST variation leads to

δBLq ¼ δBð
ffiffiffiffiffiffi
−g

p
L0
qÞ ¼ δBδ̄Bð

ffiffiffiffiffiffi
−g

p
c̄F0Þ ¼ −δ̄BδBð

ffiffiffiffiffiffi
−g

p
c̄F0Þ

¼ −δ̄B½−
ffiffiffiffiffiffi
−g

p ∇ρcρc̄F0 þ ffiffiffiffiffiffi
−g

p ð−cρ∂ρc̄ÞF0

−
ffiffiffiffiffiffi
−g

p
c̄ð−cρ∂ρF0Þ�

¼ ∂ρδ̄Bðcρc̄FÞ; ð2:15Þ

which means that Lq is indeed invariant under the GCT
BRST transformation up to a surface term. In obtaining this
result, we have assumed that

δBF0 ¼ −cρ∂ρF0; ð2:16Þ

3In two space-time dimensions the de Donder condition is
Weyl invariant, so it can be used as the gauge-fixing condition for
the GCT.
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which is nothing but the requirement that the quantity F0
should be a scalar under the GCT. Thus, only a scalar
function F0 (or, equivalently, a scalar density F) makes
sense as a gauge-fixing condition for Weyl invariance. Of
course, this scalar function must break Weyl invariance. As
suitable gauge-fixing conditions, in this paper we choose
Fν ¼ ∂μðg̃μνϕ2Þ and F ¼ ∂μðg̃μνϕ∂νϕÞ.

III. QUANTUM WEYL-INVARIANT
SCALAR-TENSOR GRAVITY

In this section, as a classical Lagrangian4 we take a
Weyl-invariant scalar-tensor gravity whose Lagrangian is of
the form [6]

Lc ¼
ffiffiffiffiffiffi
−g

p �
1

12
ϕ2Rþ 1

2
gμν∂μϕ∂νϕ

�
; ð3:1Þ

where ϕ is a real scalar field with a ghost-like kinetic term,
and R is the scalar curvature. In addition to the invariance
under the GCT, this Lagrangian is also invariant under the
Weyl transformation (or the local scale transformation),
defined as

gμν → g0μν ¼ Ω2ðxÞgμν; ϕ → ϕ0 ¼ Ω−1ðxÞϕ: ð3:2Þ

Recall that in order to prove the invariance, we need to use
the following transformation of the scalar curvature under
Eq. (3.2):

R → R0 ¼ Ω−2ðR − 6Ω−1
□ΩÞ; ð3:3Þ

where □Ω≡ h−1∂μðg̃μν∂νΩÞ.
As explained in the previous section, we have to pay

attention to what gauge-fixing conditions should be chosen
for the GCT and Weyl transformation in a consistent
manner. For instance, taking the de Donder condition as
a gauge condition for the GCT is not allowed since it breaks
Weyl symmetry in four space-time dimensions. There are
several interesting choices of suitable gauge conditions for
the GCT, but we shall refer to only two representative
examples. The first gauge condition for the GCT is a Weyl-
invariant version of the de Donder gauge:

∂μðð−gÞ14gμνÞ ¼ 0: ð3:4Þ

This gauge choice is invariant under the Weyl transforma-
tion (3.2) and is physically interesting in the sense that it
makes use of only the metric tensor field. However, some
fields such as the Nakanishi-Lautrup field become not a
normal vector field but rather a vector field with density,
which makes several formulas ugly, so we do not adopt

Eq. (3.4) as a gauge condition for the GCT. The second
gauge condition, which we will use in this article and call
the “extended de Donder gauge,” is given by

∂μðg̃μνϕ2Þ ¼ 0; ð3:5Þ

which is also invariant under the Weyl transformation (3.2).
Next, let us consider a gauge-fixing condition for the

Weyl transformation. From the consistency discussed in
Sec. II, an appropriate gauge condition must obey the
condition that it is invariant under the GCT, that is, a scalar
quantity. Since there are many scalars constructed from the
real scalar field ϕ and the Riemannian tensors, we might
be left in the dark on this issue. However, surprisingly
enough, if we impose the requirement that the FP ghost’s
Lagrangian should have a Weyl-invariant metric g̃μνϕ2

instead of the standard metric g̃μν, a suitable gauge
condition for the GCT can be uniquely chosen. Such a
gauge condition, which we call the “scalar gauge con-
dition,” reads

∂μðg̃μνϕ∂νϕÞ ¼ 0; ð3:6Þ

which can be alternatively written as

□ϕ2 ¼ 0: ð3:7Þ

Incidentally, the unitary gauge ϕ ¼ const is often taken to
show that the Weyl-invariant scalar-tensor gravity (3.1) is
equivalent to the Einstein-Hilbert term, but this gauge
choice is not as interesting since no conformal symmetry
remains.
After taking the extended de Donder gauge condition

(3.5) for the GCT and the scalar gauge condition (3.6)
for the Weyl transformation, the gauge-fixed and BRST-
invariant quantum Lagrangian is given by

Lq ¼ Lc þ LGFþFP þ L̄GFþFP

¼ Lc þ iδBðg̃μνϕ2
∂μc̄νÞ þ iδ̄B½c̄∂μðg̃μνϕ∂νϕÞ�

¼ ffiffiffiffiffiffi
−g

p �
1

12
ϕ2Rþ 1

2
gμν∂μϕ∂νϕ

�

− g̃μνϕ2ð∂μbν þ i∂μc̄λ∂νcλÞ
þ g̃μνϕ∂μB∂νϕ − ig̃μνϕ2

∂μc̄∂νc; ð3:8Þ

where surface terms are dropped. Note that the last term,
which is the FP ghost’s term for the Weyl transformation,
certainly involves the Weyl-invariant metric g̃μνϕ2. Let us
rewrite this Lagrangian concisely as

Lq ¼
ffiffiffiffiffiffi
−g

p 1

12
ϕ2R −

1

2
g̃μνEμν; ð3:9Þ4For simplicity, we henceforth call a Lagrangian density a

Lagrangian.
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where we have defined

Eμν ≡ −
1

2
∂μϕ∂νϕþ ϕ2ð∂μbν þ i∂μc̄λ∂νcλÞ

− ϕ∂μB∂νϕþ iϕ2
∂μc̄∂νcþ ðμ ↔ νÞ: ð3:10Þ

Moreover, it is sometimes more convenient to introduce the
dilaton σðxÞ by defining

ϕðxÞ≡ eσðxÞ ð3:11Þ

and rewriting Eq. (3.9) in the form

Lq ¼ e2σðxÞ
� ffiffiffiffiffiffi

−g
p 1

12
R −

1

2
g̃μνÊμν

�
; ð3:12Þ

where we have defined

Êμν ≡ −
1

2
∂μσ∂νσ þ ∂μbν þ i∂μc̄λ∂νcλ

− ∂μB∂νσ þ i∂μc̄∂νcþ ðμ ↔ νÞ: ð3:13Þ

Note that the relation between Eμν and Êμν is given by

Eμν ¼ ϕ2Êμν ¼ e2σÊμν: ð3:14Þ

From the Lagrangian Lq, it is straightforward to derive
the field equations by taking the variation with respect to
gμν, ϕ (or σ), bν, B, cρ, c̄ρ, c, and c̄ in order:

1

12
ϕ2Gμν−

1

12
ð∇μ∇ν−gμν□Þϕ2−

1

2

�
Eμν−

1

2
gμνE

�
¼0;

1

6
ϕ2R−E−2gμνϕ∂μB∂νϕ−ϕ2

□B¼0;

∂μðg̃μνϕ2Þ¼0; ∂μðg̃μνϕ∂νϕÞ¼0;

gμν∂μ∂νc̄ρ¼gμν∂μ∂νcρ¼gμν∂μ∂νc̄¼ gμν∂μ∂νc¼0; ð3:15Þ

where we have defined the Einstein tensor Gμν ≡ Rμν −
1
2
gμνR and E≡ gμνEμν. The two gauge-fixing conditions in

Eq. (3.15) lead to a very simple equation for the dilaton:

gμν∂μ∂νσ ¼ 0: ð3:16Þ

It is worth noticing that it is not the scalar field ϕ but rather
the dilaton σ that satisfies this type of equation.
Furthermore, the trace part of the Einstein equation, i.e.,
the first field equation in Eq. (3.15) and the field equation
for ϕ also give us the equation for B:

gμν∂μ∂νB ¼ 0: ð3:17Þ

Finally, using the field equations obtained thus far, after
some calculations, we can also derive the equation for bρ

5:

gμν∂μ∂νbρ ¼ 0: ð3:18Þ

In other words, by setting XM ¼ fxμ; bμ; σ; B; cμ; c̄μ; c; c̄g,
it turns out that XM obeys the very simple equation

gμν∂μ∂νXM ¼ 0: ð3:19Þ

This fact, together with the gauge condition ∂μðg̃μνϕ2Þ ¼ 0,
produces the two kinds of conserved currents:

PμM ≡ g̃μνϕ2
∂νXM ¼ g̃μνϕ2ð1∂

↔

νXMÞ;
MμMN ≡ g̃μνϕ2ðXM

∂

↔

νYNÞ; ð3:20Þ

where we have defined XM
∂

↔

μYN ≡ XM
∂μYN − ð∂μXMÞYN .

IV. CANONICAL QUANTIZATION AND
EQUAL-TIME COMMUTATION

RELATIONS

In this section, after introducing the canonical commu-
tation relations, we will evaluate various ETCRs among
fundamental variables. To simplify various expressions, we
obey the following abbreviations adopted in Ref. [5]:

½A;B0� ¼ ½AðxÞ; Bðx0Þ�jx0¼x00 ; δ3 ¼ δðx⃗ − x⃗0Þ;

f̃ ¼ 1

g̃00
¼ 1ffiffiffiffiffiffi−gp

g00
¼ 1

hg00
; ð4:1Þ

where we assume that g̃00 is invertible.
Now let us set up the canonical (anti)commutation

relations:

½gμν;πρλ0g �¼ i
1

2
ðδρμδλνþδλμδ

ρ
νÞδ3; ½ϕ;π0ϕ�¼þiδ3;

½B;π0B�¼þiδ3;fcσ;π0cλg¼fc̄λ;πσ0c̄ g¼þiδσλδ
3;

fc;π0cg¼fc̄;π 0̄cg¼þiδ3; ð4:2Þ

where the other (anti)commutation relations vanish. Here
the canonical variables are gμν;ϕ; B; cρ; c̄ρ; c; c̄ and the
corresponding canonical conjugate momenta are
πμνg ; πϕ; πB; πcρ; π

ρ
c̄; πc; πc̄, respectively, and the bμ field

is regarded as not a canonical variable but rather a
conjugate momentum of g̃0μ.
To remove second-order derivatives of the metric

involved in R, we perform an integration by parts once
and rewrite the Lagrangian (3.8) as

5The details of the calculation are presented in Appendix A.
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Lq ¼ −
1

12
g̃μνϕ2ðΓσ

μνΓα
σα − Γσ

μαΓα
σνÞ

−
1

6
ϕ∂μϕðg̃αβΓμ

αβ − g̃μνΓα
ναÞ

þ 1

2
g̃μν∂μϕ∂νϕþ ∂μðg̃μνϕ2Þbν

− ig̃μνϕ2
∂μc̄ρ∂νcρ þ g̃μν∂μBϕ∂νϕ

− ig̃μνϕ2
∂μc̄∂νcþ ∂μVμ; ð4:3Þ

where the surface term Vμ is defined as

Vμ ¼ 1

12
ϕ2ðg̃αβΓμ

αβ − g̃μνΓα
ναÞ − g̃μνϕ2bν: ð4:4Þ

Using this Lagrangian, the concrete expressions for canoni-
cal conjugate momenta become

πμνg ¼ ∂Lq

∂_gμν

¼ −
1

24

ffiffiffiffiffiffi
−g

p
ϕ2

�
−g0λgμνgστ − g0τgμλgνσ − g0σgμτgνλ

þ g0λgμτgνσ þ g0τgμνgλσ þ 1

2
ðg0μgνλ þ g0νgμλÞgστ

�
∂λgστ

−
1

6

ffiffiffiffiffiffi
−g

p �
1

2
ðg0μgρν þ g0νgρμÞ − gμνgρ0

�
ϕ∂ρϕ

−
1

2

ffiffiffiffiffiffi
−g

p ðg0μgνρ þ g0νgμρ − g0ρgμνÞϕ2bρ;

πϕ ¼ ∂Lq

∂ _ϕ
¼ g̃0μ∂μϕþ 2g̃0μϕbμ

þ 1

6
ϕð−g̃αβΓ0

αβ þ g̃0αΓβ
αβÞ þ g̃0μ∂μBϕ;

πB ¼ ∂Lq

∂ _B
¼ g̃0μϕ∂μϕ;

πcσ ¼
∂Lq

∂_cσ
¼ −ig̃0μϕ2

∂μc̄σ;

πσc̄ ¼
∂Lq

∂ _̄cσ
¼ ig̃0μϕ2

∂μcσ;

πc ¼
∂Lq

∂_c
¼ −ig̃0μϕ2

∂μc̄;

πc̄ ¼
∂Lq

∂ _̄c
¼ ig̃0μϕ2

∂μc; ð4:5Þ

where we have defined the time derivative such that

_gμν ≡ ∂gμν
∂t ≡ ∂0gμν, and differentiation of ghosts is taken

from the right.

From now on, we would like to evaluate various non-
trivial ETCRs in order. Let us first work with the ETCR in
Eq. (4.2):

½πα0g ; g0μν� ¼ −i
1

2
ðδαμδ0ν þ δ0μδ

α
νÞδ3: ð4:6Þ

The canonical conjugate momentum πα0g has the structure

πα0g ¼ Aα þ Bαβ
∂βϕþ Cαβbβ; ð4:7Þ

where Aα; Bαβ, and Cαβ ≡ − 1
2
g̃00gαβϕ2 have no _gμν, and

Bαβ
∂βϕ does not have _ϕ since πα0g does not include the

dynamics of the metric and the scalar fields. Then, we find
that Eq. (4.6) produces

½gμν; b0ρ� ¼ −if̃ϕ−2ðδ0μgρν þ δ0νgρμÞδ3: ð4:8Þ

From this ETCR, we can easily derive ETCRs:

½gμν; b0ρ� ¼ if̃ϕ−2ðgμ0δνρ þ gν0δμρÞδ3;
½g̃μν; b0ρ� ¼ if̃ϕ−2ðg̃μ0δνρ þ g̃ν0δμρ − g̃μνδ0ρÞδ3: ð4:9Þ

Here we have used the fact that, since a commutator works
as a derivation, we can have the formulas

½gμν;Φ0� ¼ −gμαgνβ½gαβ;Φ0�;

½g̃μν;Φ0� ¼ −
�
g̃μαgνβ −

1

2
g̃μνgαβ

�
½gαβ;Φ0�; ð4:10Þ

where Φ is a generic field. Similarly, the ETCR ½πα0g ;ϕ0� ¼
0 yields

½ϕ; b0ρ� ¼ 0: ð4:11Þ

The ETCR ½πα0g ; B0� ¼ 0 yields

½B; b0ρ� ¼ 0: ð4:12Þ

Moreover, the ETCRs ½πB;ϕ0� ¼ 0 and ½πB; B0� ¼ −iδ3
produce, respectively,

½ _ϕ;ϕ0� ¼ 0; ½ _ϕ; B0� ¼ −if̃ϕ−1δ3: ð4:13Þ

As for the ETCRs involving FP ghosts, let us first
consider the anti-ETCRs, fπcλ; cσ0g ¼ fπσc̄ ; c̄0λg ¼ iδσλδ

3.
These anti-ETCRs lead to the same anti-ETCR,

f _̄cλ; cσ0g ¼ −f_cσ; c̄0λg ¼ −f̃ϕ−2δσλδ
3; ð4:14Þ
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where we have used a useful identity for generic variables
Φ and Ψ,

½Φ; _Ψ0� ¼ ∂0½Φ;Ψ0� − ½ _Φ;Ψ0�; ð4:15Þ

which holds for the anticommutation relation as well. In a
similar way, the anti-ETCRs fπc; c0g ¼ fπc̄; c̄0g ¼ iδ3

yield

f _̄c; c0g ¼ −f_c; c̄0g ¼ −f̃ϕ−2δ3: ð4:16Þ

Moreover, ½πα0g ; cσ0� ¼ ½πα0g ; c̄0λ� ¼ 0 give us the ETCRs

½bρ; cσ0� ¼ ½bρ; c̄0λ� ¼ 0; ð4:17Þ

and similarly, ½πα0g ; c0� ¼ ½πα0g ; c̄0� ¼ 0 produce

½bρ; c0� ¼ ½bρ; c̄0� ¼ 0: ð4:18Þ

To calculate the ETCRs between B and the FP ghosts, it is
necessary to utilize the ETCRs ½B; π0cλ� ¼ ½B; πσ0c̄ � ¼
½B; π0c� ¼ ½B; π 0̄c� ¼ 0, and consequently we have

½B; _̄c0λ� ¼ ½B; _cσ0� ¼ ½B; _̄c0� ¼ ½B; _c0� ¼ 0: ð4:19Þ

Furthermore, taking the Weyl BRST transformation of the
third ETCR reads6

0 ¼ f½iQ̄B; B�; _̄c0g þ ½B; fiQ̄B; _̄c0g� ¼ ½B; i _B0�; ð4:20Þ

where we have used the Weyl BRST transformation (2.5).
As a result, we have the ETCR

½B; _B0� ¼ 0: ð4:21Þ

Next, from ½πB; c̄0λ� ¼ ½πB; cσ0� ¼ 0, we find

½ _ϕ; c̄0λ� ¼ ½ _ϕ; cσ0� ¼ 0: ð4:22Þ

Similarly, from ½πB; c̄0� ¼ ½πB; c0� ¼ 0, we have

½ _ϕ; c̄0� ¼ ½ _ϕ; c0� ¼ 0: ð4:23Þ

Using the field equation for c̄λ in Eq. (3.15), i.e.,
gμν∂μ∂νc̄λ ¼ 0, the ETCR ½ϕ; c̄0λ� ¼ 0, and Eqs. (4.15)
and (4.22), it is easy to derive the equations

½ϕ; ̈c̄0λ� ¼ ½ _ϕ; _̄c0λ� ¼ ½ϕ̈; c̄0λ� ¼ 0: ð4:24Þ

Similar equations also hold when c̄0λ is replaced with c
σ0, c0,

or c̄0.
Now, using the equations obtained above, we are ready

to evaluate the type of ETCRs ½ _Φ; b0ρ�, where Φ is a generic
field. First, let us focus on ½ _ϕ; b0ρ�. To do this, we start with

½ _ϕ; c̄0ρ� ¼ 0 in Eq. (4.22) and take its BRST variation for the
GCT as follows:

0 ¼ fiQB; ½ _ϕ; c̄0ρ�g
¼ f½iQB; _ϕ�; c̄0ρg þ ½ _ϕ; fiQB; c̄0ρg�
¼ f−∂0ðcλ∂λϕÞ; c̄0ρg þ ½ _ϕ; iðb0ρ þ icλ0∂λc̄0ρÞ�
¼ −f_cλ; c̄0ρg∂λϕþ i½ _ϕ; b0ρ�: ð4:25Þ

Using Eq. (4.14), we obtain

½ _ϕ; b0ρ� ¼ −if̃ϕ−2
∂ρϕδ

3: ð4:26Þ

It turns out that the ETCRs ½πcλ; πα00g � ¼ ½πσc̄ ; πα00g � ¼ 0 give
rise to

½ _̄cλ;b0ρ�¼−if̃ϕ−2
∂ρc̄λδ3; ½_cσ;b0ρ�¼−if̃ϕ−2

∂ρcσδ3: ð4:27Þ

Similarly, the ETCRs ½πc; πα00g � ¼ ½πc̄; πα00g � ¼ 0 give us

½ _̄c;b0ρ�¼−if̃ϕ−2
∂ρc̄δ3; ½_c;b0ρ�¼−if̃ϕ−2

∂ρcδ3: ð4:28Þ

In order to evaluate ½ _B; b0ρ�, we make use of ½πc; b0ρ� ¼ 0,
which can be easily proved. Taking its BRST transforma-
tion for the Weyl transformation leads to the equation

½fiQ̄B; πcg; b0ρ� ¼ 0; ð4:29Þ

where ½iQ̄B; b0ρ� ¼ 0 was used. We can show that
fiQ̄B; πcg ¼ g̃0μϕ2

∂μB, so by using Eqs. (4.9) and (4.11)
we can calculate

½ _B; b0ρ� ¼ −if̃ϕ−2
∂ρBδ3: ð4:30Þ

Finally, the ETCR ½_gμν; b0ρ� (or, equivalently, ½gμν; _b0ρ�) can
be obtained by using the method developed in our previous
article [1]. We only report the result here, which is written
as

½_gμν; b0ρ� ¼ −iff̃ϕ−2ð∂ρgμν þ δ0μ _gρν þ δ0ν _gρμÞδ3
þ ½ðδkμ − 2δ0μf̃g̃0kÞgρν þ ðμ ↔ νÞ�∂kðf̃ϕ−2δ3Þg;

ð4:31Þ

6We define the BRST transformation for the Weyl trans-
formation as δ̄BΦ≡ ½iQ̄B;Φg, where Φ is a generic field and ½, g
denotes the graded bracket. Of course, in the case of the GCT
BRST transformation, it is replaced by δBΦ≡ ½iQB;Φg.
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or, equivalently,

½gμν; _b0ρ� ¼ if½f̃ϕ−2
∂ρgμν − ∂0ðf̃ϕ−2Þðδ0μgρν þ δ0νgρμÞ�δ3

þ ½ðδkμ − 2δ0μf̃g̃0kÞgρν þ ðμ ↔ νÞ�∂kðf̃ϕ−2δ3Þg:
ð4:32Þ

Following our previous calculation [1], we can prove that

½bμ; b0ν� ¼ 0;

½bμ; _b0ν� ¼ if̃ϕ−2ð∂μbν þ ∂νbμÞδ3: ð4:33Þ

V. EQUAL-TIME COMMUTATION RELATIONS IN
THE GRAVITATIONAL SECTOR

The remaining nontrivial ETCRs are related to the time
derivative of the metric field, i.e., the ETCRs ½_gμν;Φ0�,
where Φ is a generic field. In this section, we will evaluate
such ETCRs.
First of all, let us start with the ETCR ½πϕ; g0μν� ¼ 0. From

the expression for πϕ in Eq. (4.5), this ETCR can be
described as

g̃00½ _ϕ; g0μν� þ
1

6
ϕðg̃00gρσ − g̃0ρg0σÞ½_gρσ; g0μν� þ g̃00ϕ½ _B; g0μν�

¼ −4if̃ϕ−1 ffiffiffiffiffiffi
−g

p
δ0μδ

0
νδ

3: ð5:1Þ

Next, the ETCR ½πϕ;ϕ0� ¼ −iδ3 produces the equation

ðg̃00gρσ − g̃0ρg0σÞ½_gρσ;ϕ0� ¼ 0: ð5:2Þ

Moreover, the ETCR ½πϕ; B0� ¼ 0 reads

ðg̃00gρσ − g̃0ρg0σÞ½_gρσ; B0� ¼ 6iϕ−2δ3: ð5:3Þ

The extended de Donder gauge, ∂μðg̃μνϕ2Þ ¼ 0, can be
rewritten as

Dλρσ _gρσ þ 4ϕ−1gλρ∂ρϕ ¼ ð2gλρgσk − gρσgλkÞ∂kgρσ; ð5:4Þ

whereDλρσ ≡ g0λgρσ − 2gλρg0σ. Since the rhs of Eq. (5.4) is
independent of _gμν, it commutes with gμν;ϕ, or B. Thus, we
have three identities:

Dλρσ½_gρσ; g0μν� þ 4ϕ−1gλ0½ _ϕ; g0μν� ¼ 0; ð5:5Þ

Dλρσ½_gρσ;ϕ0� ¼ 0; ð5:6Þ

Dλρσ½_gρσ; B0� ¼ 4if̃ϕ−2gλ0δ3: ð5:7Þ

In Eqs. (5.6) and (5.7), we have used Eq. (4.13).

Putting λ ¼ 0 in Eq. (5.6) and using Eq. (5.2), we have

gρσ½_gρσ;ϕ0� ¼ g0ρg0σ½_gρσ;ϕ0� ¼ 0: ð5:8Þ

In general, from the argument of symmetry, ½_gρσ;ϕ0� must
be of the form

½_gρσ;ϕ0� ¼ a1ðgρσ þ a2δ0ρδ0σÞδ3; ð5:9Þ

where a1 and a2 are constants. Equation (5.8) then requires
us to take a1 ¼ a2 ¼ 0. Thus, we have

½_gρσ;ϕ0� ¼ 0: ð5:10Þ

Next, in a similar manner, we can set

½_gρσ; B0� ¼ b1ðgρσ þ b2δ0ρδ0σÞδ3; ð5:11Þ

where b1 and b2 are constants. From Eq. (5.3), b1 is
determined to be 2if̃ϕ−2, and then Eq. (5.7) requires b2 to
be vanishing, so we can obtain

½_gρσ; B0� ¼ 2if̃ϕ−2gρσδ3: ð5:12Þ

Finally, we wish to evaluate ½_gρσ; g0μν�, for which we need
to perform some calculations. Before doing so, let us
rewrite Eq. (5.1) by means of Eqs. (5.10) and (5.12) in
the form

ðg̃00gρσ − g̃0ρg0σÞ½_gρσ; g0μν� ¼ −12iϕ−2
�
gμν þ

2

g00
δ0μδ

0
ν

�
δ3:

ð5:13Þ

Similarly, Eq. (5.5) reduces to

ðg0λgρσ − 2gλρg0σÞ½_gρσ; g0μν� ¼ 0: ð5:14Þ

We are now ready to evaluate the ETCR ½_gρσ; g0μν�. This
ETCR has a symmetry under the simultaneous exchange of
ðμνÞ ↔ ðρσÞ and primed ↔ unprimed, in addition to the
usual symmetry μ ↔ ν and ρ ↔ σ. Then, we can write
down its general expression as

½_gρσ; g0μν� ¼ fc1gρσgμν þ c2ðgρμgσν þ gρνgσμÞ
þ hf̃½c3ðδ0ρδ0σgμν þ δ0μδ

0
νgρσÞ

þ c4ðδ0ρδ0μgσν þ δ0ρδ
0
νgσμ þ δ0σδ

0
μgρν þ δ0σδ

0
νgρμÞ�

þ ðhf̃Þ2c5δ0ρδ0σδ0μδ0νgδ3; ð5:15Þ

where ciði ¼ 1;…; 5Þ are some coefficients. Imposing
Eq. (5.14) on Eq. (5.15) leads to relations among the
coefficients:

c3¼2ðc1þc2Þ; c4¼−c2; c5¼4ðc1þc2Þ: ð5:16Þ
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Furthermore, imposing Eq. (5.13), we can determine c2, c3,
c4, and c5 via c1 as

c3 ¼ −c1 − 12if̃ϕ−2; c4 ¼ −c2 ¼
3

2
c1 þ 6if̃ϕ−2;

c5 ¼ −2c1 − 24if̃ϕ−2: ð5:17Þ

In order to fix the coefficient c1, we need to calculate the
ETCR ½_gkl; g0mn� explicitly in terms of ½πklg ; g0mn� ¼
−i 1

2
ðδkmδln þ δlmδ

k
nÞδ3 in Eq. (4.2) and the concrete expres-

sion for πklg in Eq. (4.5). To do this, from Eq. (4.5), let us
write

πklg ¼ Âkl þ B̂klρbρ þ Ĉklmn _gmn þ D̂kl _ϕ: ð5:18Þ

Here Âkl; B̂klρ; Ĉklmn, and D̂kl commute with gmn, and Ĉ
klmn

and D̂kl are defined as7

Ĉklmn¼ 1

24
hϕ2Kklmn; D̂kl¼1

6
ϕðg̃00gkl− g̃0kg0lÞ; ð5:19Þ

where the definition of Kklmn and its property are given by

Kklmn ¼
������
g00 g0l g0n

gk0 gkl gkn

gm0 gml gmn

������;

Kklmn 1

2
ðg00Þ−1ðgijgmn − gimgjn − gingjmÞ ¼

1

2
ðδki δlj þ δliδ

k
jÞ:

ð5:20Þ

From Eq. (5.18), we can calculate

½_gkl; g0mn� ¼ Ĉ−1
klpqð½πpqg ; g0mn�− B̂pqρ½bρ; g0mn�− D̂pq½ _ϕ; g0mn�Þ

¼ −i
1

2
Ĉ−1
klpqðδpmδqn þ δqmδ

p
nÞδ3; ð5:21Þ

where we have used Eqs. (4.2), (4.8), and (5.10). Since we
can calculate

Ĉ−1
klpq ¼ 12f̃ϕ−2ðgklgpq − gkpglq − gkqglpÞ; ð5:22Þ

we can eventually arrive at the result

½_gkl; g0mn� ¼ −12if̃ϕ−2ðgklgmn − gkmgln − gknglmÞδ3: ð5:23Þ

Meanwhile, from Eq. (5.15) we have the ETCR

½_gkl; g0mn� ¼ ½c1gklgmn þ c2ðgkmgln þ gknglmÞ�δ3: ð5:24Þ

Hence, comparing Eq. (5.23) with Eq. (5.24), we can obtain

c1 ¼ −12if̃ϕ−2; c2 ¼ 12if̃ϕ−2: ð5:25Þ

Note that these values satisfy the relation in Eq. (5.17),
−c2 ¼ 3

2
c1 þ 6if̃ϕ−2, which gives us a nontrivial verifica-

tion of our result. In this way, we have succeeded in getting
the following ETCR:

½_gρσ;g0μν�¼−12if̃ϕ−2½gρσgμν−gρμgσν−gρνgσμþhf̃ðδ0ρδ0μgσν
þδ0ρδ

0
νgσμþδ0σδ

0
μgρνþδ0σδ

0
νgρμÞ�δ3: ð5:26Þ

VI. UNITARITY OF THE PHYSICAL S MATRIX

As in the conventional BRST formalism, the physical
state jphysi is defined by imposing two subsidiary con-
ditions [8]:

QBjphysi ¼ Q̄Bjphysi ¼ 0: ð6:1Þ

It is then well known that the physical S matrix is unitary
under the assumption that all of the BRST singlet states
have positive norm. In this section, we would like to prove
the unitarity of the physical Smatrix. Since there is a ghost-
like scalar field ϕ as well as timelike and longitudinal
components of the metric field in our formalism, this is not
a trivial problem.
In analyzing the unitarity, it is enough to take account of

asymptotic fields of all of the fundamental fields and the
free part of the Lagrangian. Let us first assume the
asymptotic fields as

gμν ¼ ημν þφμν; ϕ¼ ϕ0 þ ϕ̃; bμ ¼ βμ; B¼ β;

cμ ¼ γμ; c̄μ ¼ γ̄μ; c¼ γ; c̄¼ γ̄; ð6:2Þ

where ημνð¼ ημνÞ is the flat Minkowski metric with mostly
positive signature, and ϕ0 is a constant. In this section, the
Minkowski metric is used to lower or raise the Lorentz
indices. Using these asymptotic fields, the free part of the
Lagrangian reads

Lq ¼
1

12
ϕ2
0

�
1

4
φμν□φμν −

1

4
φ□φ−

1

2
φμν

∂μ∂ρφν
ρ

þ 1

2
φμν

∂μ∂νφ

�

þ 1

6
ϕ0ϕ̃ð−□φþ ∂μ∂νφ

μνÞ þ 1

2
∂μϕ̃∂

μϕ̃− iϕ2
0∂μγ̄ρ∂

μγρ

−
�
2ημνϕ0ϕ̃− ϕ2

0φ
μν þ 1

2
ϕ2
0η

μνφ

�
∂μβν

þ ϕ0∂μβ∂
μϕ̃− iϕ2

0∂μγ̄∂
μγ; ð6:3Þ

7It turns out that the concrete expressions for Âkl and B̂klρ are
irrelevant to the calculation of ½_gkl; g0mn�.
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where □≡ ημν∂μ∂ν and φ≡ ημνφμν. Based on this
Lagrangian, it is easy to derive the linearized field equa-
tions:

1

12
ϕ0

�
1

2
□φμν −

1

2
ημν□φ − ∂ρ∂ðμφνÞρ þ

1

2
∂μ∂νφ

þ 1

2
ημν∂ρ∂σφ

ρσ

�
þ 1

6
ð−ημν□þ ∂μ∂νÞϕ̃

þ ϕ0∂ðμβνÞ −
1

2
ϕ0ημν∂ρβ

ρ ¼ 0; ð6:4Þ

1

6
ð□φ − ∂μ∂νφ

μνÞ þ 2∂ρβ
ρ þ□β ¼ 0; ð6:5Þ

∂μϕ̃ −
1

2
ϕ0

�
∂
νφμν −

1

2
∂μφ

�
¼ 0; ð6:6Þ

□ϕ̃ ¼ □γμ ¼ □γ̄μ ¼ □γ ¼ □γ̄ ¼ 0: ð6:7Þ

Here we have introduced the symmetrization notation
AðμBνÞ ≡ 1

2
ðAμBν þ AνBμÞ. Now, by applying ∂

μ to
Eq. (6.6) and using Eq. (6.7), we can obtain

∂μ∂νφ
μν −

1

2
□φ ¼ 0: ð6:8Þ

Next, taking the trace of Eq. (6.4) with the help of Eqs. (6.7)
and (6.8) leads to

□φþ 24∂ρβ
ρ ¼ 0: ð6:9Þ

Then, with the help of Eqs. (6.8) and (6.9), Eq. (6.5) can be
rewritten as

□β ¼ 0: ð6:10Þ

Moreover, applying ∂
μ to Eq. (6.4) yields

□βμ ¼ 0: ð6:11Þ

Finally, using various equations obtained thus far, Eq. (6.4)
is reduced to the form

□φμν þ 24∂ðμβνÞ ¼ 0; ð6:12Þ

which means that the field φμν is a dipole field:

□
2φμν ¼ 0: ð6:13Þ

On the other hand, the other fields are all simple pole fields:

□ϕ̃¼□βμ ¼□β ¼□γμ ¼□γ̄μ ¼□γ ¼□γ̄ ¼ 0: ð6:14Þ

Note that Eq. (6.14) corresponds to Eq. (3.19) in a curved
space-time.

Following the standard technique, we can calculate the
four-dimensional (anti)commutation relations (4D CRs)
between asymptotic fields. The point is that the simple
pole fields, for instance, the Nakanishi-Lautrup field βðxÞ,
can be expressed in terms of the invariant delta function
DðxÞ as

βμðxÞ ¼
Z

d3zDðx − zÞ∂
↔z

0βμðzÞ; ð6:15Þ

whereas the dipole field φμνðxÞ can be written as

φμνðxÞ¼
Z

d3z½Dðx−zÞ∂↔z

0φμνðzÞþEðx−zÞ∂↔z

0□φμνðzÞ�

¼
Z

d3z½Dðx−zÞ∂↔z

0φμνðzÞ−24Eðx−zÞ∂↔z

0∂ðμβνÞðzÞ�;

ð6:16Þ

where in the last equality we have used Eq. (6.12). Here the
invariant delta function DðxÞ for massless simple pole
fields and its properties are described as

DðxÞ ¼ −
i

ð2πÞ3
Z

d4kϵðk0Þδðk2Þeikx; □DðxÞ ¼ 0;

Dð−xÞ ¼ −DðxÞ; Dð0; x⃗Þ ¼ 0; ∂0Dð0; x⃗Þ ¼ δ3ðxÞ;
ð6:17Þ

where ϵðk0Þ≡ k0
jk0j. Similarly, the invariant delta function

EðxÞ for massless dipole fields and its properties are given
by

EðxÞ¼−
i

ð2πÞ3
Z

d4kϵðk0Þδ0ðk2Þeikx; □EðxÞ¼DðxÞ;

Eð−xÞ¼−EðxÞ; Eð0;x⃗Þ¼∂0Eð0;x⃗Þ¼∂
2
0Eð0;x⃗Þ¼0;

∂
3
0Eð0;x⃗Þ¼−δ3ðxÞ: ð6:18Þ

It is easy to show that the rhs of Eqs. (6.15) and (6.16) are
independent of z0. Thus, for instance, when we evaluate the
four-dimensional commutation relation ½φμνðxÞ;φστðyÞ�,
we can put z0 ¼ y0 and use the three-dimensional com-
mutation relations among asymptotic fields. The resultant
4D CRs are summarized as

½φμνðxÞ;φστðyÞ�¼12iϕ−2
0 ½ðημνηστ−ημσηντ−ημτηνσÞDðx−yÞ

þðημσ∂ν∂τþηνσ∂μ∂τþημτ∂ν∂σ

þηντ∂μ∂σÞEðx−yÞ�; ð6:19Þ

½φμνðxÞ; βρðyÞ� ¼ iϕ−2
0 ðημρ∂ν þ ηνρ∂μÞDðx − yÞ; ð6:20Þ

½φμνðxÞ; βðyÞ� ¼ −2iϕ−1
0 ημνDðx − yÞ; ð6:21Þ
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½ϕ̃ðxÞ; βðyÞ� ¼ iϕ−1
0 Dðx − yÞ; ð6:22Þ

fγσðxÞ; γ̄τðyÞg ¼ −ϕ−2
0 δστDðx − yÞ; ð6:23Þ

fγðxÞ; γ̄ðyÞg ¼ −ϕ−2
0 Dðx − yÞ: ð6:24Þ

The other 4D CRs vanish identically.
Now wewould like to discuss the issue of the unitarity of

the theory in hand. To do this, it is convenient to perform
the Fourier transformation of Eqs. (6.19)–(6.24). However,
for the dipole field we cannot use the three-dimensional
Fourier expansion to define the creation and annihilation
operators. We therefore make use of the four-dimensional
Fourier expansion [5]8:

φμνðxÞ ¼
1

ð2πÞ32
Z

d4pθðp0Þ½φμνðpÞeipx þ φ†
μνðpÞe−ipx�;

ð6:25Þ

where θðp0Þ is the step function. For any simple pole fields,
we adopt the same Fourier expansion; for instance,

βμðxÞ¼
1

ð2πÞ32
Z

d4pθðp0Þ½βμðpÞeipxþβ†μðpÞe−ipx�: ð6:26Þ

Incidentally, for a generic simple pole field Φ, the three-
dimensional Fourier expansion is defined as

ΦðxÞ ¼ 1

ð2πÞ32
Z

d3p
1ffiffiffiffiffiffiffiffiffi
2jp⃗jp

× ½Φðp⃗Þe−ijp⃗jx0þip⃗·x⃗ þΦ†ðp⃗Þeijp⃗jx0−ip⃗·x⃗�; ð6:27Þ

whereas the four-dimensional Fourier expansion reads

ΦðxÞ ¼ 1

ð2πÞ32
Z

d4pθðp0Þ½ΦðpÞeipx þΦ†ðpÞðpÞe−ipx�:

ð6:28Þ

Thus, the annihilation operator ΦðpÞ in the four-
dimensional Fourier expansion is related to the annihilation
operator Φðp⃗Þ in the three-dimensional Fourier
expansion as

ΦðpÞ ¼ θðp0Þδðp2Þ
ffiffiffiffiffiffiffiffiffi
2jp⃗j

p
Φðp⃗Þ: ð6:29Þ

Based on these Fourier expansions, we can calculate the
Fourier transforms of Eqs. (6.19)–(6.24):

½φμνðpÞ;φ†
στðqÞ� ¼ 12ϕ−2

0 θðp0Þδ4ðp − qÞ
× ½δðp2Þðημνηστ − ημσηντ − ημτηνσÞ
− 3δ0ðp2Þðημσpνpτ þ ηνσpμpτ

þ ημτpνpσ þ ηντpμpσÞ�; ð6:30Þ

½φμνðpÞ; β†ρðqÞ� ¼ iϕ−2
0 ðημρpν þ ηνρpμÞ

× θðp0Þδðp2Þδ4ðp − qÞ; ð6:31Þ

½φμνðpÞ; β†ðqÞ� ¼ −2ϕ−1
0 ημνθðp0Þδðp2Þδ4ðp − qÞ; ð6:32Þ

½ϕ̃ðpÞ; β†ðqÞ� ¼ ϕ−1
0 θðp0Þδðp2Þδ4ðp − qÞ; ð6:33Þ

fγσðpÞ; γ̄†τðqÞg ¼ iϕ−2
0 δστ θðp0Þδðp2Þδ4ðp − qÞ; ð6:34Þ

fγðpÞ; γ̄†ðqÞg ¼ iϕ−2
0 θðp0Þδðp2Þδ4ðp − qÞ: ð6:35Þ

Next, let us turn our attention to the linearized field
equations. In the Fourier transformation, Eq. (6.6) takes the
form

pνφμν −
1

2
pμφ ¼ 2ϕ−1

0 pμϕ̃: ð6:36Þ
If we fix the degree of freedom associated with ϕ̃ (which
will be discussed later), this equation gives us four
independent relations in ten components of φμνðpÞ, thereby
reducing the number of independent components of φμνðpÞ
to six. To deal with six independent components of φμνðpÞ,
it is convenient to take a specific Lorentz frame such that
p1 ¼ p2 ¼ 0 and p3 > 0, and choose the six components
as follows:

φ1ðpÞ¼
1

2
½φ11ðpÞ−φ22ðpÞ�; φ2ðpÞ¼φ12ðpÞ;

ω0ðpÞ¼−
1

2p0

φ00ðpÞ; ωIðpÞ¼−
1

p0

φ0IðpÞ;

ω3ðpÞ¼−
1

2p3

φ33ðpÞ; ð6:37Þ

where the index I takes the transverse components I ¼ 1, 2.
In this respect, it is worthwhile to consider the GCT

BRST transformation for these components. First, let us
write down the GCT BRST transformation for the Fourier
expansion of the asymptotic fields, which reads

δBφμνðpÞ ¼ −i½pμγνðpÞ þ pνγμðpÞ�;
δBγ

μðpÞ ¼ 0; δBγ̄μðpÞ ¼ iβμðpÞ;
δBϕ̃ðpÞ ¼ δBβμðpÞ ¼ δBβðpÞ ¼ δBγðpÞ ¼ δBγ̄ðpÞ ¼ 0:

ð6:38Þ
8The Fourier transform of a field is denoted by the same field

except for the argument x or p, for simplicity.
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Using this BRST transformation, the GCT BRST trans-
formation for the components in Eq. (6.37) takes the form

δBφIðpÞ ¼ 0; δBωμðpÞ ¼ iγμðpÞ;
δBγ̄μðpÞ ¼ iβμðpÞ; δBγμðpÞ ¼ δBβμðpÞ ¼ 0; ð6:39Þ

where p1 ¼ p2 ¼ 0 was used. This BRST transformation
implies that φIðpÞ could be the physical observable, while
the set of fields fωμðpÞ; βμðpÞ; γμðpÞ; γ̄μðpÞg might belong
to the BRST quartet, which are dropped from the physical
state by the Kugo-Ojima subsidiary condition, QBjphysi ¼
0 [8]. However, note that βμðpÞ; γμðpÞ, and γ̄μðpÞ are
simple pole fields obeying p2βμðpÞ ¼ p2γμðpÞ ¼
p2γ̄μðpÞ ¼ 0, but φμνðpÞ is a dipole field satisfying
ðp2Þ2φμνðpÞ ¼ 0, so that a naive Kugo-Ojima quartet
mechanism does not work.
To clarify the BRST quartet mechanism, let us calculate

their 4D CRs. From Eqs. (6.30)–(6.35) and the definition
(6.37), it is straightforward to derive the following 4D CRs:

½φIðpÞ;φ†
JðqÞ� ¼ −12ϕ−2

0 δIJθðp0Þδðp2Þδ4ðp − qÞ; ð6:40Þ

½φIðpÞ;ω†
μðqÞ�¼½φIðpÞ;β†μðqÞ�¼½βμðpÞ;β†νðqÞ�¼0; ð6:41Þ

½ωμðpÞ; β†νðqÞ� ¼ −iϕ−2
0 ημνθðp0Þδðp2Þδ4ðp − qÞ; ð6:42Þ

fγμðpÞ; γ̄†νðqÞg ¼ iϕ−2
0 ημνθðp0Þδðp2Þδ4ðp − qÞ: ð6:43Þ

In addition, we have a rather complicated expression for
½ωμðpÞ;ω†

νðqÞ� because φμνðpÞ is a dipole field, but luckily
this expression is not necessary for our aim [8]. It is known
how to extract a simple pole field from a dipole field, which
amounts to using an operator defined by [8]

Dp ¼ 1

2jp⃗j2 p0

∂

∂p0

þ c; ð6:44Þ

where c is a constant. Using this operator, we can define a
simple pole field φ̂μνðpÞ from the dipole field φμνðpÞ,
which obeys ðp2Þ2φμνðpÞ ¼ 0, as

φ̂μνðpÞ≡ φμνðpÞ −Dpp2φμνðpÞ
¼ φμνðpÞ − 24iDppðμβνÞðpÞ; ð6:45Þ

where in the last equality we have used the Fourier
transform of the linearized field equation (6.12). It is then
easy to verify the equation

p2φ̂μνðpÞ ¼ 0: ð6:46Þ

Then, in Eq. (6.37) we replace φμν of ωμ with φ̂μν, and we
redefine ωμ as ω̂μ:

ω̂0ðpÞ ¼ −
1

2p0

φ̂00ðpÞ; ω̂IðpÞ ¼ −
1

p0

φ̂0IðpÞ;

ω̂3ðpÞ ¼ −
1

2p3

φ̂33ðpÞ: ð6:47Þ

The key point is that with this redefinition from ωμ to ω̂μ,
the BRST transformation and the 4D CRs remain
unchanged owing to δBβμ ¼ 0 and ½βμðpÞ; β†νðqÞ� ¼
½φIðpÞ; β†μðqÞ� ¼ 0, that is,

δBω̂μðpÞ¼ iγμðpÞ; ½ω̂μðpÞ;β†νðqÞ�¼ ½ωμðpÞ;β†νðqÞ�;
½φIðpÞ;ω̂†

μðqÞ�¼ ½φIðpÞ;ω†
μðqÞ�: ð6:48Þ

Now it turns out that all of the fields fφI; ω̂μ; βμ; γμ; γ̄μg
are simple pole fields.9 Since all of the fields become simple
pole fields, we can obtain the standard creation and annihi-
lation operators in the three-dimensional Fourier expansion
from those in the four-dimensional one through Eq. (6.29).
As a result, the three-dimensional (anti)commutation rela-
tions, which are denoted as ½Φðp⃗Þ;Φ†ðq⃗Þg with
Φðp⃗Þ≡fφIðp⃗Þ;ω̂μðp⃗Þ;βμðp⃗Þ;γμðp⃗Þ; γ̄μðp⃗Þg, are given by10

½Φðp⃗Þ;Φ†ðq⃗Þg ¼

0
BBBBBBBB@

−12ϕ−2
0 δIJ

½ω̂μðp⃗Þ; ω̂†
νðq⃗Þ� −iϕ−2

0 ημν
iϕ−2

0 ημν 0

iϕ−2
0 ημν

−iϕ−2
0 ημν

1
CCCCCCCCA
δðp⃗ − q⃗Þ: ð6:49Þ

The (anti)commutation relations (6.49) have in essence the
same structure as those of the Yang-Mills theory [8].
Hence, we find that φI could be the physical observable,
while the set of fields fω̂μ; βμ; γμ; γ̄μg belongs to the BRST
quartet.

9Without the redefinition, φIðpÞ is already a simple pole field,
as can be seen in Eq. (6.40).

10The bracket ½A; Bg is the graded commutation relation
denoting either a commutator or anticommutator, according to
the Grassmann-even or -odd character of A and B, i.e.,
½A; Bg ¼ AB − ð−ÞjAjjBjBA.
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Next, let us move on to another BRST transformation:
the BRST transformation for the Weyl transformation. The
Weyl BRST transformation for the asymptotic fields is of
the form

δ̄Bφμν ¼ 2cημν; δ̄Bϕ̃ ¼ −ϕ0γ; δ̄Bγ ¼ 0; δ̄Bγ̄ ¼ iβ;

δ̄Bβ ¼ δ̄Bβμ ¼ δ̄Bγμ ¼ δ̄Bγ̄μ ¼ 0: ð6:50Þ

The Weyl BRST transformation of φI is vanishing,

δ̄BφI ¼ 0; ð6:51Þ

which means that together with δBφI ¼ 0, φI is truly the

physical observable. The four-dimensional (anti)commu-
tation relations among the fields fϕ̃; β; γ; γ̄g read

½ϕ̃ðpÞ; ϕ̃†ðqÞ� ¼ 0;

½ϕ̃ðpÞ; β†ðqÞ� ¼ ϕ−1
0 θðp0Þδðp2Þδ4ðp − qÞ;

fγðpÞ; γ̄†ðqÞ� ¼ iϕ−2
0 θðp0Þδðp2Þδ4ðp − qÞ: ð6:52Þ

As can also be seen in these 4D CRs, all of the fields
fφI; ϕ̃; β; γ; γ̄g are massless simple pole fields. Via
Eq. (6.29), the three-dimensional (anti)commutation rela-
tions ½Φðp⃗Þ;Φ†ðq⃗Þg with Φðp⃗Þ≡ fφIðp⃗Þ; ϕ̃ðp⃗Þ; βðp⃗Þ;
γðp⃗Þ; γ̄ðp⃗Þg are of the form

½Φðp⃗Þ;Φ†ðq⃗Þg ¼

0
BBBBBB@

−12ϕ−2
0 δIJ

0 ϕ−1
0

ϕ−1
0 0

iϕ−2
0

−iϕ−2
0

1
CCCCCCA
δðp⃗ − q⃗Þ: ð6:53Þ

Thus, φI is the physical observable while the set of fields
fϕ̃; β; γ; γ̄g consists of the BRST quartet and is the
unphysical mode by the Kugo-Ojima subsidiary condition
]8 ]. Here it is worth mentioning that the ghost-like scalar
field ϕ belongs to the unphysical mode, so together with the
result obtained in the analysis of the GCT BRST cohomol-
ogy the physical S matrix is found to be unitary.

VII. CHORAL SYMMETRY

As mentioned in Sec. III, a set of fields (including the
space-time coordinates xμ) XM ≡ fxμ; bμ; σ; B; cμ; c̄μ; c; c̄g
obeys a very simple equation:

gμν∂μ∂νXM ¼ 0: ð7:1Þ

This equation holds if and only if we adopt the extended de
Donder gauge and the new scalar gauge as gauge-fixing
conditions for the GCT and the Weyl transformation,
respectively. The existence of this simple equation suggests
that there could be many of conserved currents defined in
Eq. (3.20). In this section, we show explicitly that there
exist such currents and we have a huge global symmetry
called choral symmetry, which is the IOSpð10j10Þ sym-
metry in the present theory.
Let us start with the Lagrangian (3.12), which can be cast

in the form

Lq ¼ g̃μνϕ2

�
1

12
Rμν −

1

2
Êμν

�
: ð7:2Þ

Here we note that g̃μνϕ2 is a Weyl-invariant metric and the
Ricci tensor is invariant under only a global scale trans-
formation. We can further rewrite it in the form

Lq ¼ g̃μνϕ2

�
1

12
Rμν −

1

2
ηNM∂μXM

∂νXN

�

¼ g̃μνϕ2

�
1

12
Rμν −

1

2
∂μXMη̃MN∂νXN

�
; ð7:3Þ

where we have introduced an IOSpð10j10Þ metric ηNM ¼
ηTMN ≡ η̃MN defined as [9]

ηNM¼ η̃MN¼

0
BBBBBBBBBBBBBB@

δνμ
δμν

−1 −1
−1 0

−iδνμ
iδμν

−i
i

1
CCCCCCCCCCCCCCA

: ð7:4Þ

Let us note that this IOSpð10j10Þ metric ηNM, which is a
c-number quantity, has the symmetry property that

ηMN ¼ ð−ÞjMj·jNjηNM ¼ ð−ÞjMjηNM ¼ ð−ÞjNjηNM; ð7:5Þ

where the statistics index jMj is 0 or 1 when XM is
Grassmann-even or Grassmann-odd, respectively. This
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property comes from the fact that ηMN is “diagonal” in the
sense that its off-diagonal, Grassmann-even, and
Grassmann-odd (and vice versa) matrix elements vanish,
i.e., ηMN ¼ 0 when jMj ≠ jNj, thereby being jMj ¼ jNj ¼
jMj · jNj in front of ηMN [9].
Now that the quantum Lagrangian (7.3) is expressed in a

manifestly IOSpð10j10Þ-invariant form except for the
Weyl-invariant metric g̃μνϕ2 (which will be discussed later),
there could exist an IOSpð10j10Þ symmetry as a global
symmetry in our theory. Let us show this fact first. The
infinitesimal OSp rotation is defined by

δXM ¼ ηMLεLNXN ≡ εMNXN; ð7:6Þ

where ηMN is the inverse matrix of ηMN , and the infini-
tesimal parameter εMN has the following properties:

εMN ¼ð−Þ1þjMj·jNjεNM; εMNXL¼ð−ÞjLjðjMjþjNjÞXLεMN:

ð7:7Þ

Moreover, in order to find the conserved current, we
assume that the infinitesimal parameter εMN depends on
the space-time coordinates xμ, i.e., εMN ¼ εMNðxμÞ.
Assuming for a while that the metric g̃μνϕ2 and Rμν are

invariant, the infinitesimal variation of the quantum
Lagrangian (7.3) under the OSp rotation (7.6) is given by

δLq ¼ −g̃μνϕ2ð∂μεNMXM
∂νXN þ εNM∂μXM

∂νXNÞ: ð7:8Þ

It is easy to prove that the second term on the rhs vanishes
owing to the first property in Eq. (7.7). Thus,Lq is invariant
under the infinitesimal OSp rotation. The conserved
current is then calculated as

δLq ¼ −g̃μνϕ2
∂μεNMXM

∂νXN

¼ −
1

2
g̃μνϕ2

∂μεNM½XM
∂νXN − ð−ÞjMj·jNjXN

∂νXM�

¼ −
1

2
g̃μνϕ2

∂μεNMðXM
∂νXN − ∂νXMXNÞ

¼ −
1

2
g̃μνϕ2

∂μεNMXM
∂

↔

νXN

≡ −
1

2
∂μεNMMμMN; ð7:9Þ

from which the conserved current MμMN for the OSp
rotation takes the form

MμMN ¼ g̃μνϕ2XM
∂

↔

νXN: ð7:10Þ

In a similar way, we can derive the conserved current for
the infinitesimal translation

δXM ¼ εM; ð7:11Þ

where εM is the infinitesimal parameter, and assume that it
is a local one when deriving the corresponding conserved
current. Indeed, assuming again that the metric g̃μνϕ2 and
Rμν are invariant under the translation, we can show that Lq

is invariant under an infinitesimal translation,

δLq ¼ −g̃μνϕ2ηNM∂με
M
∂νXN

¼ −g̃μνϕ2
∂μεN∂νXN

≡ −∂μεMPμM; ð7:12Þ

which implies that the conserved current PμM for the
translation reads

PμM ¼ g̃μνϕ2
∂νXM ¼ g̃μνϕ2ð1∂↔νXMÞ: ð7:13Þ

The above proofs only make sense under the assumption
that the metric g̃μνϕ2 and Rμν are invariant under the
IOSpð10j10Þ symmetry. So the problem reduces to a
question: is this assumption correct? The answer is obvi-
ously “no,” but the noninvariant terms can be compensated
by a suitable Weyl transformation. To show this fact, let us
consider only the case of the infinitesimal OSp rotation
since we can treat the case of the translation in a perfectly
similar manner. Under the infinitesimal OSp rotation (7.6),
the dilaton σðxÞ, which is defined as ϕ ¼ eσ, transforms as

δσ ¼ ησLεLNXN ¼ −εBNXN; ð7:14Þ

where we have used Eq. (7.4) and

�−1 −1
−1 0

�−1
¼

�
0 −1
−1 1

�
; ð7:15Þ

where we recall that the matrix ηML is the inverse matrix of
ηML. As for the scalar field ϕðxÞ, this transformation for the
dilaton can be interpreted as a Weyl transformation:

ϕ → ϕ0 ¼ eϵðxÞϕ; ð7:16Þ

where the infinitesimal parameter is defined as ϵðxÞ ¼
−εBNXN . This Weyl transformation induces the Weyl
transformation for the metric tensor field at the same time:

gμν → g0μν ¼ e−2ϵðxÞgμν: ð7:17Þ

Let us recall that the metric g̃μνϕ2 is the Weyl-invariant
metric, and thus it is invariant under the Weyl trans-
formation (7.16) and (7.17). This implies that g̃μνϕ2 is
essentially invariant under the OSp rotation if an appro-
priate Weyl transformation is achieved.
What about Rμν? Even if Rμν is not invariant under the

Weyl transformation in itself, this object comes from the
classical Lagrangian of the Weyl-invariant scalar-tensor
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gravity in Eq. (3.1), so together with the metric tensor and
the scalar field it essentially becomes invariant under the
Weyl transformation (7.16) and (7.17). Thus, in this sense,
Rμν is also invariant under the OSp rotation. In any case, it
is worth stressing that in the present formulation, the choral
symmetry IOSpð10j10Þ is not only a symmetry of the FP
ghosts and the Nakanishi-Lautrup fields, but is also closely
related to the classical fields gμν and ϕ which lie in the
classical Lagrangian.
An important remark is relevant to the expression of the

conserved currents (7.10) and (7.13). To make the quantum
Lagrangian Lq invariant under the choral symmetry
IOSpð10j10Þ, it is necessary to perform the Weyl trans-
formation (7.16) and (7.17). Then, it is natural to ask if,
because of this associated Weyl transformation, the expres-
sion for the currents would be modified or not. Here a
miracle happens. As shown in Refs. [10,11], the current for
the Weyl transformation identically vanishes in Weyl-
invariant scalar-tensor gravity. Thus, although we make
the Weyl transformation (7.16) and (7.17), the conserved
currents (7.10) and (7.13) are unchanged.
From the conserved currents (7.10) and (7.13), the

corresponding conserved charges become

MMN ≡
Z

d3xM0MN ¼
Z

d3xg̃0νϕ2XM
∂

↔

νXN;

PM ≡
Z

d3xP0M ¼
Z

d3xg̃0νϕ2
∂νXM: ð7:18Þ

It then turns out that, using various ETCRs obtained so far,
the IOSpð10j10Þ generators fMMN; PMg generate an
IOSpð10j10Þ algebra:

½PM; PNg ¼ 0;

½MMN; PRg ¼ i½PMη̃NR − ð−ÞjNjjRjPN η̃MR�;
½MMN;MRSg ¼ i½MMSη̃NR − ð−ÞjNjjRjMMRη̃NS

− ð−ÞjNjjRjMNSη̃MR

þ ð−ÞjMjjRjþjNjjSjMNRη̃MS�: ð7:19Þ

As a final remark, it is worth pointing out that all of the
global symmetries in the present theory are expressed in
terms of the generators of the choral symmetry. For
instance, the BRST charges for the GCT and Weyl trans-
formation are expressed, respectively, as

QB ≡Mðbρ; cρÞ ¼
Z

d3xg̃0νϕ2bρ ∂
↔

νcρ;

Q̄B ≡MðB; cÞ ¼
Z

d3xg̃0νϕ2B∂

↔

νc: ð7:20Þ

VIII. GRAVITATIONAL CONFORMAL
SYMMETRY

Even though we already fixed the Weyl symmetry by the
scalar gauge condition (3.6), we still have its linearized,
residual symmetries. In order to look for the residual
symmetries, it is convenient to take the extended de
Donder gauge (3.5) into consideration simultaneously.11

With the help of the extended de Donder gauge (3.5), the
scalar gauge condition (3.6) can be rewritten as

0 ¼ ∂μðg̃μνϕ∂νϕÞ ¼ ∂μðg̃μνϕ2
∂νσÞ ¼ g̃μνϕ2

∂μ∂νσ; ð8:1Þ

where we have used the relation between the scalar field
and dilaton, ϕ ¼ eσ. Under the Weyl transformation (3.2)
with ΩðxÞ≡ eΛðxÞ, the dilaton σ transforms as

σ → σ0 ¼ σ − logΩ ¼ σ − Λ; ð8:2Þ
where we have used the Weyl transformation (3.2) for the
scalar field. Since g̃μνϕ2 is a Weyl-invariant quantity, the
Weyl transformation changes Eq. (8.1) to

0 ¼ g̃μνϕ2
∂μ∂νσ → 0 ¼ g̃μνϕ2

∂μ∂νσ
0 ¼ g̃μνϕ2

∂μ∂νðσ − ΛÞ:
ð8:3Þ

This equation shows that when we use the extended de
Donder gauge, the scalar gauge condition is still invariant
under the Weyl transformation as long as

gμν∂μ∂νΛ ¼ 0 ð8:4Þ
is satisfied, thereby implying the existence of the residual
symmetries [12–14]. Selecting the coefficients appropri-
ately for later convenience, the solution to Eq. (8.4) is
given by

Λ ¼ λ − 2kμxμ; ð8:5Þ

where λ and kμ are constants.12

We can also verify the invariance of the quantum
Lagrangian under the residual symmetries more directly.
To do this, let us assume that Λ (or, equivalently, λ and kμ)
are the infinitesimal parameters. It then turns out that the
quantum Lagrangian (3.12) is invariant under the residual
symmetries,

δgμν ¼ 2ðλ − 2kρxρÞgμν;
δσ ¼ −ðλ − 2kρxρÞ; δbμ ¼ 2kμB; ð8:6Þ

11The same strategy was adopted in different theories in
Refs. [12–14].

12It is shown in Appendix B that the transformations associated
with the parameters λ and kμ correspond to dilatation and the
special conformal transformation, respectively, in a flat Minkow-
ski background.
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where the other fields are unchanged. The generators
corresponding to the transformation parameters λ and kμ
are constructed out of those of the choral symmetry as,
respectively,

D0 ≡ −PðBÞ ¼ −
Z

d3xg̃0νϕ2
∂νB;

Kμ ≡ 2Mμðx; BÞ ¼ 2

Z
d3xg̃0νϕ2xμ ∂

↔

νB: ð8:7Þ

In addition to the generators D0 and Kμ, one can construct
the translation generator Pμ and GLð4Þ generator Gμ

ν from
those of the choral symmetry IOSpð10j10Þ as

Pμ ≡ PμðbÞ ¼
Z

d3xg̃0νϕ2
∂νbμ;

Gμ
ν ≡Mμ

νðx; bÞ − iMμ
νðcτ; c̄τÞ

¼
Z

d3xg̃0λϕ2ðxμ ∂↔λbν − icμ ∂
↔

λc̄νÞ: ð8:8Þ

Now we would like to show that in our theory there is a
gravitational conformal algebra that is slightly different
from the conformal algebra in a flat Minkowski space-time.
To this aim, let us consider a set of generators
fPμ; Gμ

ν; Kμ; D0g. From these generators, we wish to
construct the generator D for a scale transformation.
Recall that in conformal field theory in four-dimensional
Minkowski space-time the dilatation generator obeys the
following algebra for a local operator OiðxÞ of conformal
dimension Δi [15,16]

13:

½iD;OiðxÞ� ¼ xμ∂μOiðxÞ þ ΔiOiðxÞ: ð8:9Þ

Since the scalar field ϕðxÞ has conformal dimension 1, it
must satisfy the equation

½iD;ϕðxÞ� ¼ xμ∂μϕðxÞ þ ϕðxÞ: ð8:10Þ

To be consistent with this equation, we shall make a
generator for the scale transformation. From the definitions
(8.7) and (8.8), we find

½iGμ
ν;ϕðxÞ� ¼ xμ∂μϕðxÞ; ½iD0;ϕðxÞ� ¼ −ϕðxÞ: ð8:11Þ

The following linear combination of Gμ
ν and D0 does

the job:

D≡Gμ
μ −D0: ð8:12Þ

As a consistency check, it is valuable to see how this
operator D acts on the metric field, whose result reads

½iD; gστ� ¼ ½iGμ
μ; gστ� − ½iD0; gστ�

¼ ðxμ∂μgστ þ 2gστÞ − 2gστ ¼ xμ∂μgστ; ð8:13Þ

which implies that the metric field has conformal dimen-
sion 0, as desired, and this result will be used later when
discussing spontaneous symmetry breaking.
Next, let us calculate an algebra among the generators

fPμ; Gμ
ν; Kμ; Dg. After some calculations, we find that the

algebra closes and takes the form

½Pμ;Pν�¼0; ½Pμ;Gρ
σ�¼ iPσδ

ρ
μ;

½Pμ;Kν�¼−2iðGρ
ρ−DÞδνμ;

½Pμ;D�¼ iPμ; ½Gμ
ν;Gρ

σ�¼ iðGμ
σδ

ρ
ν−Gρ

νδ
μ
σÞ;

½Gμ
ν;Kρ�¼ iKμδρν; ½Gμ

ν;D�¼ ½Kμ;Kν�¼0;

½Kμ;D�¼−iKμ; ½D;D�¼0: ð8:14Þ

To extract the gravitational conformal algebra in quantum
gravity, it is necessary to introduce the “Lorentz” generator,
which can be constructed from the GLð4Þ generator as

Mμν ≡ −ημρGρ
ν þ ηνρGρ

μ: ð8:15Þ
In terms of the generatorMμν, the algebra (8.14) can be cast
in the form

½Pμ;Pν� ¼ 0; ½Pμ;Mρσ� ¼ iðPρημσ −PσημρÞ;
½Pμ;Kν� ¼−2iðGρ

ρ−DÞδνμ; ½Pμ;D� ¼ iPμ;

½Mμν;Mρσ� ¼−iðMμσηνρ−MνσημρþMρμησν−MρνησμÞ;
½Mμν;Kρ� ¼ ið−Kμδ

ρ
ν þKνδ

ρ
μÞ; ½Mμν;D� ¼ ½Kμ;Kν� ¼ 0;

½Kμ;D� ¼−iKμ; ½D;D� ¼ 0; ð8:16Þ

where we have defined Kμ ≡ ημνKν. It is of interest that the
algebra (8.16) in quantum gravity, which we call “gravi-
tational conformal algebra,” formally resembles conformal
algebra in flat Minkowski space-time except for the
expression for ½Pμ; Kν�.14 This difference reflects from
the difference of the definition of conformal dimension
in both gravity and conformal field theory, for which the
metric tensor field gμν has 2 in gravity as seen in Eq. (3.2)
while it has 0 in conformal field theory as seen
in Eq. (8.13).

13For clarity, we will call a global scale transformation in a flat
Minkowski space-time “dilatation.” Dilatation is usually inter-
preted as a subgroup of the general coordinate transformation in a
such way that the space-time coordinates are transformed as xμ →
Ωxμ in the flat space-time, where Ω is a constant scale factor,
whereas the global scale transformation is a rescaling of all
lengths by the same Ω as gμν → Ω2gμν. The two viewpoints are
completely equivalent since all of the lengths are defined via the
line element ds2 ¼ gμνdxμdxν.

14In the case of conformal algebra in flat space-time,
½Pμ; Kν� ¼ −2iðδνμDþMμ

νÞ.
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IX. SPONTANEOUS BREAKING OF
SYMMETRIES

In the theory in hand, there are huge global symmetries,
which are IOSpð10j10Þ supersymmetry, so it is valuable to
investigate which symmetries are spontaneously broken or
survive even in the quantum regime. In this section, we
postulate the existence of a unique vacuum j0i, which is
normalized to unity:

h0j0i ¼ 1: ð9:1Þ

Furthermore, we assume that the vacuum is translation
invariant,

Pμj0i ¼ 0; ð9:2Þ

and the vacuum expectation values (VEVs) of the metric
tensor gμν and scalar field ϕ are, respectively, the
Minkowski metric ημν and a nonzero constant ϕ0 ≠ 0:

h0jgμνj0i ¼ ημν; h0jϕj0i ¼ ϕ0: ð9:3Þ

By a straightforward calculation, we can obtain the
following VEVs:

h0j½iPμðxÞ; bρ�j0i ¼ −δμρ; h0jfiPμðcτÞ; c̄ρgj0i ¼ iδμρ;

h0jfiPμðc̄τÞ; cρgj0i ¼ −iδρμ;

h0j½iMμνðx; xÞ; 1
2
ð∂λbρ − ∂ρbλÞ�j0i ¼ −ðδμλδνρ − δνλδ

μ
ρÞ;

h0jfiMμνðx; cτÞ; ∂λc̄ρgj0i ¼ iδμλδ
ν
ρ; h0jfiMμ

νðx; c̄τÞ; ∂λcρgj0i ¼ −iδμλδ
ρ
ν;

h0j½iPðσÞ; B�j0i ¼ 1; h0jfiPðcÞ; c̄gj0i ¼ i; h0jfiPðc̄Þ; cgj0i ¼ −i;

h0jfiMðσ; cÞ; c̄gj0i ¼ iσ0; h0jfiMðσ; c̄Þ; cgj0i ¼ −iσ0; ð9:4Þ

where h0jσðxÞj0i≡ σ0. Equation (9.4) shows that the
symmetries generated by the conserved charges

fPμðxÞ; PμðcτÞ; Pμðc̄τÞ;Mμνðx; xÞ;Mμνðx; cτÞ;Mμ
νðx; c̄τÞ;

PðσÞ; PðcÞ; Pðc̄Þ;Mðσ; cÞ;Mðσ; c̄Þg

are necessarily broken spontaneously, and therefore
bμ; cμ; c̄μ; B; c, and c̄ acquire massless Nambu-Goldstone
modes. Note that the exact masslessness of the dilaton σ
cannot be proved in this way.
Next, on the basis of gravitational conformal symmetry,

we will show that GLð4Þ, special conformal symmetry, and
scale symmetry are spontaneously broken down to
Poincaré symmetry. We find that the VEVof a commutator
between the GLð4Þ generator and the metric field reads

h0j½iGμ
ν; gστ�j0i ¼ δμσηντ þ δμτ ηνσ: ð9:5Þ

Thus, the Lorentz generator, which is defined in Eq. (8.15),
has a vanishing VEV:

h0j½iMμν; gστ�j0i ¼ 0: ð9:6Þ

On the other hand, the symmetric part, which is defined as
M̄μν ≡ ημρGρ

ν þ ηνρGρ
μ, has a nonvanishing VEV:

h0j½iM̄μν; gστ�j0i ¼ 2ðημσηντ þ ημτηνσÞ: ð9:7Þ

Thus,GLð4Þ symmetry is spontaneously broken to Lorentz
symmetry, where the corresponding Nambu-Goldstone
boson with ten independent components is nothing but
the massless graviton [17]. Here it is interesting that in a
sector of the scalar field, GLð4Þ symmetry and of course
Lorentz symmetry do not give rise to a symmetry breaking,
as can be seen in the commutators

h0j½iGμ
ν;ϕ�j0i ¼ h0j½iMμν;ϕ�j0i ¼ h0j½iM̄μν;ϕ�j0i ¼ 0:

ð9:8Þ

Now we wish to clarify how the scale symmetry and
special conformal symmetry are spontaneously broken and
what the corresponding Nambu-Goldstone bosons are. As
for the scale symmetry, it is not the gravitational field but
rather the dilaton that gives rise to spontaneous symmetry
breaking. Indeed, Eq. (8.13) gives us

h0j½iD; gστ�j0i ¼ 0: ð9:9Þ

On the other hand, for the dilaton, from Eq. (8.10) we have

h0j½iD; σ�j0i ¼ 1; ð9:10Þ

which elucidates the spontaneous symmetry breaking of
scale symmetry, whose Nambu-Goldstone boson is just the
massless dilaton σðxÞ.
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Regarding the special conformal symmetry, we find

h0j½iKμ; ∂νσ�j0i ¼ 2δμν : ð9:11Þ

This equation means that the special conformal symmetry
is certainly broken spontaneously and its Nambu-
Goldstone boson is the derivative of the dilaton. This
interpretation can also be verified from the gravitational
conformal algebra. In the algebra (8.16), we have a
commutator between Pμ and Kν:

½Pμ; Kν� ¼ −2iðGρ
ρ −DÞδνμ: ð9:12Þ

Let us consider the Jacobi identity,

½½Pμ; Kν�; σ� þ ½½Kν; σ�; Pμ� þ ½½σ; Pμ�; Kν� ¼ 0: ð9:13Þ

Using the translational invariance of the vacuum in
Eq. (9.2) and the equation

½Pμ; σ� ¼ −i∂μσ; ð9:14Þ

and taking the VEV of the Jacobi identity (9.13), we can
obtain the VEV

h0j½Kν; ∂μσ�j0i ¼ −2δνμh0j½Gρ
ρ −D; σ�j0i ¼ −2iδνμ; ð9:15Þ

which coincides with Eq. (9.11), as promised. In other
words, GLð4Þ symmetry is spontaneously broken to
Poincaré symmetry, whose Nambu-Goldstone boson is
the graviton, and scale symmetry and special conformal
symmetry are also spontaneously broken, and their corre-
sponding Nambu-Goldstone bosons are the dilaton and
derivative of the dilaton, respectively. It is of interest that
the Nambu-Goldstone boson associated with special con-
formal symmetry is not an independent field in quantum
gravity, as it is in conformal field theory [18].

X. CONCLUSION

In this article we have performed a manifestly covariant
quantization and constructed a quantum theory of Weyl-
invariant scalar-tensor gravity within the framework of the
BRST formalism. In the past, Nakanishi developed a
similar quantum gravitational theory of Einstein’s general
relativity [4,5], and the present work provides its natural
generalization in the sense that Weyl symmetry is treated on
the same footing as general coordinate symmetry.
Since Weyl-invariant scalar-tensor gravity has been

known to be equivalent to general relativity in unitary
gauge where the scalar field is gauge fixed to be a constant,
it is natural to expect that our present theory shares several
characteristic features with Nakanishi’s quantum gravity. In
particular, both theories have a huge global symmetry
called “choral symmetry,” but our choral symmetry
ISOpð10j10Þ is larger than that of Nakanishi’s theory,

which is ISOpð8j8Þ, owing to the presence of Weyl
symmetry in our formulation. Compared with the case
of general relativity, one peculiar feature of our choral
symmetry is that choral symmetry needs Weyl symmetry in
proving its invariance of the quantum Lagrangian so that it
is closely related to a gravitational sector while in the case
of general relativity the choral symmetry is isolated from
classical Lagrangian and comes from purely the Lagrangian
involving the Nakanishi-Lautrup field and the FP ghosts.
It is worth mentioning that in our quantum gravity there

is a gravitational conformal algebra which is relevant to
conventional conformal algebra in a flat Minkowski space-
time. According to the Zumino theorem [19], theories that
are invariant under the GCT and Weyl transformation have
conformal invariance in a flat Minkowski background at the
classical level. The present study supports the conjecture
that the Zumino theorem could be valid even in quantum
gravity.
Last but not least, we should comment on the Weyl

anomaly. In this respect, let us recall that in the manifestly
scale-invariant regularization method [20–25], the scale
invariance is free of scale anomalies. Though a completely
satisfying formalism is still missing, we believe that in the
Weyl-invariant regularization method, the Weyl invariance
would also be kept at the operator level without the Weyl
anomaly, and is spontaneously broken when considering
states in the Hilbert space.
There is a lot of work to be done in future. First of all, we

should develop manifestly Weyl-invariant regularization
methods by introducing an additional scalar field that plays
the role of the renormalization mass scale μ. Second, we
should prove the quantum Zumino theorem in the case that
the classical Lagrangian is an arbitrary Lagrangian that is
invariant under the Weyl transformation. Third, we should
add the Lagrangian of conformal gravity, that is, L ∼ffiffiffiffiffiffi−gp

C2
μν ρσ with conformal tensor Cμν ρσ, and investigate if a

similar analysis to the present work could be done. Finally,
it is known that Weyl-invariant scalar-tensor gravity
reduces to Weyl transverse gravity when the longitudinal
general coordinate transformation is gauge fixed [26–29].
Weyl transverse gravity possesses Weyl symmetry, to
which we could apply the present formulation and inves-
tigate various quantum aspects. We hope to return to these
problems in the near future.
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APPENDIX A: DERIVATION OF EQ. (3.18)

In this appendix we present a derivation of Eq. (3.18).
First of all, let us notice that the scalar gauge condition (3.6)
is equivalent to the equation
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□ϕ2 ¼ 0: ðA1Þ

Then, the Einstein equation in Eq. (3.15) reads

Gμν − ϕ−2∇μ∇νϕ
2 − 6ϕ−2

�
Eμν −

1

2
gμνE

�
¼ 0: ðA2Þ

With the help of Eq. (A1), the trace part of this equation
becomes

R ¼ 6ϕ−2E: ðA3Þ

Inserting Eq. (A3) into Eq. (A2) leads to

Rμν ¼ ϕ−2ð∇μ∇νϕ
2 þ 6EμνÞ: ðA4Þ

Next, applying the covariant derivative ∇μ to Eq. (A2)
and using the Bianchi identity ∇μGμν ¼ 0, we have

2∇μϕ∇μ∇νϕ
2 − ϕRν

μ∇μϕ
2 þ 12∇μϕ

�
Eμν −

1

2
gμνE

�

− 6ϕ∇μ

�
Eμν −

1

2
gμνE

�
¼ 0; ðA5Þ

where Eq. (A1) was used. Substituting Eq. (A4) into
Eq. (A5) produces

∇μ

�
Eμν −

1

2
gμνE

�
þ ϕ−1∇νϕE ¼ 0: ðA6Þ

At this point, we make use of an identity that holds for
any symmetric tensor Sμν ¼ Sνμ [1]:

∇νSνμ ¼ h−1∂νðhSνμÞ þ
1

2
Sαβ∂μgαβ: ðA7Þ

Identifying Sμν with Eμν and using Eq. (3.14), we obtain

gρν∂ρÊμν −
1

2
gαβ∂μÊαβ ¼ 0; ðA8Þ

where we used the extended de Donder gauge condition
(3.5). Finally, when we calculate the lhs of Eq. (A8) using
the definition of Êμν in Eq. (3.13), we can arrive at the
desired Eq. (3.18).

APPENDIX B: RESIDUAL SYMMETRY AND
CONFORMAL SYMMETRY

In this appendix we would like to explain that the
residual symmetries found in Eq. (8.5) in a curved
space-time reduce to a dilatational invariance and special
conformal invariance in a flat Minkowski space-time.

Before doing so, let us first recall that a conformal
transformation [15,16] can be defined as a general coor-
dinate transformation that can be undone by a Weyl
transformation when the space-time metric is the flat
Minkowski one. With this definition, the conformal trans-
formation is described by the equation

∂μϵν þ ∂νϵμ ¼ 2ΛðxÞημν; ðB1Þ

where ΛðxÞ is the infinitesimal transformation parameter of
the Weyl transformation, i.e., ΩðxÞ≡ eΛðxÞ ≈ 1þ ΛðxÞ.
Taking the trace of Eq. (B1) enables us to determine

ΛðxÞ,

Λ ¼ 1

4
∂
ρϵρ: ðB2Þ

Inserting this Λ into Eq. (B1) yields

∂μϵν þ ∂νϵμ ¼
1

2
∂
ρϵρημν; ðB3Þ

which is often called the “conformal Killing equation” in
the Minkowski space-time. It is worth stressing that
Eq. (B3) implies the following fact: the flat Minkowski
metric gμν ¼ ημν is invariant in the space of metric functions
under a suitable combination of the general coordinate
transformation and Weyl transformation in such a way that

δðϵμÞ ¼ δGCTðϵμÞ − δW

�
Λ ¼ 1

4
∂
ρϵρ

�
ðB4Þ

when the vector field ϵμðxÞ obeys the conformal Killing
equation (B3). To put it differently, the characteristic
feature of the theory under consideration is that the
Lagrangian (3.1) possesses conformal symmetry with 15
global parameters, which is a subgroup of the general
coordinate transformation and Weyl transformation.
Multiplying it by ∂

μ
∂
ν, we obtain

□∂
μϵμ ¼ 0: ðB5Þ

Moreover, multiplying Eq. (B3) by ∂
μ
∂λ and then sym-

metrizing the indices λ and ν leads to the equation

∂ν∂λ∂
μϵμ ¼ 0; ðB6Þ

where we have used Eqs. (B3) and (B5). It turns out that a
general solution to Eq. (B6) reads

ϵμ ¼ aμ þ ωμνxν þ λxμ þ kμx2 − 2xμkρxρ; ðB7Þ

where aμ;ωμν ¼ −ωνμ; λ, and kμ are all constant parameters
that correspond to translation, Lorentz transformation, dila-
tation, and special conformal transformation, respectively.
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At this point, it is useful to verify what form the
infinitesimal parameter Λ generated by the “conformal
Killing vector” ϵμ in Eq. (B7) takes. Actually, substituting
Eq. (B7) into Eq. (B2), we have

Λ ¼ λ − 2kμxμ: ðB8Þ

This is nothing but the zero-mode solutions in Eq. (8.5).
This result implies that finding the residual symmetries
(8.5) amounts to solving the conformal Killing equation in
a flat Minkowski space-time.
To summarize, we have explicitly shown that in

our quantum gravity, Weyl symmetry—together with

general coordinate invariance—generates conformal sym-
metry in a flat Minkowski background. This result is a
quantum-mechanical generalization of the well-known
Zumino theorem [19] which insists that theories that
are invariant under both the general coordinate transfor-
mation and Weyl transformation (or local scale trans-
formation) possess conformal symmetry in ae flat
Minkowski background. Even if we used the Weyl-
invariant classical Lagrangian (3.1), we think that the result
obtained here would hold for any theories that are invariant
under the GCT and Weyl transformation if we adopt the
extended de Donder gauge and scalar gauge for these
invariances.
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