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We perform a manifestly covariant quantization of a Weyl-invariant (i.e., a locally scale-invariant) scalar-
tensor gravity in the extended de Donder gauge condition (or harmonic gauge condition) for general
coordinate invariance and a new scalar gauge for Weyl invariance within the framework of the BRST
formalism. We show that choral symmetry, which is a Poincaré-like /0Sp(8|8) supersymmetry in the case
of Einstein gravity, is extended to a Poincaré-like /0Sp(10|10) supersymmetry. We point out that there is a
gravitational conformal symmetry in quantum gravity and account for how conventional conformal
symmetry in a flat Minkowski space-time is related to the gravitational conformal symmetry. Moreover, we
examine the mechanism of the spontaneous symmetry breaking of the choral symmetry, and show that the
gravitational conformal symmetry is spontaneously broken to the Poincaré symmetry and the correspond-
ing massless Nambu-Goldstone bosons are the graviton and the dilaton. We also prove the unitarity of the
physical S matrix on the basis of the BRST quartet mechanism.
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I. INTRODUCTION

There is no question that symmetry plays the central role
in both elementary particle physics and quantum gravity.
For instance, in Yang-Mills theory it has been found that we
have a non-Abelian gauge symmetry and that this sym-
metry gives rise to physically significant effects, such as
asymptotic freedom and quark confinement.

It is well known that there are two kinds of symmetries in
nature: global symmetry and gauge symmetry. In order to
understand nature more deeply, it is necessary to under-
stand the meaning of both symmetries. The meaning of
global symmetry is clear in the sense that it operates on
physical observables in a direct manner and shows the real
symmetry of a physical system. On the other hand, the
meaning of gauge symmetry is more elusive than that of
global symmetry since it does not operate on physical
observables directly. To treat gauge symmetry properly in
quantum field theory, it is essential to fix the gauge
symmetry by a suitable gauge condition, and consequently
physical observables are defined as BRST-invariant oper-
ators. Thus, it is sometimes said that gauge symmetry is a
redundancy in the mathematical description of a physical
system rather than a property of the system itself.
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Another important property of symmetries is that many
global symmetries are not exact, but rather only approxi-
mate, whereas gauge symmetry is exact. For instance, there
is a clear prediction of violation of baryon and lepton
numbers by a quantum anomaly in the standard model. This
fact is also supported by the theory of quantum gravity. In
particular, when a black hole evaporates at the quantum
level the baryon and lepton numbers are not conserved,
whereas gauge quantum numbers such as electric and
magnetic charges are precisely conserved since they are
measured by the flux integrals at infinity.

Thus, if a certain global symmetry plays a critical role in
physics, it must be promoted to a gauge symmetry. This
statement holds in particular when constructing theories
involving quantum gravity. In our previous work [1], we
presented a quantum theory of globally scale-invariant
gravity with a real scalar field, which is equivalent to
the well-known Brans-Dicke gravity [2], by constructing its
manifestly covariant BRST formalism. Since many studies
of Brans-Dicke gravity have been limited to a classical
analysis, our theory has provided us with some useful
information on the quantum aspects of Brans-Dicke grav-
ity. Indeed, based on this quantum gravity we have
elucidated a mechanism of how scale invariance is sponta-
neously broken, and consequently how a massless “dila-
ton” emerges thanks to the Nambu-Goldstone theorem in
quantum gravity [1,3]. Then, it is natural to generalize our
formulation to the case of locally scale-invariant (or,
equivalently, Weyl-invariant) scalar-tensor gravity and
ask if we can get some useful knowledge about the
quantum aspects of the theory.
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In this article, we perform a manifestly covariant BRST
quantization of Weyl-invariant scalar-tensor gravity with a
real scalar field in addition to the metric tensor field,
investigate the remaining global symmetries and their
spontaneous symmetry breaking, prove the unitarity of the
S matrix, and elucidate that there exists a gravitational
analog of conformal symmetry in our theory. Long ago, in
pioneering work by Nakanishi [4,5], on the basis of the
Einstein-Hilbert action in the de Donder gauge (harmonic
gauge) for a general coordinate transformation (GCT), it was
shown that there remains a huge residual symmetry—which
is a Poincaré-like /SO p(8]|8) supersymmetry called “choral
symmetry”—in addition to the BRST symmetry and GL(4)
symmetry, etc. In our present formulation, adopting the
extended de Donder gauge condition for the GCT and a
new scalar gauge condition for the Weyl transformation,
the choral symmetry is extended to a Poincaré-like
ISOp(10[10) supersymmetry, which includes the scale
symmetry and gravitational special conformal symmetry.
It is of interest that, as in a flat Minkowski space-time, both
the scale symmetry and special conformal symmetry are
spontaneously broken, and not only is the dilation a Nambu-
Goldstone boson for the scale symmetry, but its derivative
also provides a Nambu-Goldstone boson for the special
conformal transformation.

The paper is organized as follows. In Sec. II we discuss a
general gravitational theory for which there are two local
symmetries: the general coordinate invariance and the Weyl
symmetry. We point out that in such a theory we must
choose a gauge-fixing condition for the GCT carefully in
such a way that it does not violate the Weyl symmetry, and
similarly a gauge-fixing condition for the Weyl trans-
formation should be selected in order not to break the
GCT. In Sec. III, beginning with Weyl-invariant scalar-
tensor gravity [6], we fix the GCT and the Weyl trans-
formation by the extended de Donder gauge and the new
scalar gauge conditions, and construct a gauge-fixed,
BRST-invariant quantum Lagrangian. In Sec. IV we cal-
culate various equal-time (anti)commutation relations
(ETCRs) among the fundamental fields, in particular, the
Nakanishi-Lautrup auxiliary field and the Faddeev-Popov
(FP) ghosts. In Sec. V we derive the ETCRs involving the
gravitational field. In Sec. VI we prove the unitarity of the
physical S matrix by means of the BRST quartet mecha-
nism. In Sec. VII we show that there is a choral symmetry
—which is an 70Sp(10[10) supersymmetry—in our
theory. In Sec. VIII we point out the existence of a
gravitational conformal symmetry even in quantum gravity,
and we investigate its spontaneous symmetry breaking in
Sec. IX. The final section is devoted to a discussion.

Two appendices are included for technical details. In
Appendix A a derivation of the equation for the b, field is
given, and in Appendix B we account for the relationship
between the gravitational conformal symmetry and conven-
tional conformal symmetry.

II. CONSISTENCY BETWEEN TWO BRST
SYMMETRIES

We wish to perform a manifestly covariant BRST
quantization of a gravitational theory that is invariant under
both a GCT and Weyl transformation or, equivalently, a
local scale transformation. To take a more general theory
into consideration, without specifying the concrete expres-
sion of the gravitational Lagrangian density, we start with
the classical Lagrangian density1

'CC = ‘Cc(g/w’ 4))’ (21)

which includes the metric tensor field g,, and a scalar field
¢ as dynamical variables.” We assume that L. does not
involve more than first-order derivatives of the metric and
matter fields.

We have a physical situation in mind where we fix the
general coordinate symmetry and Weyl symmetry by
suitable gauge conditions. It is a familiar fact that after
introducing the gauge conditions, instead of two local
gauge symmetries, we are left with two kinds of global
symmetries, which are called the BRST symmetries. The
BRST transformation 6z corresponding to the GCT is
defined as

S8 = —(Vyue, + Vo)
= —(c"0u + 04" Gor + 0, Gpua)
557" = h(VHeh + Vheh — ¢V c9),
Sph = —c0,¢, Spc? = —c*a,c?,

SBZ'/, - in, 5BBp - 0,

(2.2)

where ¢ and ¢, are the FP ghost and antighost, respec-
tively, B, is the Nakanishi-Lautrup (NL) field, and we have
defined g = ,/—g¢" = hg"”. For later convenience, in
place of the NL field B, we introduce a new NL field
defined as

b,=B,— iclaia,,, (2.3)
and its BRST transformation reads
opb, = —cﬂaib,,. (2.4)

'We follow the notation and conventions of Ref. [7]. Lower-
case greek (¢, v, - - -) and Latin letters (i, j, - - -) are used for space-
time and spatial indices, respectively; for instance, y =0, 1, 2, 3
and i = 1, 2, 3. The Riemann curvature tensor and Ricci tensor
are defined by R’,,, = 0,I%, — 9,1, + 1% % —I7% %, and

R,, = R?,,,, respectively. The Minkowski metric tensor is
denoted by Muws Moo = —Mi1 = M = —N33 = —1 and My = 0
for y # v.

It is straightforward to add the other fields, such as gauge
fields and spinors.
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The other BRST transformation &5 corresponding to the
Weyl transformation is defined as

539/,:1/ = zcg;w’ SBQIW = chﬂw

SB¢ = —C¢, (_SBE' = ZB, SBC = SBB = 0, (25)
where ¢ and ¢ are the FP ghost and antighost, respectively,
and B is the NL field. Note that the two BRST trans-
formations are nilpotent, i.e.,

(2.6)

To complete the two BRST transformations, we have
to fix not only the GCT BRST transformation 6z on
c,¢, and B, but also the Weyl BRST transformation
o on c’,c,, and b,. It is easy to determine the former
BRST transformation since the fields ¢, ¢, and B are all
scalar fields, so their BRST transformations should take
the form
5BB:—C/10/1B, 5BC:—C/104C, 5BE:—C/10/16‘. (27)
On the other hand, there is an ambiguity in fixing the latter
BRST transformation, but we would like to propose a
recipe for achieving this goal. The recipe is to just assume
that the two BRST transformations anticommute with each
other, that is,

{6p. 05} = 505 + 0505 = 0, (2.8)
which requires us to take
SBb/J = SBCp = SBZ'/) =0. (29)

Now we would like to explain an important point that is
occasionally missed in the theoretical physics literature,
when two BRST transformations coexist in a theory.
Suppose we fix the GCT by a gauge condition F*(g,,,., ¢) =
0 and the Weyl transformation by a gauge condition
F(g,.¢) = 0. Then, the gauge-fixed and BRST-invariant
Lagrangian density is given by

L, =L+ b6p(c,F*) + 65(CF), (2.10)
where the first term is the classical Lagrangian density
(2.1). In this situation, a natural question arises about the
gauge-fixing conditions: can we take any gauge-fixing
conditions if they fix gauge symmetries anyway? If not,
what gauge conditions are suitable for F* and F?

In order to answer these questions, let us take the two
BRST transformations separately and check whether the
quantum Lagrangian density (2.10) is really invariant under

the BRST transformations up to surface terms. First, taking
the Weyl BRST transformation leads to

6Ly = 6p05(CaF*) = —6505(CaF*)
— —53[(SBEG)F(I—EGSBF(1], (211)
where we have used 6zL. = 0 and Egs. (2.6) and (2.8).
This equation clearly shows that the conditions
ogF* =0 (2.12)
are sufficient conditions such that the Lagrangian density
(2.10) is invariant under the Weyl BRST transformation.
It is of interest to notice that the former condition in
Eq. (2.12) leads to two remaining equations in Eq. (2.9). To
see this fact, let us take the GCT BRST transformation of
the former equation as

0 - 53(_536'(1 - —(_33636'(1 - —ZSBBa

= —i[0gb, + i(65c*)0,C,]. (2.13)
which implies dzb, = 6zc* = 0, which coincide with the
remaining two equations in Eq. (2.9).

On the other hand, the latter condition in Eq. (2.12) gives
rise to important information on the gauge condition for
the GCT: the gauge-fixing condition for the GCT must be
invariant under the Weyl transformation. Thus, for instance,
the conventional de Donder gauge condition (or harmonic
gauge condition),

0,7 =0, (2.14)
is not suitable when there is Weyl invariance.

Next, let us apply the GCT BRST transformation to £,,.
To do this, since the Lagrangian density is in general a
quantity with density, it is more convenient to write it as
L,=./—gL,and F = \/=gF’, where F and F’ are scalars.
Then, taking the GCT BRST variation leads to

5B£q = 53(\/—9;6;) = 6333(\/—96}7/) = —SB(SB(\/—QEF/)
= —65[—/=gV,,c’TF' + \/=g(—c9,¢)F’
— V/=ge(=c’0,F")]

= 0,0p(c’CF), (2.15)

which means that Eq is indeed invariant under the GCT

BRST transformation up to a surface term. In obtaining this
result, we have assumed that

SpF = —cPo,F, (2.16)

In two space-time dimensions the de Donder condition is
Weyl invariant, so it can be used as the gauge-fixing condition for
the GCT.
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which is nothing but the requirement that the quantity F’
should be a scalar under the GCT. Thus, only a scalar
function F’ (or, equivalently, a scalar density F) makes
sense as a gauge-fixing condition for Weyl invariance. Of
course, this scalar function must break Weyl invariance. As
suitable gauge-fixing conditions, in this paper we choose

F* = 0,(3¢*) and F = 0,(7"$0,4).

III. QUANTUM WEYL-INVARIANT
SCALAR-TENSOR GRAVITY

In this section, as a classical Lagrangian4 we take a
Weyl-invariant scalar-tensor gravity whose Lagrangian is of
the form [6]

1 1
‘cc = \/__g(ﬁ ¢2R + Eg’waﬂ(ﬁayqﬁ) s (31)

where ¢ is a real scalar field with a ghost-like kinetic term,
and R is the scalar curvature. In addition to the invariance
under the GCT, this Lagrangian is also invariant under the
Weyl transformation (or the local scale transformation),
defined as

Q7! (x).

Recall that in order to prove the invariance, we need to use
the following transformation of the scalar curvature under
Eq. (3.2):

Guv = g;/w = Qz(x)gllw ¢ — ¢/ = (32)

R— R =Q%R-6Q7'0Q), (3.3)
where (JQ = h7'0,(70,9).

As explained in the previous section, we have to pay
attention to what gauge-fixing conditions should be chosen
for the GCT and Weyl transformation in a consistent
manner. For instance, taking the de Donder condition as
a gauge condition for the GCT is not allowed since it breaks
Weyl symmetry in four space-time dimensions. There are
several interesting choices of suitable gauge conditions for
the GCT, but we shall refer to only two representative
examples. The first gauge condition for the GCT is a Weyl-
invariant version of the de Donder gauge:

9,((—g)ig") = 0. (34)
This gauge choice is invariant under the Weyl transforma-
tion (3.2) and is physically interesting in the sense that it
makes use of only the metric tensor field. However, some
fields such as the Nakanishi-Lautrup field become not a
normal vector field but rather a vector field with density,
which makes several formulas ugly, so we do not adopt

*For simplicity, we henceforth call a Lagrangian density a
Lagrangian.

Eq. (3.4) as a gauge condition for the GCT. The second
gauge condition, which we will use in this article and call
the “extended de Donder gauge,” is given by
9,(7"4*) =0, (3.5)
which is also invariant under the Weyl transformation (3.2).
Next, let us consider a gauge-fixing condition for the
Weyl transformation. From the consistency discussed in
Sec. II, an appropriate gauge condition must obey the
condition that it is invariant under the GCT, that is, a scalar
quantity. Since there are many scalars constructed from the
real scalar field ¢ and the Riemannian tensors, we might
be left in the dark on this issue. However, surprisingly
enough, if we impose the requirement that the FP ghost’s
Lagrangian should have a Weyl-invariant metric #*¢>
instead of the standard metric @*, a suitable gauge
condition for the GCT can be uniquely chosen. Such a
gauge condition, which we call the “scalar gauge con-
dition,” reads

0,(7"¢9,¢) = 0, (3.6)
which can be alternatively written as
Og? = 0. (3.7)

Incidentally, the unitary gauge ¢ = const is often taken to
show that the Weyl-invariant scalar-tensor gravity (3.1) is
equivalent to the Einstein-Hilbert term, but this gauge
choice is not as interesting since no conformal symmetry
remains.

After taking the extended de Donder gauge condition
(3.5) for the GCT and the scalar gauge condition (3.6)
for the Weyl transformation, the gauge-fixed and BRST-
invariant quantum Lagrangian is given by

L, =L+ Lgrirp + Lerirp
= ’Cc + léB (g”y¢zau5u> + lSB [éau(gﬂy¢au¢)]
1 1
=V=9g (ﬁ ¢2R + Eg‘wayqsaqu)
- gﬂyd)z (aﬂbv + iauz'ﬂaucll)

+ 3 ¢0,Bo,¢ — ig" ¢*0,c0,c, (3.8)

where surface terms are dropped. Note that the last term,
which is the FP ghost’s term for the Weyl transformation,

certainly involves the Weyl-invariant metric §**¢?>. Let us
rewrite this Lagrangian concisely as

1 1._
L, =, /_—gﬁqbzR - 5gWEW, (3.9)
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where we have defined

1 o
Eﬂl/ - Eaﬂd)@yd) + ¢2 (aﬂby + laﬂCﬁayCi)

— ¢0,B0,¢ + i?0,80,c + (u < v).

(3.10)

Moreover, it is sometimes more convenient to introduce the
dilaton o(x) by defining

B(x) = e’ (3.11)
and rewriting Eq. (3.9) in the form
26(x) 1 1. v
que V_QER_EQ” E;w s (312)
where we have defined
.1 iy = A
E, = —Eaﬂad,ﬁ +d,b, +1id,c;0,¢
- 0,Bo,6 +id,co,c + (u < v). (3.13)

Note that the relation between E,, and EM is given by
E, = ¢*E,, = ¢*E,,. (3.14)

From the Lagrangian L, it is straightforward to derive
the field equations by taking the variation with respect to
Gu» @ (or 0), by, B, ¢, ¢,, ¢, and ¢ in order:

1 1 1 1

E¢2Gpw _E(vﬂvlf _g;wD)¢2 _E (E;w _Eg/wE) = Ov
1

6¢2R —E—-2¢"¢0,B0,¢—$* B =0,

9,(7¢*)=0. 9,(7*$d,¢)=0.
¢"0,0,¢,=g"0,0,c’ =¢"0,0,c =¢"0,0,c=0, (3.15)
where we have defined the Einstein tensor G,, =R, —
% guwR and E = ¢"E,, . The two gauge-fixing conditions in
Eq. (3.15) lead to a very simple equation for the dilaton:

g 0,0,0 = 0. (3.16)
It is worth noticing that it is not the scalar field ¢ but rather
the dilaton o that satisfies this type of equation.
Furthermore, the trace part of the Einstein equation, i.e.,
the first field equation in Eq. (3.15) and the field equation
for ¢ also give us the equation for B:

¢%,0,B = 0. (3.17)

Finally, using the field equations obtained thus far, after
some calculations, we can also derive the equation for bps:
9"0,0,b, = 0. (3.18)
In other words, by setting X = {x*,b,.0,B, c*,¢,.c,c},
it turns out that XM obeys the very simple equation
¢0,0,X" = 0. (3.19)

This fact, together with the gauge condition d,,(7#*“¢*) = 0,
produces the two kinds of conserved currents:

P = g 20, XM = 4 (19,X).

MEMN = g g2 (XM 3, ), (3.20)

where we have defined XMZ”YN =X"9,YN — (9, XM)YN.

IV. CANONICAL QUANTIZATION AND
EQUAL-TIME COMMUTATION
RELATIONS

In this section, after introducing the canonical commu-
tation relations, we will evaluate various ETCRs among
fundamental variables. To simplify various expressions, we
obey the following abbreviations adopted in Ref. [5]:

[A.B] = [A(x). B()]|o_po. & =8(F =X,

- 1 1 1
fe=me—— = (4.1)
3% \/_—ggoo g™
where we assume that §% is invertible.
Now let us set up the canonical (anti)commutation

relations:

1
[gﬂv’”zjl] = li@ﬁéﬁ +5ﬁ5ﬁ)53, [457”;/,] =+i5,
[B, 7| =+i8® {c?. 7., } ={¢;, 27} = +i858°,

{c.nly={¢c,n.} = +ib, (4.2)
where the other (anti)commutation relations vanish. Here
the canonical variables are g,,,¢,B,c”,¢,, c,c and the
corresponding  canonical conjugate momenta are
ny My g, Wy e, W, T, Tespectively, and the b, field
is regarded as not a canonical variable but rather a
conjugate momentum of G%.

To remove second-order derivatives of the metric
involved in R, we perform an integration by parts once
and rewrite the Lagrangian (3.8) as

>The details of the calculation are presented in Appendix A.
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1 1 o Ta
= 7g”y¢2(l—wur£7a - Fﬂ(lro'l/)
- —fﬁ@ PGPl — §*Tta)

+ 5@””3/4450»4’ + aﬂ(gﬂy¢2)bu
— i3 ¢*0,c,0,¢" + #0,Bpo, ¢

— igw(pza,,aayc + 9, V¥, (4.3)
where the surface term V¥ is defined as
1
W= 5452@“’3 Uy —3T5,) — §“¢°b,.  (4.4)

Using this Lagrangian, the concrete expressions for canoni-
cal conjugate momenta become

oL,
ag/w

I/i
g =

\/_¢2|: g()ig;w oT __ QOTg;M Vo __ g()ag/rrgvi
_I_g()/lgm' Lo +gOTg/wglo' Oygwl + 901/9/4/1) (71:| algaf
——\/_{ (g% + g™ g*) - 9””9”0]455/)(1)

- 5 \/__g(g()/tgbp + g()ug/lp - g()pg/lu)¢2bﬂ’

aL
my =——=g%0,¢ + 25" pb,
op
1 b ~Va b
+ e (=F"Toy + 5Tsy) + 70, B.
g = 6£ = %o,
0B !
oL,
Moo = - _lgoﬂ¢za ca?
oc’
0L, 0
¢ = L = ig%¢p?0,c°,
e T ¢,
oL
T, =—2= —zg°”¢26 c,
ac
oL
T = — = ig%¢*o,c, (4.5)
ac

where we have defined the time derivative such that

G =%— 009,» and differentiation of ghosts is taken

from the right.

From now on, we would like to evaluate various non-
trivial ETCRSs in order. Let us first work with the ETCR in
Eq. (4.2):

!
B ] = =5 (B + 0P (46)

The canonical conjugate momentum ﬂgo has the structure

7% = A+ B¥ oy + Cby, (4.7)
where A%, B¥, and C¥ = —15%¢* ¢ have no g,,, and
B%dy¢p does not have ¢ since 72° does not include the

dynamics of the metric and the scalar fields. Then, we find
that Eq. (4.6) produces

[g;uw } _lf¢ ( u9py + 5I(J)gpﬂ)53' (48)
From this ETCR, we can easily derive ETCRs:
9. by] = (74795 + °8})5"
[0, b)) = if g(3°8, + 38, — 3+ 0)5*.  (4.9)

Here we have used the fact that, since a commutator works
as a derivation, we can have the formulas

[gm/’ CI)/] = _gﬂagyﬁ[gaﬂv (I),]’

1
[, @] = - (9““9”/} - 55/"”9”‘/’ ) [Gap- @], (4.10)

where @ is a generic field. Similarly, the ETCR [z
0 yields

"] =

(4. b)) =0 (4.11)
The ETCR [72°, B'| = 0 yields
[B.b)] = 0. (4.12)

Moreover, the ETCRs [r3,¢'] =0 and [z, B'] = —i&°
produce, respectively,

. ¢ =0.  [p.B]=-if¢p"'5.  (4.13)

As for the ETCRs involving FP ghosts, let us first
consider the anti-ETCRs, {7, c”} = {n?,c}} = i8]8°.
These anti-ETCRs lead to the same anti-ETCR,
) = 702575,

{),c7} = ={¢°, (4.14)
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where we have used a useful identity for generic variables
® and ¥,

(@, 9] = 0y[®, V] — [, V], (4.15)
which holds for the anticommutation relation as well. In a
similar way, the anti-ETCRs {z.,c'} = {z;, '} =i&
yield

{¢.c'} = —{e, @) = —fgp28°. (4.16)

Moreover, [7%°, ¢ = [74°, &) = 0 give us the ETCRs

[b,.c”] = [b,.c)] =0, (4.17)
and similarly, [z%°, ¢] = [#2°,¢'] = 0 produce
[b,.c'| = [b,.c'] = 0. (4.18)

To calculate the ETCRs between B and the FP ghosts, it is
necessary to utilize the ETCRs [B,7.,] = [B,zn7]| =
[B, .| = [B,n:] = 0, and consequently we have
[B,¢}] = [B,¢”] = [B,¢] = [B,¢'] = 0. (4.19)
Furthermore, taking the Weyl BRST transformation of the
third ETCR reads’
0={[iQp.B],&'} + [B,{iQp.¢'}) = [B,iB], (4.20)

where we have used the Weyl BRST transformation (2.5).
As a result, we have the ETCR

[B,B'] = 0. (4.21)

Next, from [zp, ¢}| = [np, ¢”] =0, we find
(4. 8] = [¢.c"] =0. (4.22)

Similarly, from [z, ¢']| = [np, ¢'] = 0, we have
.2 = [p.c'] =0. (4.23)

Using the field equation for ¢, in Eq. (3.15), ie.,
¢"0,0,¢, =0, the ETCR [¢,¢}] =0, and Egs. (4.15)
and (4.22), it is easy to derive the equations

[0.8] = [$.&] = .} = 0. (4.24)

°We define the BRST transformation for the Weyl trans-
formation as 5@ = [iQp, @}, where @ is a generic field and [, }
denotes the graded bracket. Of course, in the case of the GCT
BRST transformation, it is replaced by 5z® = [iQp, @}

Similar equations also hold when ¢/, is replaced with ¢”, ¢/,
or ¢

Now, using the equations obtained above, we are ready
to evaluate the type of ETCRs [®, b),], where @ is a generic

field. First, let us focus on [¢, b;,]. To do this, we start with

. ¢,] = 0in Eq. (4.22) and take its BRST variation for the
GCT as follows:

0 = {iQp. [#. 7]}
= {[iQs.#).2)} + . {i05.T,}]
= {=0(c*0,00). )} + [ i(b), + ic”9,T})]

= —{ch, &, a0 + i, b)). (4.25)
Using Eq. (4.14), we obtain
[, b)) = —if 20,5 (4.26)

It turns out that the ETCRs [z, 73%] = (x4, z3"] = 0 give
rise to

(b)) =—if$p20,6,8°, [c°.b)]=—ifp720,c°5. (4.27)
Similarly, the ETCRS [z, 7%”] = [r;, 22%] = 0 give us

[c.b)|=—if$20,e8%, [é.b)]=—if¢p20,c5°.  (4.28)

In order to evaluate [B,b)], we make use of [z,,b)] =0,
which can be easily proved. Taking its BRST transforma-
tion for the Weyl transformation leads to the equation
{iQp.7.}.b)] =0, (4.29)
where [iQp,b)] =0 was used. We can show that
{iQp. 7.} = P*¢?9,B, so by using Egs. (4.9) and (4.11)
we can calculate
[B.b))) = —if¢~20,B5". (4.30)
Finally, the ETCR [g,,. b),] (or, equivalently, [g,,. 1.7;,]) can
be obtained by using the method developed in our previous

article [1]. We only report the result here, which is written
as

[gﬂb’ b;)} - _i{}¢_2<6pgyv + 62ng + 58..911/4)53
+ (8 = 28075 ) g + (1 <> V)]0 (fP728)}
(4.31)
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or, equivalently,

9+ b)) = i{[F 20,9, — 00 (F2)(80g,, + 809,,))8
+ [(5113 - 252}?0]{)9;71/ + (/’t < V)]ak(7¢_253>}'
(4.32)

Following our previous calculation [1], we can prove that

[b,.b,] =0,

b, b)) = if¢p~2(0,b, + d,b,)5. (4.33)

V.EQUAL-TIME COMMUTATION RELATIONS IN
THE GRAVITATIONAL SECTOR

The remaining nontrivial ETCRs are related to the time
derivative of the metric field, i.e., the ETCRs [g,,, '],
where @ is a generic field. In this section, we will evaluate
such ETCRs.

First of all, let us start with the ETCR [z, g,,] = 0. From
the expression for 7, in Eq. (4.5), this ETCR can be
described as

. 1 .
POl g + ¢ 0@°9” = 876 1) + 3°P(B. o)
= —4if " \/=g80805" . (5.1)

Next, the ETCR [z, ¢'] = —i8® produces the equation

(gOOy}ﬂ _ gO/)QO(r) [gpm ¢/} =0. (52)
Moreover, the ETCR [”r/v B'] =0 reads
(397 = 5% 9%) (G- B'] = 6ih~>5>. (5.3)

The extended de Donder gauge, d,(7#“¢*) = 0, can be
rewritten as

Dﬂ/mg/m' + 4¢—lgﬂ/)aﬂ¢ = (2gﬂpg{;k - gpﬁglk)akg/)m (54)
where D¥° = g0 g7 — 24/ g% Since the rhs of Eq. (5.4) is
independent of g,,, it commutes with g,,, ¢, or B. Thus, we
have three identities:

D" (sG] + 4070 0] =0, (5.5)
D°[§,5. /) = 0. (5.6)
D¥?[§,,. B'] = 4if¢p 2405 (5.7)

In Egs. (5.6) and (5.7), we have used Eq. (4.13).

Putting 4 = 0 in Eq. (5.6) and using Eq. (5.2), we have
gpa[..gpm ¢/] = gOnga[gpm ¢/] =0. (58)

In general, from the argument of symmetry, [g,,, ¢’ must
be of the form
[gpow ¢/] =a (g/)o’ + 025252)53, (59)

where a; and a, are constants. Equation (5.8) then requires
us to take a; = a, = 0. Thus, we have

[9ps+ @] = 0. (5.10)
Next, in a similar manner, we can set
[..gpo"B/] = b1<gpa+b25262)537 (511)

where b; and b, are constants. From Eq. (5.3), b; is
determined to be 2if¢2, and then Eq. (5.7) requires b, to
be vanishing, so we can obtain

[gf)ﬂ’ B/] = 2i}¢_zgpo’63- (512)

Finally, we wish to evaluate [g,,. g, ], for which we need
to perform some calculations. Before doing so, let us
rewrite Eq. (5.1) by means of Egs. (5.10) and (5.12) in
the form

) ) oo o 2
(79 = 3%8°)Gpo- G| = —12i¢p™> <g,w + F(S’%B) 5.

(5.13)
Similarly, Eq. (5.5) reduces to

(9”9 =26 9°)[Gpe» Gju] = O (5.14)

We are now ready to evaluate the ETCR [g,,. g/,]. This
ETCR has a symmetry under the simultaneous exchange of
(uv) <> (po) and primed <> unprimed, in addition to the
usual symmetry y <> v and p <> 6. Then, we can write
down its general expression as

9po+ Giu) = {€19p6 9 + €2(GpuGor + Gpu o)
+ h}‘[c3 (52529141/ + 52539/){7)
+ 4(5p8uor + p0)90u + 930495 + 93009p,)]
+ (hf)?c589808980} 6%, (5.15)
where c¢;(i =1,...,5) are some coefficients. Imposing

Eq. (5.14) on Eq. (5.15) leads to relations among the
coefficients:

C3:2(C1+C2), Cqp=—0Cy, C5:4(C1+C2). (516)
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Furthermore, imposing Eq. (5.13), we can determine c¢,, c3,
¢4, and cs5 via ¢ as

~ 3 ~
e =—e = 1207 ci=—cr=Fe +6ifd,

cs = —2¢; = 24ifp2. (5.17)
In order to fix the coefficient c;, we need to calculate the
ETCR [, @] explicitly in terms of [zl g,.] =
—i%(8%,6h + 8,6%)5° in Eq. (4.2) and the concrete expres-
sion for 74" in Eq. (4.5). To do this, from Eq. (4.5), let us
write
n.l;l — AK + Bkl/}bp + Cvklmngmn + Dqu's‘ (518)
Here A¥, BKp CKmn and DX commute with Gmn»> and Cklmn
and D* are defined as’

A 1 TR .
Ckimn :ﬁh¢2Kklmn’ Dx :gd)(googkl _gOkg()l)’ (5]9)

where the definition of K¥”" and its property are given by

900 901 g
Kkl mn _ gkO gkl

On
gkn ,

m0 ml mn

g g g
1 1
Kklmn ) (900)_1 (gijgmn ~9imYjn — gingjm) = 5 (5{‘5? + 556]/()

2
(5.20)
From Eq. (5.18), we can calculate
[9t1: Gn) = Clipg (707 Ghun] = B (b Goun] = DP9 (b, G])
— —i%C;}pq(azaz + 6moh) 8, (5.21)

where we have used Eqgs. (4.2), (4.8), and (5.10). Since we
can calculate

Cizlpq = 12f¢? (IaiGpg = IkpGig = Ikg91p)- (5.22)
we can eventually arrive at the result
(G2 Ghnn) = =120 F ™ (G1Gomn — Gimin = JenGim ) (5.23)
Meanwhile, from Eq. (5.15) we have the ETCR
Gk> Goun) = [€19k1Gmn + €2(GemGin + Gengim)18. (5.24)

"It turns out that the concrete expressions for A and B are
irrelevant to the calculation of [y, G-

Hence, comparing Eq. (5.23) with Eq. (5.24), we can obtain

¢, =—12if¢2, c, = 12ifgp~2.  (5.25)

Note that these values satisfy the relation in Eq. (5.17),
—Cy = %cl + 6if¢p~2, which gives us a nontrivial verifica-
tion of our result. In this way, we have succeeded in getting
the following ETCR:

[gpm ‘d//w] = _12i}‘¢_2 [g/)o'g/,w - g/)ygm/ - g/)ugo'y + h?(égéggau
+ 008090 +990,9,, +620)9,)18. (5.26)

VI. UNITARITY OF THE PHYSICAL S MATRIX

As in the conventional BRST formalism, the physical
state |phys) is defined by imposing two subsidiary con-
ditions [8]:

Op|phys) = Qg[phys) = 0. (6.1)
It is then well known that the physical S matrix is unitary
under the assumption that all of the BRST singlet states
have positive norm. In this section, we would like to prove
the unitarity of the physical S matrix. Since there is a ghost-
like scalar field ¢ as well as timelike and longitudinal
components of the metric field in our formalism, this is not
a trivial problem.

In analyzing the unitarity, it is enough to take account of
asymptotic fields of all of the fundamental fields and the
free part of the Lagrangian. Let us first assume the
asymptotic fields as

gﬂU:”ﬂU+¢[ll/’ ¢:¢0+¢9 by:ﬁ/u
t=r =t =V,
where 7, (= n**) is the flat Minkowski metric with mostly
positive signature, and ¢, is a constant. In this section, the
Minkowski metric is used to lower or raise the Lorentz

indices. Using these asymptotic fields, the free part of the
Lagrangian reads

1 1 1 1
‘Cq = E¢% <Z (p;wqu)ﬂ - Z(pqua - E(pﬂ a,ua/)(pup

1
+ E(p"”dﬂ()y(p>

1, - 1.~ ~ . _
+ 200 (=Uo +9,0,9") +59,00'¢ — i¢30,7,0"7"

- 1
- <2f7"”¢o¢ — " + 3 t/)%n””rp) 9,5,

+ 00,0 P — ip30,70"y, (6.3)
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where [1=#»"d,0, and ¢ =n"¢,,. Based on this
Lagrangian, it is easy to derive the linearized field equa-
tions:

1 1 1 1
E¢O <2 D(p;w - Eﬂ;wlj(p - apa(;t(py)/ + 5 aﬂay§0

(_nyvlj + aﬂal/>¢

[N

1
+ Enﬂy()p()g(p’”’> +

F 0B~ bonud b =0, (64)
é(D(p — 0,0,0™) + 20,4 + 0B =0, (6.5)
00~ (a”rp,w - %m) —0.  (66)

O¢ =0y =0y, =0y =07 =0. (6.7)

Here we have introduced the symmetrization notation
AyB, =%(A,B,+AB,). Now, by applying ¢ to
Eq. (6.6) and using Eq. (6.7), we can obtain

1
0,0, =50 = 0. (6.8)

Next, taking the trace of Eq. (6.4) with the help of Egs. (6.7)
and (6.8) leads to
Lo + 240, = 0. (6.9)

Then, with the help of Egs. (6.8) and (6.9), Eq. (6.5) can be
rewritten as

Lp=0. (6.10)
Moreover, applying 0" to Eq. (6.4) yields
g, =0. (6.11)

Finally, using various equations obtained thus far, Eq. (6.4)
is reduced to the form

U@, +240.,p,) = 0, (6.12)
which means that the field ¢, is a dipole field:
szpﬂy =0. (6.13)

On the other hand, the other fields are all simple pole fields:
O¢p=0p,=08=0p=07,=0y=07=0. (6.14)

Note that Eq. (6.14) corresponds to Eq. (3.19) in a curved
space-time.

Following the standard technique, we can calculate the
four-dimensional (anti)commutation relations (4D CRs)
between asymptotic fields. The point is that the simple
pole fields, for instance, the Nakanishi-Lautrup field f(x),
can be expressed in terms of the invariant delta function
D(x) as

Box) = / PD(x—2)oep, (). (6.15)

whereas the dipole field ¢,,(x) can be written as

()= / PED(x—2) dgp () + E(r—2) 350 (2)]

= /d3z[D(x - z)gégoﬂy(z) —24E(x— Z)géa(ﬂﬁy) (2],

(6.16)

where in the last equality we have used Eq. (6.12). Here the
invariant delta function D(x) for massless simple pole
fields and its properties are described as

Dlx) =~ (25:)3

D(-x) = =D(x),

/d4k€(k0)5(k2)eik", OD(x) =0,

D(0,%) =0,  9,D(0,%) =& (x),

(6.17)

= ko
= kol

E(x) for massless dipole fields and its properties are given
by

where ¢ (k) Similarly, the invariant delta function

Elx)=- (2; 3

)
E(-x)=—E(x), E(0.X)=0yE(0,X)=03E(0,%)=0,
RE(0,%)=-5(x). (6.18)

/d“ke(ko)é’(kz)eikx, OE(x)=D(x),

It is easy to show that the rhs of Egs. (6.15) and (6.16) are
independent of z°. Thus, for instance, when we evaluate the
four-dimensional commutation relation [¢,, (x), @5(y)],
we can put z° = y° and use the three-dimensional com-
mutation relations among asymptotic fields. The resultant
4D CRs are summarized as

[(pm/ (X) »Por (y)} = 121¢62 [(’7[40’76’[ ~MueMuvr — nyrnua)D(x _y)
+ (”;wavar + ’71/60;401 + nyfayarr

+77urayaﬁ)E(x_y)]’ (619)
[0, (x).8,()] = ibg* (1,00, +1,,0,)D(x —y),  (6.20)
[0 (x). B(y)] = =2i¢h5 1, D(x = y), (6.21)
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[B(x). B)] = igh5' D(x ~ ), (6.22)
{r"(x).7:.(»)} = =55 D(x = y), (6.23)
{r(x).7(»)} = —#5>D(x - ). (6.24)

The other 4D CRs vanish identically.

Now we would like to discuss the issue of the unitarity of
the theory in hand. To do this, it is convenient to perform
the Fourier transformation of Egs. (6.19)—(6.24). However,
for the dipole field we cannot use the three-dimensional
Fourier expansion to define the creation and annihilation
operators. We therefore make use of the four-dimensional
Fourier expansion [5]8:

/ & pO(po) ()™ + @lu(p)e 7],

(6.25)

Pu(x) =

1
(2}

where 6(p,) is the step function. For any simple pole fields,
we adopt the same Fourier expansion; for instance,

1 4 ipx 1 e—ipx
)= [ AP0 AP A p)e ). (626)

Incidentally, for a generic simple pole field ®, the three-
dimensional Fourier expansion is defined as

1 1
D(x) = - | &2
® <2n>z/ Vo

x [@(3)e~ % 1 ot ()77 (6.27)

whereas the four-dimensional Fourier expansion reads

O(x) = — / & pO(po)[@(p)e™* + & (p)(p)e=n.

(27):
(6.28)

Thus, the annihilation operator ®(p) in the four-
dimensional Fourier expansion is related to the annihilation
operator ®(p) in the three-dimensional Fourier
expansion as

2[p|@(p)- (6.29)

®(p) = 0(po)5(p?)

¥The Fourier transform of a field is denoted by the same field
except for the argument x or p, for simplicity.

Based on these Fourier expansions, we can calculate the
Fourier transforms of Egs. (6.19)—(6.24):

[0 () 95:(4)] = 1255760(p0)5*(p = )
X [5<p2)(77yv’701 ~ Ny — nyri/lva)
- 35/(172)(7]/40171/[)1 + NuePuPr

+ NyePuPo + MuePulo)) (6.30)
[0, (). B(@)] = ihg? (MupPy + NpPy)
x 0(po)8(p*)8*(p — q). (6.31)

[0 (P). BT (9)] = =205 1,,0(po)8(p*)8* (p — q). (6.32)

[#(p). BT (9)] = ¢5'0(po)8(p*)5*(p — q). (6.33)
{r°(p).7:(q)} = ih52670(po)d(p*)5*(p —q).  (6.34)
{r(p).7" (@)} = i95*0(po)5(p*)5* (p — q). (6.35)

Next, let us turn our attention to the linearized field
equations. In the Fourier transformation, Eq. (6.6) takes the
form
(6.36)

1 N
PP = 5 Put0 = 205 'pub.

If we fix the degree of freedom associated with ¢ (which
will be discussed later), this equation gives us four
independent relations in ten components of ¢, (p), thereby
reducing the number of independent components of ¢, (p)
to six. To deal with six independent components of ¢, (p),
it is convenient to take a specific Lorentz frame such that
p1 = p>» =0 and p; > 0, and choose the six components
as follows:

€01(P):%[¢11(P)—(P22(P)]v () =912(p).
on(p) =3 ~onp). @1(p)=-gu(p).
w3(p)= —2%73(/733(17)’ (6.37)

where the index [ takes the transverse components I = 1, 2.
In this respect, it is worthwhile to consider the GCT
BRST transformation for these components. First, let us
write down the GCT BRST transformation for the Fourier
expansion of the asymptotic fields, which reads

889u(P) = =ilpur,(p) + Puru(P)],

Sgr"(p) =0,  g7.(p) = iBu(p),

sp(p) = 58P, (p) = 6P (p) = dgy(p) = 657 (p) = 0.
(6.38)
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Using this BRST transformation, the GCT BRST trans-
formation for the components in Eq. (6.37) takes the form

Spp1(p) =0,
537#(17) = lﬂﬂ(p)’

where p; = p, = 0 was used. This BRST transformation
implies that ¢;(p) could be the physical observable, while
the set of fields {w,(p), B,(p).7,(p),7,(p)} might belong
to the BRST quartet, which are dropped from the physical
state by the Kugo-Ojima subsidiary condition, Q|phys) =
0 [8]. However, note that $,(p),7,(p), and 7,(p) are
simple pole fields obeying p?8,(p) = p*r,.(p) =
p*7,(p) =0, but ¢, (p) is a dipole field satisfying
(p*)*@,(p) =0, so that a naive Kugo-Ojima quartet
mechanism does not work.

To clarify the BRST quartet mechanism, let us calculate
their 4D CRs. From Egs. (6.30)—(6.35) and the definition
(6.37), it is straightforward to derive the following 4D CRs:

65w, (p) = iru(p),

657,(P) = 6Pu(p) = 0, (6.39)

[01(p). @} (@)] = =12576,,6(po)8(p*)8* (P — q). (6.40)
[01(p).i(@)]=[w:(p).Bi(@)] = [B,(p).BL(q)] =0. (6.41)
[w,(P). ()] = =id5?m,0(po)3(p*)8* (P — @), (6:42)
{ru(p).7(@)} = i95 1w 0(p0)5(P*)5* (P = q).  (6.43)

In addition, we have a rather complicated expression for
[,(p), ) (q)] because ¢, (p) is a dipole field, but luckily
this expression is not necessary for our aim [8]. It is known
how to extract a simple pole field from a dipole field, which
amounts to using an operator defined by [8]

1 0
+C5

where c is a constant. Using this operator, we can define a
simple pole field ¢,,(p) from the dipole field ¢, (p),
which obeys (p?)*@,,(p) =0, as

- Dpp 2§0/w (p )
- 241Dpp(;4ﬂzx) (p) ’
where in the last equality we have used the Fourier

transform of the linearized field equation (6.12). It is then
easy to verify the equation

Puw(P) = 0u(p)

= u(p) (6.45)

P2 (p) = 0. (6.46)

Then, in Eq. (6.37) we replace ¢, of w, with ¢,,, and we
redefine w, as @,:

a(p) = —%O(POO(P) a(p) = —ifﬁ(ﬂ(}?)’
a3(p) = _21173%3(])) (6.47)

The key point is that with this redefinition from w, to @,
the BRST transformation and the 4D CRs remain
unchanged owing to 88, =0 and [B,(p).Bl(q)] =

[0:(p). Bi(q)] = 0, that is,

pd,(P)=ir,(p). [@,(p).Al(q)]=]w,(p).B(q)].
[@1(p).&(q)]=01(p).w(q)].

Now it turns out that all of the fields {¢;, @,.f,.7,.7.}
are simple pole fields.” Since all of the fields become simple
pole fields, we can obtain the standard creation and annihi-
lation operators in the three-dimensional Fourier expansion
from those in the four-dimensional one through Eq. (6.29).

D, = 2| p|2 pO (6.44) As a result, the three-dimensional (anti)commutation rela-
tions, which are denoted as [®(p), ®(g)} with
10
@(p) ={w1(P).@,(P).Bu(P).7,(P).7.(P)}, are given by
—12¢p5%68;,
[é\)ﬂ(l_j) ) 6)2 (a)} _i¢627]/w
[@(p).®"(q)} = i M 0 5(p—4q). (6.49)
iy My
—i¢6277,w

The (anti)commutation relations (6.49) have in essence the
same structure as those of the Yang-Mills theory [8].
Hence, we find that ¢; could be the physical observable,
while the set of fields {&,. f3,.7,.7,} belongs to the BRST
quartet.

*Without the redefinition, ¢;(p) is already a simple pole field,
as can be seen in Eq. (6.40).

""The bracket [A,B} is the graded commutation relation
denoting either a commutator or anticommutator, according to
the Grassmann-even or -odd character of A and B, ie.,
[A,B} = AB — (—)IBIBA.
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Next, let us move on to another BRST transformation:
the BRST transformation for the Weyl transformation. The
Weyl BRST transformation for the asymptotic fields is of
the form

57 = ip,
(6.50)

SB(p/ux = chyw SB& = _¢077 SB}/ =0,

Spp = SBﬁ” . 337,4 = 5377,4 =0.
The Weyl BRST transformation of ¢; is vanishing,
SB(PI = O, (651)

which means that together with dgzp; = 0, ¢; is truly the

—12¢5%8;;

physical observable. The four-dimensional (anti)commu-
tation relations among the fields {¢, 3, 7,7} read

[$(p).d"(q)] = 0.
[@(p). 7 (q)] = #5'0(po)5(p*)5*(p — q).
7 (q)] = id5*0(po)s(p*)8*(p — q).

As can also be seen in these 4D CRs, all of the fields

{@;.¢.B.y.7} are massless simple pole fields. Via
Eq. (6.29), the three-dimensional (anti)commutation rela-

tions [@(5).®*(§)} with ©(p)={e;(P).H(5).A(P).
y(P),7(p)} are of the form

(6.52)

[@(P). 7(4)}

5(5 - ). (6.53)

Thus, ¢, is the physical observable while the set of fields
{¢.B.y.7} consists of the BRST quartet and is the
unphysical mode by the Kugo-Ojima subsidiary condition
8]]. Here it is worth mentioning that the ghost-like scalar
field ¢ belongs to the unphysical mode, so together with the
result obtained in the analysis of the GCT BRST cohomol-
ogy the physical S matrix is found to be unitary.

VII. CHORAL SYMMETRY

As mentioned in Sec. III, a set of fields (including the
space-time coordinates x*) XM = {x*, b,.0.B,c*, ¢, c,c}
obeys a very simple equation:

¢0,0,X" = 0. (7.1)
This equation holds if and only if we adopt the extended de
Donder gauge and the new scalar gauge as gauge-fixing
conditions for the GCT and the Weyl transformation,
respectively. The existence of this simple equation suggests
that there could be many of conserved currents defined in
Eq. (3.20). In this section, we show explicitly that there
exist such currents and we have a huge global symmetry
called choral symmetry, which is the 70Sp(10/10) sym-
metry in the present theory.

Let us start with the Lagrangian (3.12), which can be cast

in the form
w1 1.
Eq - gll ¢ ERW/ —EEW, . (72)

ipy?

—ighy?

Here we note that #“¢? is a Weyl-invariant metric and the
Ricci tensor is invariant under only a global scale trans-
formation. We can further rewrite it in the form

. 1 1
ﬁq = g’“’d)z (E Rﬂl/ — anMaﬂXMODXN)

—ww{iR (13)

1 .
12 - anXMnMNauXN) s

where we have introduced an /0Sp(10|10) metric 7y, =
nty = fiyy defined as [9]

&

-1 -1
-1 0

=iun= 7.4
NINm =1MN —is, (7.4)

i8

Let us note that this /OSp(10]|10) metric 7y, Which is a
c-number quantity, has the symmetry property that

nMun = (—)‘M"‘NlﬂNM = (_)‘MIWNM = (_)‘N‘nNM7 (7.5)

where the statistics index |[M| is 0 or 1 when X is
Grassmann-even or Grassmann-odd, respectively. This
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property comes from the fact that 7, is “diagonal” in the
sense that its off-diagonal, Grassmann-even, and
Grassmann-odd (and vice versa) matrix elements vanish,
i.e., nynv = 0 when |M| # |N|, thereby being |M| = |N| =
|M| - |N| in front of 7,y [9].

Now that the quantum Lagrangian (7.3) is expressed in a
manifestly 7/0Sp(10[10)-invariant form except for the
Weyl-invariant metric 3*“¢?* (which will be discussed later),
there could exist an /OSp(10/10) symmetry as a global
symmetry in our theory. Let us show this fact first. The
infinitesimal OSp rotation is defined by

SXM = yMLg XN = M XN, (7.6)
where nMV is the inverse matrix of 7,;y, and the infini-
tesimal parameter ¢,y has the following properties:

ey XL = (=) EHIMIHIND XL g,

(7.7)

eyn = (=) HMIWlgy,,

Moreover, in order to find the conserved current, we
assume that the infinitesimal parameter ¢,y depends on
the space-time coordinates x*, i.e., eyn = epn (X#).

Assuming for a while that the metric #“¢* and R, are
invariant, the infinitesimal variation of the quantum
Lagrangian (7.3) under the OSp rotation (7.6) is given by
5L, = =7 P*(0,enpu XM 0, XV + enp0,XM0,XN).  (7.8)
It is easy to prove that the second term on the rhs vanishes
owing to the first property in Eq. (7.7). Thus, £, is invariant
under the infinitesimal OSp rotation. The conserved
current is then calculated as

5L, = — P20, e Ny X" 0, XV

1
= —EflwﬁbzaquM[XMauXN — (—)MHNI XN g, XM]

1
= 5 1O (XM, XN — 9, XM xV)

1 <
= =5 7" 0uenu X" 0, X"

1

= —56”8NMMﬂMN7 (79)

from which the conserved current M*YN for the OSp
rotation takes the form

MUIMN — g g2 G XN (7.10)

In a similar way, we can derive the conserved current for
the infinitesimal translation

SXM = M, (7.11)

where e is the infinitesimal parameter, and assume that it
is a local one when deriving the corresponding conserved
current. Indeed, assuming again that the metric §*“¢* and
R, are invariant under the translation, we can show that £,
1s invariant under an infinitesimal translation,

5£q = —gﬂy¢27’]NMaﬂ€MaDXN
= -7 ¢*0,en0, X"
= —0,ey P, (7.12)
which implies that the conserved current P*Y for the
translation reads
P =grgro, XM =gu¢*(10,XM).  (7.13)
The above proofs only make sense under the assumption
that the metric #“¢*> and R v are invariant under the
I0Sp(10]10) symmetry. So the problem reduces to a
question: is this assumption correct? The answer is obvi-
ously “no,” but the noninvariant terms can be compensated
by a suitable Weyl transformation. To show this fact, let us
consider only the case of the infinitesimal OSp rotation
since we can treat the case of the translation in a perfectly
similar manner. Under the infinitesimal OS p rotation (7.6),
the dilaton o(x), which is defined as ¢ = ¢°, transforms as

o0 = ﬂULE'LNXN = —EBNXN, (714)
where we have used Eq. (7.4) and
-1 —1\"! 0 -1
= , (7.15)
-1 0 -1 1

where we recall that the matrix n’ is the inverse matrix of
- As for the scalar field ¢(x), this transformation for the
dilaton can be interpreted as a Weyl transformation:
¢ @ = W, (7.16)
where the infinitesimal parameter is defined as e(x) =
—epyXN. This Weyl transformation induces the Weyl
transformation for the metric tensor field at the same time:
G = G = €Wy, (7.17)
Let us recall that the metric §#*¢> is the Weyl-invariant
metric, and thus it is invariant under the Weyl trans-
formation (7.16) and (7.17). This implies that ¢’ is
essentially invariant under the OSp rotation if an appro-
priate Weyl transformation is achieved.
What about R,,? Even if R, is not invariant under the

Weyl transformation in itself, this object comes from the
classical Lagrangian of the Weyl-invariant scalar-tensor

126018-14



QUANTUM THEORY OF WEYL-INVARIANT SCALAR-TENSOR ...

PHYS. REV. D 105, 126018 (2022)

gravity in Eq. (3.1), so together with the metric tensor and
the scalar field it essentially becomes invariant under the
Weyl transformation (7.16) and (7.17). Thus, in this sense,
R, is also invariant under the OSp rotation. In any case, it
is worth stressing that in the present formulation, the choral
symmetry /0OSp(10]10) is not only a symmetry of the FP
ghosts and the Nakanishi-Lautrup fields, but is also closely
related to the classical fields g,, and ¢ which lie in the
classical Lagrangian.

An important remark is relevant to the expression of the
conserved currents (7.10) and (7.13). To make the quantum
Lagrangian £, invariant under the choral symmetry
10Sp(10]10), it is necessary to perform the Weyl trans-
formation (7.16) and (7.17). Then, it is natural to ask if,
because of this associated Weyl transformation, the expres-
sion for the currents would be modified or not. Here a
miracle happens. As shown in Refs. [10,11], the current for
the Weyl transformation identically vanishes in Weyl-
invariant scalar-tensor gravity. Thus, although we make
the Weyl transformation (7.16) and (7.17), the conserved
currents (7.10) and (7.13) are unchanged.

From the conserved currents (7.10) and (7.13), the
corresponding conserved charges become

MMNE/dSXMOMN:/d3x90p¢2XM3DXN’

PME/d3x770M:/d3x§0”¢26,,XM. (718)

It then turns out that, using various ETCRs obtained so far,
the 10Sp(10[10) generators {MMN PM} generate an
10Sp(10[10) algebra:

[PM, PV} =0,
[MMN, PR} _ i[PMﬁNR _ (_)\NHR\PNFIMR]’
[MMN,MRS} _ i[MMSﬁNR _ (_)\NHR\MMR’:]NS
_ (_)\NHR\MNSﬁMR
(=) MIRIINIIS| pgNRMS]. (7.19)

As a final remark, it is worth pointing out that all of the
global symmetries in the present theory are expressed in
terms of the generators of the choral symmetry. For
instance, the BRST charges for the GCT and Weyl trans-
formation are expressed, respectively, as

Qp=M(b, ") = /d3x§0”¢2bp3ycp,

Oy =M(B,c) = / Bxg" 2B o, c. (7.20)

VIII. GRAVITATIONAL CONFORMAL
SYMMETRY

Even though we already fixed the Weyl symmetry by the
scalar gauge condition (3.6), we still have its linearized,
residual symmetries. In order to look for the residual
symmetries, it is convenient to take the extended de
Donder gauge (3.5) into consideration simultaneously.“
With the help of the extended de Donder gauge (3.5), the
scalar gauge condition (3.6) can be rewritten as

(8.1)

where we have used the relation between the scalar field
and dilaton, ¢ = ¢°. Under the Weyl transformation (3.2)
with Q(x) = ¢*™, the dilaton ¢ transforms as

0= 0,(7"¢0,¢) = 0,(3"“¢*d,0) = §*¢*0,9,0.

650 =0-logQ=0-A, (8.2)
where we have used the Weyl transformation (3.2) for the
scalar field. Since 7#“¢? is a Weyl-invariant quantity, the
Weyl transformation changes Eq. (8.1) to

0= glwd)zauaud - 0= glwqﬁzaﬂaud/ = §”D¢zaﬂau(6 - A)
(8.3)

This equation shows that when we use the extended de
Donder gauge, the scalar gauge condition is still invariant
under the Weyl transformation as long as

g"0,0,A =0 (8.4)
is satisfied, thereby implying the existence of the residual
symmetries [12—14]. Selecting the coefficients appropri-
ately for later convenience, the solution to Eq. (8.4) is
given by

A =A=2k,x", (8.5)
where 1 and k, are constants.'”

We can also verify the invariance of the quantum
Lagrangian under the residual symmetries more directly.
To do this, let us assume that A (or, equivalently, 4 and k)
are the infinitesimal parameters. It then turns out that the
quantum Lagrangian (3.12) is invariant under the residual
symmetries,

59/41/ = Z(A - 2’k/1x/))gmn

o =—(A—2kx"),  8b,=2k,B, (8.6)

"The same strategy was adopted in different theories in
Refs. [12-14].

It is shown in Appendix B that the transformations associated
with the parameters 4 and k, correspond to dilatation and the
special conformal transformation, respectively, in a flat Minkow-
ski background.
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where the other fields are unchanged. The generators
corresponding to the transformation parameters A and k,
are constructed out of those of the choral symmetry as,
respectively,

Dy=—P(B) = — / Lxi$29,B,
K* =2M*(x,B) =2 / Brg 2 0,8, (8.7)

In addition to the generators D, and K*, one can construct
the translation generator P, and GL(4) generator G¥, from
those of the choral symmetry /0Sp(10[10) as

P,=P,(b) = / d*xg™¢*o,b,,
G', = M",(x,b) —iM* (¢, c,)

- / Bxg (0 ,b, — ich0,5,).  (8.8)

Now we would like to show that in our theory there is a
gravitational conformal algebra that is slightly different
from the conformal algebra in a flat Minkowski space-time.
To this aim, let us consider a set of generators
{P,.G",,K*,Dy}. From these generators, we wish to
construct the generator D for a scale transformation.
Recall that in conformal field theory in four-dimensional
Minkowski space-time the dilatation generator obeys the
following algebra for a local operator O;(x) of conformal
dimension A, [15,16]":

[iD, 0;(x)] = x9,0,(x) + A;0;(x). (8.9)

Since the scalar field ¢(x) has conformal dimension 1, it
must satisfy the equation

[iD, ¢(x)] = x"0,¢(x) + ¢p(x). (8.10)

To be consistent with this equation, we shall make a
generator for the scale transformation. From the definitions
(8.7) and (8.8), we find

[iG¥.¢(x)] = #0,p(x),  [iDo,p(x)] = —¢(x). (8.11)

BEor clarity, we will call a global scale transformation in a flat
Minkowski space-time “dilatation.” Dilatation is usually inter-
preted as a subgroup of the general coordinate transformation in a
such way that the space-time coordinates are transformed as x* —
Qx* in the flat space-time, where Q is a constant scale factor,
whereas the global scale transformation is a rescaling of all
lengths by the same Q as g, — ngﬂy. The two viewpoints are
completely equivalent since all of the lengths are defined via the
line element ds*> = Gudx!dx”.

The following linear combination of G*, and D, does
the job:

D=G", - D,. (8.12)

As a consistency check, it is valuable to see how this
operator D acts on the metric field, whose result reads

[iD’ gaf] = [iGﬂw gm'] - {iDO’ gm'}

= (x”augaf + 290'7) - 296‘: = xﬂaugo'f’ (813)
which implies that the metric field has conformal dimen-
sion 0, as desired, and this result will be used later when
discussing spontaneous symmetry breaking.

Next, let us calculate an algebra among the generators
{P,,G",,K*, D}. After some calculations, we find that the
algebra closes and takes the form

[Py.P)=0, [P,.G’;]=iP,d,

[Py.K*|==2i(G",—- D)8},

[PM,D]:iPﬂ, [G"y,GPO]:i(G”G%—GP,,é’é),

(G*,. K] = iK"&,  [GH,.D]=|K".K*] =0,
[K*.D]=—iK*, [D.D]=0. (8.14)

To extract the gravitational conformal algebra in quantum
gravity, it is necessary to introduce the “Lorentz” generator,
which can be constructed from the GL(4) generator as

(8.15)
the algebra (8.14) can be cast

M, = =1, G’ + 1, G’ .

In terms of the generator M,,,,
in the form

P, PJ=0, [P, My]=i(Pyu—Polyp)
P,.K*|==2i(G*,-D)&, [P, D]=iP,

M, M 6] = =i(M ot = Myt + Mo, = Mps,)
M,, K’ =i(-K,& +K,8), [M,,D]=[K*K"]=0,

23
K*.D)=—iK*, [D,D]=0, (8.16)

R

where we have defined K, = ,, K" Itis of interest that the
algebra (8.16) in quantum gravity, which we call “gravi-
tational conformal algebra,” formally resembles conformal
algebra in flat Minkowski space-time except for the
expression for [P, K”].14 This difference reflects from
the difference of the definition of conformal dimension
in both gravity and conformal field theory, for which the
metric tensor field g,, has 2 in gravity as seen in Eq. (3.2)
while it has 0 in conformal field theory as seen
in Eq. (8.13).

“In the case of conformal algebra in flat space-time,

[P,. K] = =2i(8,D + M }").
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IX. SPONTANEOUS BREAKING OF
SYMMETRIES

In the theory in hand, there are huge global symmetries,
which are /OSp(10/10) supersymmetry, so it is valuable to
investigate which symmetries are spontaneously broken or
survive even in the quantum regime. In this section, we
postulate the existence of a unique vacuum |0), which is
normalized to unity:

(0|0) = 1. (9.1)

Furthermore, we assume that the vacuum is translation
invariant,

|

O|[iP*(x), b,][0) = =5,
0l{iP,(2,). c*}0) = —idy,

(
(

0

(

(O{iM¥(x. c). 0,2, }|0) = i6l's%,
(0[[iP(e), B]|O) = 1,

(O{iM (o, c), 2}|0) = ioy,

where (0|c(x)|0) = 6. Equation (9.4) shows that the
symmetries generated by the conserved charges

(PH(x), PH(E), Py(E2), M (x, x), M (3, ), M (3.,
P(0),P(c),P(¢),M(o,c),M(c,¢)}

are necessarily broken spontaneously, and therefore
bﬂ, c*, Eﬂ,B, ¢, and ¢ acquire massless Nambu-Goldstone
modes. Note that the exact masslessness of the dilaton ¢
cannot be proved in this way.

Next, on the basis of gravitational conformal symmetry,
we will show that GL(4), special conformal symmetry, and
scale symmetry are spontaneously broken down to
Poincaré symmetry. We find that the VEV of a commutator
between the GL(4) generator and the metric field reads

(OI[iG",. 9:]10) = Sonye + Tty (9.5)
Thus, the Lorentz generator, which is defined in Eq. (8.15),
has a vanishing VEV:
(01(iM,,.92:)[0) = 0. (9:6)
On the other hand, the symmetric part, which is defined as
M;w =n,,G", +n,,G’,, has a nonvanishing VEV:

(O1[iM 1y, 952)10) = 2ot + Nucttus)- (9.7)

P,J0) =0, 9.2)

and the vacuum expectation values (VEVs) of the metric
tensor g, and scalar field ¢ are, respectively, the
Minkowski metric 7, and a nonzero constant ¢ # 0:

(019,010) = M (01@10) = gho. (9:3)

By a straightforward calculation, we can obtain the
following VEVs:

(O{iP*(c7), 2, }0) = id),

M9 (x,3). 3 (02b, — 0,b,)]0) = ~(565 — 536%).

(O[{iM*,(x.¢,),0,c’}|0) = —i&, 5],

OliP(e).e 0 =1, {0
(Ol{iM(5.2).}10) = ~ioy.

{iP(2). c}|0) = —i,
(9.4)

|

Thus, GL(4) symmetry is spontaneously broken to Lorentz
symmetry, where the corresponding Nambu-Goldstone
boson with ten independent components is nothing but
the massless graviton [17]. Here it is interesting that in a
sector of the scalar field, GL(4) symmetry and of course
Lorentz symmetry do not give rise to a symmetry breaking,
as can be seen in the commutators

(011G, #1|0) = (0[[iM,,,.. ¢]|0) = (0[[iM,,. ¢]|0) = O.
9.8)

Now we wish to clarify how the scale symmetry and
special conformal symmetry are spontaneously broken and
what the corresponding Nambu-Goldstone bosons are. As
for the scale symmetry, it is not the gravitational field but
rather the dilaton that gives rise to spontaneous symmetry
breaking. Indeed, Eq. (8.13) gives us

(01[iD. g5:][0) = 0. (9.9)

On the other hand, for the dilaton, from Eq. (8.10) we have
(0|[iD, 6]|0) =1, (9.10)

which elucidates the spontaneous symmetry breaking of
scale symmetry, whose Nambu-Goldstone boson is just the
massless dilaton o(x).
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Regarding the special conformal symmetry, we find

(0|[iK*, 0,0]]0) = 25. (9.11)
This equation means that the special conformal symmetry
is certainly broken spontaneously and its Nambu-
Goldstone boson is the derivative of the dilaton. This
interpretation can also be verified from the gravitational
conformal algebra. In the algebra (8.16), we have a
commutator between P, and K*:

[P,. K] = =2i(G’, — D)g},. (9.12)
Let us consider the Jacobi identity,
([P, K*), 0] +[[K*.0],P,] + [[0.P,],K*] =0. (9.13)

Using the translational invariance of the vacuum in
Eq. (9.2) and the equation
[P

ne

o] = —io,o, (9.14)
and taking the VEV of the Jacobi identity (9.13), we can
obtain the VEV

(0|[K*,0,06]|0) = =26(0|[G", — D, 0]|0) = =2i&},, (9.15)

which coincides with Eq. (9.11), as promised. In other
words, GL(4) symmetry is spontaneously broken to
Poincaré symmetry, whose Nambu-Goldstone boson is
the graviton, and scale symmetry and special conformal
symmetry are also spontaneously broken, and their corre-
sponding Nambu-Goldstone bosons are the dilaton and
derivative of the dilaton, respectively. It is of interest that
the Nambu-Goldstone boson associated with special con-
formal symmetry is not an independent field in quantum
gravity, as it is in conformal field theory [18].

X. CONCLUSION

In this article we have performed a manifestly covariant
quantization and constructed a quantum theory of Weyl-
invariant scalar-tensor gravity within the framework of the
BRST formalism. In the past, Nakanishi developed a
similar quantum gravitational theory of Einstein’s general
relativity [4,5], and the present work provides its natural
generalization in the sense that Weyl symmetry is treated on
the same footing as general coordinate symmetry.

Since Weyl-invariant scalar-tensor gravity has been
known to be equivalent to general relativity in unitary
gauge where the scalar field is gauge fixed to be a constant,
it is natural to expect that our present theory shares several
characteristic features with Nakanishi’s quantum gravity. In
particular, both theories have a huge global symmetry
called ‘“choral symmetry,” but our choral symmetry
ISOp(10]10) is larger than that of Nakanishi’s theory,

which is ISOp(8|8), owing to the presence of Weyl
symmetry in our formulation. Compared with the case
of general relativity, one peculiar feature of our choral
symmetry is that choral symmetry needs Weyl symmetry in
proving its invariance of the quantum Lagrangian so that it
is closely related to a gravitational sector while in the case
of general relativity the choral symmetry is isolated from
classical Lagrangian and comes from purely the Lagrangian
involving the Nakanishi-Lautrup field and the FP ghosts.

It is worth mentioning that in our quantum gravity there
is a gravitational conformal algebra which is relevant to
conventional conformal algebra in a flat Minkowski space-
time. According to the Zumino theorem [19], theories that
are invariant under the GCT and Weyl transformation have
conformal invariance in a flat Minkowski background at the
classical level. The present study supports the conjecture
that the Zumino theorem could be valid even in quantum
gravity.

Last but not least, we should comment on the Weyl
anomaly. In this respect, let us recall that in the manifestly
scale-invariant regularization method [20-25], the scale
invariance is free of scale anomalies. Though a completely
satisfying formalism is still missing, we believe that in the
Weyl-invariant regularization method, the Weyl invariance
would also be kept at the operator level without the Weyl
anomaly, and is spontaneously broken when considering
states in the Hilbert space.

There is a lot of work to be done in future. First of all, we
should develop manifestly Weyl-invariant regularization
methods by introducing an additional scalar field that plays
the role of the renormalization mass scale y. Second, we
should prove the quantum Zumino theorem in the case that
the classical Lagrangian is an arbitrary Lagrangian that is
invariant under the Weyl transformation. Third, we should
add the Lagrangian of conformal gravity, that is, £~
\/—_gCﬁy o With conformal tensor C,, ,,, and investigate if a
similar analysis to the present work could be done. Finally,
it is known that Weyl-invariant scalar-tensor gravity
reduces to Weyl transverse gravity when the longitudinal
general coordinate transformation is gauge fixed [26-29].
Weyl transverse gravity possesses Weyl symmetry, to
which we could apply the present formulation and inves-
tigate various quantum aspects. We hope to return to these
problems in the near future.
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APPENDIX A: DERIVATION OF EQ. (3.18)

In this appendix we present a derivation of Eq. (3.18).
First of all, let us notice that the scalar gauge condition (3.6)
is equivalent to the equation
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Og? = 0. (A1)

Then, the Einstein equation in Eq. (3.15) reads
1
G, — ¢—2vﬂvv¢2 —6¢72 (E/w - Eg””E> =0. (A2)

With the help of Eq. (A1), the trace part of this equation
becomes

R = 6¢2E. (A3)
Inserting Eq. (A3) into Eq. (A2) leads to
R;w = ¢_2 (vﬂvu¢2 + 6Em/)' (A4)

Next, applying the covariant derivative V¥ to Eq. (A2)
and using the Bianchi identity V¥G,, = 0, we have

2vﬂ¢vﬂvv¢2 - ¢Ruﬂvﬂ¢2 + 12v#¢ (E/w - %Q”UE>

— 6pVH (EW - % g,wE> =0, (A5)

where Eq. (Al) was used. Substituting Eq. (A4) into
Eq. (AS) produces

2 <EW - % gWE> +¢ 'V, pE=0.  (A6)

At this point, we make use of an identity that holds for
any symmetric tensor S** = S* [1]:

1
V,8¢, =ho,(hs",) + ESaﬁayg"/’. (A7)

Identifying S#* with E* and using Eq. (3.14), we obtain

A 1 A

gp apElw - Eg /jaMEaﬁ = O, (Ag)
where we used the extended de Donder gauge condition
(3.5). Finally, when we calculate the lhs of Eq. (A8) using
the definition of E/w in Eq. (3.13), we can arrive at the

desired Eq. (3.18).

APPENDIX B: RESIDUAL SYMMETRY AND
CONFORMAL SYMMETRY

In this appendix we would like to explain that the
residual symmetries found in Eq. (8.5) in a curved
space-time reduce to a dilatational invariance and special
conformal invariance in a flat Minkowski space-time.

Before doing so, let us first recall that a conformal
transformation [15,16] can be defined as a general coor-
dinate transformation that can be undone by a Weyl
transformation when the space-time metric is the flat
Minkowski one. With this definition, the conformal trans-
formation is described by the equation

aﬂel/ =+ al/eﬂ = ZA(X)H/MH (Bl)
where A(x) is the infinitesimal transformation parameter of
the Weyl transformation, i.e., Q(x) = A% ~ 1 + A(x).

Taking the trace of Eq. (B1) enables us to determine

A(x),

1
A= Za/’el,. (B2)
Inserting this A into Eq. (B1) yields
1
aueu + allgﬂ = Eapepnuw (BS)

which is often called the “conformal Killing equation” in
the Minkowski space-time. It is worth stressing that
Eq. (B3) implies the following fact: the flat Minkowski
metric g, = 1, is invariant in the space of metric functions
under a suitable combination of the general coordinate
transformation and Weyl transformation in such a way that

5(e,) = Scer(ey) — By <A _ %a%,,) (B4)

when the vector field €,(x) obeys the conformal Killing
equation (B3). To put it differently, the characteristic
feature of the theory under consideration is that the
Lagrangian (3.1) possesses conformal symmetry with 15
global parameters, which is a subgroup of the general
coordinate transformation and Weyl transformation.
Multiplying it by 0#0”, we obtain
Loe, = 0. (B5)
Moreover, multiplying Eq. (B3) by 0”9, and then sym-
metrizing the indices A and v leads to the equation
0,0;0"¢, =0, (B6)
where we have used Eqs. (B3) and (B5). It turns out that a
general solution to Eq. (B6) reads
e = a' + 0"x, + X' + k'x? = 2x'k,x?,  (B7)
where a*, ®"¥ = —@**, 1, and k* are all constant parameters

that correspond to translation, Lorentz transformation, dila-
tation, and special conformal transformation, respectively.
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At this point, it is useful to verify what form the
infinitesimal parameter A generated by the “conformal
Killing vector” ¢ in Eq. (B7) takes. Actually, substituting
Eq. (B7) into Eq. (B2), we have

A= 21=2k,x". (B8)
This is nothing but the zero-mode solutions in Eq. (8.5).
This result implies that finding the residual symmetries
(8.5) amounts to solving the conformal Killing equation in
a flat Minkowski space-time.

To summarize, we have explicitly shown that in
our quantum gravity, Weyl symmetry—together with

general coordinate invariance—generates conformal sym-
metry in a flat Minkowski background. This result is a
quantum-mechanical generalization of the well-known
Zumino theorem [19] which insists that theories that
are invariant under both the general coordinate transfor-
mation and Weyl transformation (or local scale trans-
formation) possess conformal symmetry in ae flat
Minkowski background. Even if we used the Weyl-
invariant classical Lagrangian (3.1), we think that the result
obtained here would hold for any theories that are invariant
under the GCT and Weyl transformation if we adopt the
extended de Donder gauge and scalar gauge for these
invariances.
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