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Neveu-Schwarz-Ramond open superstring in the proper-time gauge:
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We study the Neveu-Schwarz-Ramond (NSR) open superstring theory in the proper-time gauge.
The string field action is obtained by evaluating the Polyakov string path integral. In this study, we focus
on the open-string free-field action, which corresponds to the string path integral on a strip. Depending on the
periodicity of the fermion fields, the open superstring has two sectors: The Neveu-Schwarz (NS) and Ramond
(R) sectors. We can impose the gauge conditions to fix the (super) reparametrization invariance on the two-
dimensional metric and its superpartner on the string world sheet to secure the covariance, in contrast to the
light cone gauge condition. Accordingly, the proper-time emerges in the NS sector and both proper-time and
its superpartner appear in the R-sector. Integration leads to free-string field actions in both sectors.

DOI: 10.1103/PhysRevD.105.126017

I. INTRODUCTION

Quantum field theory describes the dynamics of nature in
terms of the quantum fields of point particles. Since its
introduction by Dirac [1], it has been the language in which
one has attempted to understand fundamental forces.
Quantum field theory flourished as quantum electrody-
namics and quantum chromodynamics, which describes the
strong interaction, and electroweak theory in the 1970s,
which combines electromagnetism and weak interaction in
a unified scheme.

Currently, we are confronting a new challenge of
constructing quantum field theories of strings and replacing
point particles with strings as fundamental objects. For the
superstring, two approaches to construct quantum field
theory are available: the light cone field theory of the NSR
superstring [2-7] and Witten’s superstring field theory
based on the extended BRST symmetry [8]. Each approach
helps us to understand the superstring dynamics and
mechanism of the superstring field theory to a great extent;
however, both approaches have limitations. The light cone
superstring theory is not manifestly covariant and is
plagued with various divergences [9-13]. Witten’s super-
string field theory also suffers from divergence owing to the
midpoint contact interaction [14].

In this study, we propose a new covariant approach based
on the Polyakov string path integral [15]. Because the

*taejin @kangwon.ac.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2022/105(12)/126017(10)

126017-1

Polyakov string path integral is well defined and finite, we
expect that the divergence issues associated with the other
two approaches may be resolved using this approach.
When we evaluate the Polyakov string path integral on a
strip of string worksheet, we can obtain a covariant field
theoretical propagator if we impose the gauge condition to
fix the reparametrization invariance. This approach has
been applied to the bosonic string theory [16-22]. An
important advantage of this approach is that it is easy to
include higher interaction terms, and we can easily evaluate
three -and four-string interactions to confirm local gauge
invariance. The interacting NSR superstring in the proper-
time gauge may be free of the notorious picture changing
problem of conformal field theory formulation, if properly
developed. As I put as the subtitle of the paper, “Free Field
Theory,” this paper will serve as a preliminary to a work
[23] in this direction.

As a first step toward constructing a covariant interacting
superstring theory, in the present study, we will focus on the
free-field action of NSR superstrings. To obtain the free-
field action, we evaluate the Polyakov string path integral on
a strip with two spatial boundaries. By applying canonical
quantization, we determine that the Hamiltonian only
comprises constraints. To secure the covariance, we impose
the gauge condition on the world sheet metric and its
superpartner. Depending on the periodicity of the fermion
fields, the NSR superstring has two sectors: periodic in the
NS sector and antiperiodic in the Ramond sector. We
demonstrate that the NS sector has a bosonic modular
parameter that becomes the proper time, and the R-sector
has both bosonic modular and fermionic supermodular
parameters. After integrating both the modular and super-
modular parameters, we obtain a Dirac propagator in the
Ramond sector. In the NS sector, we obtain a Klein-Gordon
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type propagator,
(proper time).

integrating the modular parameter

II. CANONICAL QUANTIZATION
OF NSR SUPERSTRING

The reparametrization-invariant and local supersymmet-
ric actions for the NSR superstring are given by:

- / PEL,
pOXUOX, 0y, 1

L=vV-h{-= Ly F'F,
{ 2 aga 0w 2V Ge T2

1_ ,0x 1
Zy b Tt v Py 1
N A R T s Mp} (1)

An auxiliary field F* is introduced to render the local
supersymmetric algebra closed off-shell. The action is
invariant under the reparametrization given by

=0 OXF =0, XV, Syt ={0t,
5€aa = gﬂaﬂeaa + eﬂa aé’ﬁ7 5‘50: = é’ﬁaﬁ)(a +)(ﬁaagﬁ <2)

and local supersymmetric transformation given by

1
SXH = ieyt, Syt =" (aax” - Eﬂ?awﬂ) ©

Se," = €r"Yy, 8xq = 2iDe (3)

where the covariant derivative D, is defined by

Dae = aae - —0)(17/56, (4)
with the connection
1 1_
Wg = — E eaaeﬁyaﬂeybr]ab + 5)((13/57#)([}' (5)

In addition to the local supersymmetric transformation and
reparametrization, the action is laso-invariant under con-
formal transformation.

1
S5XH =0, oyt = —§€l//”,

1

=5Ha (6)

(3]10,/3 = 2

2¢ehyg, Oy

and the superconformal transformation

Xt =0, oy* =0, OShy=0, &=y (7)

At the critical dimensions, we set the conformal factor to
e? =1 and fix the superconformal invariance, setting

VYo = 0. (8)
To construct the Hamiltonian describing the dynamics of

the string, an extended one-dimensional object, we express
the metric &, in terms of the lapse and shift functions

haﬂ:i(—l N, )
Ny \N, (Ny)?—(Ny)?

Accordingly, zweibein e, is in terms of the lapse, and the
shift functions are expressed as
-N
g ) . (10)

1 /1
_\le<0 N,

Two orthogonal vectors on the world-sheet are given as

©)

(eq”)

(a de,,)

- (11)

The Hamiltonian can be obtained by taking the Legendre
transformation of the Lagrangian and defining the canoni-

cal conjugates (P*,T1*,{) to (X, Ny, A = _\/_N1)(1)

N
(=}
I

dL oL oL
Pﬂzi., Hazi., é’zi. (12)
oxX, N, oA

From the defining equations of the momenta, we obtain

Pt = (X"

— NoX") + 7y, (13)
N

and the first class primary constraints
I, =0, =0. (14)

With some algebra, we determine

H=PX,—L
N (P? + X?) + N,P*X], + A (PP P* + XW)NT iy
2 1z \/E 1 P
1 0
v gV (15)

Here, we adopt a simple two- dimensional y matrix algebra
y*r"y, = 0, the Fierz rearrangement

_ Il —_ ;
vaaws == pilwslve Ti=1Lyers. (16)
i

-1 .
We need to scale y — N, *y# to express the fermion in
canonical form:
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N . i
H= 71 (P? + X” + iy*yy)) + Ny <P”X;, -+ EWMW’/‘)
A
+ 75 (PP 4+ X"y, — 0,11 — ul (17)

where Lagrangian multipliers v, and u are introduced to
enforce the primary constraints. The primary constraints
IT, = 0 and ¢ = 0 lead to the secondary constraints given
as follows:

P24+ X7 4 zt//”y =0,
PrX), + 51//”1//” =0,

1
7 (Y’ P+ + X"y, =0. (18)

III. NSR OPEN SUPERSTRING

We may extend the domain of o, initially defined as [0, 7]
for the open superstring, to [—z, x|, such that the field

= l///I;_7 lJr = _l:n

{ -
+ ) H + -
n+t WnJr%’ /InJr' B /1—"——

With these conditions, we can write action S in the Ramond
sector as follows:

T . i . _ - _ = _
= / dTZ{PﬁX/m +§V//inl//;m +HnNn +§n’1n _NnLg
T; n

_ZnFn +Unﬁn+un5n}’ (22)

where in the Ramond sector

o : q L
NnZE(Nln‘FNZn)’ NO:N]O’ Hn:i(nln_l_l—hn)’
[My=I1,,, n#0,

ho=Ai 4, L=Ci+G, (23)

and in the Neveu-Schwarz sector

/er{P”X + ‘- ,u/,,,,+2+ N+l

11
—Nanf—/l,1+1Gn+1+1} I —I—un+1§n+1} (24)

variables for the open string and those for the closed
superstring are defined in the same domain. Furthermore,
for the open superstring, we impose the following folding
conditions on the dynamical variables:

X' (o) = X"(-0), Pt(o) = p*(—o),
Ni(o) = N(-0), Ny(0) = =N,(-0),
I (6) = 11,(-0), I (0) = —T (o),
y'* (o) =y (~o), ¥+ (o) = —¥(-o) (19)

The conditions are also read in terms of normal modes as
follows

X’;;:X/in, Pg:Pﬁm N] Nl—n? N%:_N%" (20)

and

for the Ramond sector,

for the Neuveu-Schwarz sector. (21)
[
with
_ 1 _
NnZE(N1n+N2n)7 N():Nloa
_ 1 _
ani(nln +H2n)’ HOZH]Ov n;é(),
j‘n-&-% /1’1+1 +/1n+l9 Zn-y% :C:+%+§;+%7 (25)

IV. COVARIANT PROPER-TIME GAUGE
CONDITION FOR THE NSR OPEN SUPERSTRING

A. Neveu-Schwarz Sector

In the Neveu-Schwarz sector, the secondary constraints
LR G, + form the super-Virasoro algebra with the central

charge

d
(L3S, LO°] = (n = m)L}2,, + o n(n® = 1)3(n + m),

8
n 1
[L%S7 Gm-‘r%} = (E —n- E) Gn-‘rm+%’
G G =2LNS C—Z 1)o 26
[ n+t> m——} nim T 2”(” + ) (l’l + m) ( )

The canonical generator that generates the reparametriza-
tion and local supersymmetric transformation is con-
structed to be in the NS sector.
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QNS(e’ a)) = énpin + en{LEIS - z(2n - j)Nj—nHj

(3 o 1= .
+1 =I5 Ajnti€jts

+ (‘.)n+%§n+% - wn+%{Gn+% + 2l./_lj—n—%ﬁj
i . o
_5(3n—]+1)Nj_,, j+%} (27)

To secure the Lorentz covariance, it is desirable to impose
gauge fixing conditions on the Lagrangian multipliers N,
and 4, e The Lagrangian multipliers transform the gauge

transformations by
5Nn =€, + i(”l - 2m)em](']n—m - 2iwm+'§’_1n—m—%’

3 . . 3 1
6/1n+% = —a)nJr% + l<n - El’l + 2> €mﬂ.”_m+%

—S(n=3m = 1)@, N, . (28)

We may choose the covariant gauge condition for the NSR
open superstring in the Neveu-Schwarz sector by

Nu(zo) = 0.

No=0.  Z,a=0. (29)

We can confirm that this proper-time gauge fixes the
gauge degrees of freedom associated with the reparamet-
rization and local supersymmetry completely and consis-
tently. Near the gauge-fixing hypersurface defined by
Eq. (29), the infinitesimal gauge transformation that
restores the gauge-fixing condition along the gauge orbits
is determined by

é, —ine,i + N, = 0, n#0, €0+ Ny =0,

. 1 .
1 (" * E) Oyt = Ay =0 (30)

where 7 denotes constant N, in the covariant gauge. This
linear differential equation for €, and @, 1 has a unique

solution:

- T -
€)= e’”’”{—/ e”"T N, dt' + cn}, n#0,

u— Tr —_— - T _
eo(7) = {T TT’)/j—f—T—TTf)/ }Nodr’, T=t—1;

Wy = e(n+%)m-{/7 e_i(n+%)h7/zn+%d71 + dn+%} (31)

where

P Tf o=
cp= (1 _ e—2mnT)—l {/ e—innt Nnd,z./
T

i

- T,
+ €—21m11f / elnie N_nd’t/}
T

d,, = (1 — e 2nhar)-1
2

. _ Tf . _ =
X {e—Zz(nJr%)nrf / , el(n+%>n7/l_n_%d1/
T

i

_ /Tf e—i(n+%)r‘zr’/‘1n+%d,[/}. (32)

B. Ramond sector

In the Ramond sector, the constraint operators form a
super-Virasoro algebra given by

d
(L3 L] = (n = m) L + g nd(n+m),
[Lﬁ, Fm] = <Z - m> Fn+mv
d
[Fo, Fp] = 2L§+m + 5”25(’1 + m). (33)

The canonical generator of symmetric transformation is
obtained in the Ramond sector as

Qr(e,w) = ¢,I1, + en{L,’f —i(2n — j)N;_,I1;

+ i<32”— i>zj_n5j}

+ d)nzn - a)n{Fn + 2izj—nl:[j

+ i@”—é)ﬂ/j_nzj}. (34)

We observe that the Lagrangian multipliers, N, and 1,
transform under the representation and local supersym-
metric transformation by

SN, = é, +i(n—2m)e,N,_, — 2i0, A,
_ 3 _ ] _
A, = —w, +i|n- o Emnm — L (n=3m)w,N,_,.
2 2
(35)

We choose the covariant gauge condition in the Ramond
sector by
N 0— 0,

N, =0, n#0. (36)
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The covariant gauge condition in Eq. (36) properly fixes
gauge symmetry, we examine the equation for infinitesimal
gauge parameters that restore the gauge-fixing condition
along the gauge orbits near gauge fixing hypersurface by

€, —ine,n —2iw,v+ N, =

. n., . _
w, +<ie,v—inw,n — A, =

0’
0’
2

é() - 2id)()U -+ N() = 0,

d)o - /_10 = 0,
where n # 0,71, and v denote N, and 1, respectively. The
existence of a unique solution to Eqgs. (37) ensures that the
chosen covariant gauge condition is complete and consis-

tent. With some algebra, we explicitly determine a unique
solution:

en(r)—ei’”—”{—/ e‘i"'_‘f/(N,,—2ia)nl/)d7’—|—cn},
—a) o =) (o
eo(r):{—/ + : / }(NO—leou)dT,
T )T,
. t (- n,
a)n(r):e’”’”{/ e~nne (/1,,—21(:‘”1/> dr’+d"}

wO(T):{(TiY_, ) / f"+(TfT_ 2 / f}/_lodr’, n#0. (37)

where

ey = (1= [ i (5, i)

- L .
+ e—Ztnnrf/ einit (Nn _ 2160_"1/)(1’[/}
T
—2ininT\-1 —2innt s init | 7 n. /
d,=(1-e )e ! e ﬂ_n—l—ile_nv dr
Ti

- /Tf e~innt' (/_ln —gia)nu> dr’} (38)

In contrast to the Neveu-Schwarz sector, we cannot
gauge away the fermionic zero mode of the Lagrangian
multipliers 4, completely. This leads to the main difference
between the two sectors is that in the Ramond sector,
modular and supermodular parameters exist, while only
modular parameters exist in the Neveu-Schwarz sector.

V. THE OFF-SHELL PROPAGATOR FOR THE
NSR OPEN SUPERSTRING

In this section, we apply BRST quantization to the NSR
open superstring. The path integral adopted to represent the
off-shell propagator is evaluated explicitly.

A. Neveu-Schwarz sector

First, we construct the BRST generator Qyg with the
given structure constants in Eq. (26), introducing the
fermionic ghost variables 7, 7,, £,, and the bosonic ghost

variables S, s ﬂn+%, Yntd

QNS = nnLlr:IS + ﬁnﬁn +ﬁn+%Gn+% +Bn+%5n+%

1
- 5 (I’l - m)”]nnmfn—&-mv

n 1
+ <5 —m-— 5) 77nﬂm+%}'n+m+% _ﬂn%ﬂm—%fwm’ (39)

(the BRST ghost variables 7, and &, may be identified in
terms of the usual bc ghost variables as 7, = c_,, and
£, = b,

Second, the BRST invariant effective action is con-
structed as

7 . i X - = - =
S = / | df{P"X,m W Wty T ILNy 4 Gy
=+ ié:ni]n + ién?]w +iyn+%ﬁn+% + l?n-&-%/_}n—&-%

- i0us.a1}. (40)

Here we choose A by
A= é:nN” + ﬁn)(n - yn+%j“n+% - }_,n+%fn+%’ (41)
with

1

To=-Noo (0£0). 10=0. fry=—l,y (“2)

1
a

to produce covariant gauge conditions at limit a — 0.
Scaling of dynamic variables

(T1,,7,) = a(T0,,7,),n #0,

(szr%’ :Bnq%) - a(zn+%’ﬁn+%> 5 (43)

we find, @ — 0 in the limit,
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S = / fdr{Z(PﬁX + l//”n_u/fﬂn+l+l§mn +Wn+lﬂn+'> +Z< NaLi® =

i n

n.m

— - = _ ! =
- Z <€;1+%/1n+% + l/}n+%7n+%> ’ _Z (HnNn

n

We integrate the conjugates of Lagrangian multipliers IT,,
and £, s and obtain the action parametrized by modular

parameter 7. Ghost variables (7,.&,), n#0, and
B, 12 ntd ) can be trivially integrated. By further integrat-

ing over the ghost zero modes (17y.&,) and (7. &), we
obtain the factor

Det]d?] =T. (45)

Finally, we obtain the resultant action as

T
S_/ dr{Z(P’,ﬁX +2y/ n__l,z/ﬂ”+ +l}/”+1ﬂn+_>
T; n
NV -
+iY &ty
n

—ii (Lév S+ zn: (nnnén - <n + %) ﬂw%%) > } (46)

That is the off-shell propagator for the Neveu-Schwarz
sector

GNS /di’l/ XP

We observe that the path integral in Eq. (47), represent-
ing the off-shell propagator, is a typical path integral
representation for the transition matrix element with
Hamiltonian H:

[D[n. €ID[B.v]e™.  (47)

/_1n+_G”+2>

n 1\ - n 1 - -
- Z( n-— 77)1 m§n+m: + <5 —m-= E) Nnﬁm+%yn+m+% + (5 —m-= E) nn’?'m+%yn+nz+% + 2ﬁn+%lm—%§n+m>

— ifjy&,) + ToNo + i — ifo’_?o} (44)
|
H=L§® + Ly,
1 1
NS _ 2 2y2 H
LO - 5;(})71 +n Xn) + ; (I’l + E) ( ,,__l//pn-‘rZ)

1
Ly = Z (”’7"5" - (” + §>ﬂn+z7’n+2> (48)

n

Defining proper time s = T7n, we obtain the off-shell
propagator in the NS sector as follows:

GNS:/) dS<Xfwl//fw77f,ﬁf|
xexp{,=s(Ly> + L) X wini. i)

i’l//ivrli’ﬂi> (49)

1
=X 5 ) 5 TNS . 7 NS -
Krvrn Pl pes s

B. Ramond sector

We can construct the BRST generator Qp for the
Ramond sector using the structural constants given in
Eq. (33). Similarly,

1
QR - nnL + 77}1 +ﬂnF +ﬂn§n ( - m)’?nﬂmf;z+m

=+ (g - m) 7]11ﬁm7/n+m - ﬂnﬁm":n-&-m (50)

The BRST invariant action may be written as

§= / ' dT{Z<PI:1Xﬂn + El//linl//;m + lfn”n + l}/nﬂn) + HONO + CO/‘LO
7

i n

+ iEO;IO + i}_/OBO - Z(an‘ﬁ + ann) + Z <(l’l - m)Nn’//mgn-&-m

n

n _ my - 3
- <§ - m> NnﬂmYner + (I’l - 5) ﬂnr/myner + 2lnﬂm‘§ﬂ+m)

- Z/(I:In]vn - ann - ii]nén - iﬁn?n)}v (51)

We integrate 7, and ¢,,, and as a result, obtain the action parametrized by the modular and supermodular parameters in the

covariant gauge
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/ didve’. (52)

Integrations over the ghost variables (7,,&,) n#0
and (f,,7,), n # 0 are trivial. We perform further integra-
tions over the ghost zero modes (1. &), (Bo70)» (0. o)
and (fy,7) which do not induce a nontrivial factor in
the measure, however, in contrast to the Neveu-Schwarz
sector.

Furthermore, we reach the point where the off-shell
propagator for the Ramond sector is explicitly evaluated.

L7 . i .
S = / d‘L’{Z <P’,;x,m + Ew’inwﬂn>

n

+ 0D (Ena + 1)
—n (Lg + Z/n(”ngn - ﬁrﬂ/n))
_U<FO_Z,<g’1n7n+2ﬁn§n)>}7 (53)

after ghost zero modes were integrated. The precise
definition of the path integral representation of the off-
shell propagator in the Ramond sector is as follows:

GR(Xf,l//f s ﬂf;Xhl//iv’]ivﬂi)

/dndu/ [X, P]D

Defining the proper time s = T7 and its supersymmetric
counterpart ¢ = Tv, we rewrite the path integral as

D[, EID[p.71e™.  (54)

GR(Xf l//f,’/lf ﬂf9Xl7l/]tvrll7ﬂl)
/ ds/dQ Xrow g, Brlexp{— lS(LR+th)

—io(Fo + F ) Y X wisnis i) (55)

We define

1
L =5 (PR 208 + 53 s~y
n

n>0

Lgh = Z/ (nn'fn _ﬁnyn>’

FO—Z P¢:+mX” Wﬂ"JFZ\/_
n>0 n>0

th = ZI (gnnYn _zﬂn§n> . (56)

n

(Ph = inXp)Wy(—n)»

Observing that
LY + Lgh, Fo+ Fgn] =0, (57)
and
(Fo+ th) =LE+ Lgh, (58)

we can simply perform integration over the modular and
supermodular parameters

GR(Xf’ l//f, 71/7 ﬂf’ Xi5 YisNi, ﬁl)

Fy+ F
0 qh. |Xi7Wi,’7ivﬁi>

= X7 b b —
(Xpowypng ﬁf|L§+L§h—le

|Xi7‘//ia’7i’ﬂi>' (59)

1
:<X,I,U,I’],/}|7
¥ Pl

VI. FREE FIELD ACTION FOR THE NSR
OPEN SUPERSTRING

The expressions of the propagators obtained in the
previous sections reveal the structure of the free-field
actions for the NSR open superstring. The free-field action
is constructed such that the off-shell propagators can be
deduced in terms of the action through the quantum
field theoretical expression. The free-string field action is
given by:

S= [ DXy ps®(L + L = i)+

/bWM%MNWMTmY (60)

We discuss the structure of action S in detail. We may
define the “creation” and “annihilation” operators

=t =g =
S =v-jp Si=h (61)

where j can appropriately be a positive integer or half-
integer. They satisfy the commutation relations of harmonic
oscillators or anticommutation relations of Grassman har-
monic oscillators:

[V/i"l//jy} 77’”'511, [rl’ rT] 511’ [S,,S ] 51’] (62)

The structure of field action becomes transparent in
terms of creation and annihilation operators. In the Neveu-
Schwarz sector, the kinetic operator is given as
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d
LNS — p2 NNS _
0o =P+ 16
) d
=p +Zna #n+z n+ n+%w/4"+%_1_6'
n>0 n>0
1
NS _ a/NS
Lgh — Ngh +§
- Z Z Ny @i
n>0 i=
+ Z(n + ) ( FotTaiy 8 +,sH_) (63)
n>0

where ai,hn, aéhn may be written in terms of the usual bc
ghost variables as

bo 1 h _inc Teh ine
bzz(a) :E_FEZ(aflgne _Iazi e"?), (64a)
n=1
bO 1 gh inc - tgh _inc
bZ?(d) :?—'_E (alne lay, e )’ (64b)
n=1
Z o 1 feh ine gh —ma
¢ (0-) = 3 + E (aln + laZn )’ (64C)
n=1
. 1
CZ(O-) :%+ Z(a‘gh —lﬂ0+lagh mo’) (64(1)
n=1
They satisfy
[afto. @]y = Sum". (65)
|
Z(V/H l//;m +rnrn —I-Sn )
F =

by

In the Ramond sector,

FO-P;:‘/’S"’Z\/_ dn l//;m—’_aﬁw#‘m)’

n>0

——Z< ghn—|—aghnsn)—|—2(rn Aggyn + S aghn)>. (66)

n>0
Because yy, satisfies the Clifford algebra

o vl = 1, (67)

we may represent them by ten dimensional G matrices

yh =T, (68)

We can define a mass operator M to make the structure of
the action in the Ramond sector more apparent.

M= 3 Vi @+ i)

n>0

Zn ajl”A;m + l//n l///m) - NR

n>0

1 2
M2y = Y nlalfaly + i + i+ i) = VS

n>0

Mgh - th,

(69)

Thus, the excited state of the superstring in the Neveu-
Schwarz sector describes a particle with a mass given by the
eigenvalues of mass operators m> = N™5 + N> —1/2 at
the critical dimensions d = 10. The ground state of the
superstring in the Neveu-Schwarz sector is tachyonic. This
tachyonic ground state is removed by the GSO (Gliozzi-
Scherk-Olive) projection operator [24]. However, a Dirac-
type particle that has a mass m, m* = N® + N¥ can
realize an excited state of the superstring in the Ramond
sector. The ground state in the Ramond sector has ten-
dimensional spinor index with Egy5q = 0.

The GSO-projected free-field action is defined in terms
of the total fermion number, F, which is BRST invariant.

Ramond sector

Z( ,HJW/erI + rn+]r at st ntSnth 1), Neveu-Schwarz sector

1 1
S:E/[X,y/,n,[}]l\,sd)(l—(—I)F) <—aﬂaﬂ+NNS+N1yV,f—§>q>,

—l—%/[X,z//,n,ﬁ]R‘P(l—l-F“( DFY(0,I*+M+M,,)Y. (70)
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VII. CONCLUSIONS AND DISCUSSIONS

We studied the Polyakov string path integral of an NSR
open superstring on a strip. The evaluation of the path
integral was performed in a manifestly covariant manner.
This was achieved by choosing the covariant gauge con-
ditions that were imposed on the metric and its super-
symmetric counterpart (gravitino) on the strip. The NSR
open superstring had two sectors, depending on the
periodicity of the fermion field: the NS sector with a
periodic condition and the Ramond sector with an anti-
periodic sector. In the proper time gauge, the NS sector had
modular (proper-time) parameter, and the R-sector had
both modular and supermodular parameters. Integration of
modular and supermodular parameters yielded string
propagators in both sectors. We demonstrated that the path
integrals represent field-theoretical off-shell string propa-
gators, which may be obtained from string free-field actions
[25-28]. Hence, this study revealed the connection between
geometric and algebraic approaches.

This study can be extended in various directions. The
immediate extension may be to evaluate the Polyakov
string-path integrals of the NSR super string over the
Riemann surface, describing three and four interacting
strings. Accordingly, we will obtain full string vertex
operators, just as in the case of bosonic string theory.
The (super)string theory in the proper-time gauge is
deformable to Witten’s (super)string. However, in the
proper-time gauge, it is easy to deal with string interactions
of an arbitrary number of strings because the Riemann
surfaces in the proper time gauges are free of conical
singularity, which is the main obstacle in evaluating
the scattering amplitudes of higher string interactions. In
the presence of conical singularity, it is difficult to prove the
local (non-Abelian) gauge invariance of scattering ampli-
tudes on multiple D p-branes. It is also unclear whether the

extended BRST impedance is violated by higher-order
string interactions. As in the case of bosonic string theory,
we expect that the scattering amplitudes of the NSR
superstring with three and four strings can be calculated
in the proper-time gauge without difficulty.

It is important to derive conventional QFT from corre-
sponding superstring accurately. Otherwise, it may be
difficult to systematically calculate the stringy corrections.
However, the fermionic action is introduced by hand to
compatible with the spectrum of the free superstring. In the
case of the interacting theory, things get even worse if we
employ the (super)conformal field theory. Unlike the
theory in the proper-time gauge, the conventional NSR
superstring, based on the conformal field theory possesses
zero modes. Because the conformal field theory for the
NSR superstring is defined on a sphere in contrast to the
theory in the proper-time gauge, which is defined on a
cylindrical surface. To deal with these zero modes, we need
to insert some (picture changing) operators at the midpoint
of the string. Yet this midpoint insertion is difficult to be
defined properly. In contrast to the conventional approach,
in the proper-time gauge approach the interacting NSR
superstring, which is free of this problem, may be derived
from the Polyakov string path integral consistently. This
work is important as a preliminary work along this
direction.

ACKNOWLEDGMENTS

T.L. was supported by the National Research
Foundation of Korea (NRF) grant, funded by the Korean
government (MSIT) (No. 2021R1F1A106299311). Part of
this study was conducted during the author’s visit to the
APCTP (Korea, Pohang). This study has been performed
also with the support of a research grant of Kangwon
National Universtiy (2019).

[1] P. A. M. Dirac, The quantum theory of the electron, Proc. R.
Soc. A 117, 610 (1928).

[2] S. Mandelstam, Interacting-string picture of the Neveu-
Schwarz-Ramond model, Nucl. Phys. B69, 77 (1974).

[3] M.B. Green and J. H. Schwarz, Superstring interactions,
Nucl. Phys. B218, 43 (1983).

[4] M. B. Green, J. H. Schwarz, and L. Brink, Superfield theory
of type (II) superstrings, Nucl. Phys. B219, 437 (1983).

[5] S. Mandelstam, Interacting-string picture of the fermionic
string, Prog. Theor. Phys. Suppl. 86, 163 (1986).

[6] D.J. Gross and V. Periwal, Heterotic string light-cone field
theory, Nucl. Phys. B287, 1 (1987).

[7] S.-J. Sin, Geometry of super lightcone diagrams and Lorentz
invariance of lightcone string field theory (II): Closed
Neveu-Schwarz string, Nucl. Phys. B313, 165 (1989).

[8] E. Witten, Interacting field theory of open superstrings,
Nucl. Phys. B276, 291 (1986).

[9] J. Greensite and F.R. Klinkhamer, New interactions for
superstrings, Nucl. Phys. B281, 269 (1987).

[10] J. Greensite and F. R. Klinkhamer, Contact interactions in
closed superstring field theory, Nucl. Phys. B291, 557
(1987).

[11] J. Greensite and F.R. Klinkhamer, Superstring ampli-
tudes and contact interactions, Nucl. Phys. B304, 108
(1988).

[12] M. B. Green and N. Seiberg, Contact interactions in super-
string theory, Nucl. Phys. B299, 559 (1988).

[13] N. Ishibashi, Light-cone gauge superstring field theory in a
linear dilaton background, Prog. Theor. Exp. Phys. 2017,
033B01 (2017).

126017-9


https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1016/0550-3213(74)90127-8
https://doi.org/10.1016/0550-3213(83)90475-3
https://doi.org/10.1016/0550-3213(83)90651-X
https://doi.org/10.1143/PTPS.86.163
https://doi.org/10.1016/0550-3213(87)90095-2
https://doi.org/10.1016/0550-3213(89)90517-8
https://doi.org/10.1016/0550-3213(86)90298-1
https://doi.org/10.1016/0550-3213(87)90256-2
https://doi.org/10.1016/0550-3213(87)90485-8
https://doi.org/10.1016/0550-3213(87)90485-8
https://doi.org/10.1016/0550-3213(88)90622-0
https://doi.org/10.1016/0550-3213(88)90622-0
https://doi.org/10.1016/0550-3213(88)90549-4
https://doi.org/10.1093/ptep/ptx012
https://doi.org/10.1093/ptep/ptx012

TAEJIN LEE

PHYS. REV. D 105, 126017 (2022)

[14] C. Wendt, Scattering amplitude and contact interactions in
Witten’s superstring field theory, Nucl. Phys. B314, 209
(1989).

[15] A.M. Polyakov, Quantum geometry of bosonic strings,
Phys. Lett. 103B, 207 (1981).

[16] T. Lee, Bosonic string theory in covariant gauge, Ann. Phys.
(N.Y.) 183, 191 (1988).

[17] T. Lee, Covariant open bosonic string field theory on
multiple D-branes in the proper-time gauge, J. Korean
Phys. Soc. 71, 886 (2017).

[18] T. Lee, Deformation of the cubic open string field theory,
Phys. Lett. B 768, 248 (2017).

[19] T. Lee, Covariant open string field theory on multiple
Dp-branes, Chin. Phys. C 42, 113105 (2018).

[20] T. Lee, Gravitational scattering amplitudes and closed string
field theory in the proper-time gauge, EPJ Web Conf. 168,
07004 (2018).

[21] S.H. Lai, J. C. Lee, Y. Yang, and T. Lee, String scattering
amplitudes and deformed cubic string field theory, Phys.
Lett. B 776, 150 (2018).

[22] T. Lee, Four-gauge-particle scattering amplitudes and Poly-
akov string path integral in the proper-time gauge, Phys.
Lett. B 796, 196 (2019).

[23] T. Lee, NSR open superstring in the proper-time gauge:
Interacting string field theory (to be published).

[24] F. Gliozzi, J. Scherk, and D.I. Olive, Supersymmetry,
supergravity theories and the dual spinor model, Nucl.
Phys. B122, 253 (1977).

[25] H. Terao and S. Uhehara, Covariant second quantization of
free superstring, Phys. Lett. 168B, 71 (1986).

[26] N. Ohta, Covariant Second Quantization of Superstrings,
Phys. Rev. Lett. 56, 440 (1986).

[27] S.P. de Alwis, N. Ohta, K. Itoh, T. Kugo, H. Kunitomo,
and H. Ooguri, Gauge invariant local action of string
field from BRS formalism, Prog. Theor. Phys. 75, 162
(1986).

[28] G.D. Date, M. Giinaydin, M. Perici, K. Pilch, and P.
Van Nieuwenhuizen, A minimal covariant action for the
free open spinning string field theory, Phys. Lett. B 171, 182
(1986).

126017-10


https://doi.org/10.1016/0550-3213(89)90118-1
https://doi.org/10.1016/0550-3213(89)90118-1
https://doi.org/10.1016/0370-2693(81)90743-7
https://doi.org/10.1016/0003-4916(88)90232-1
https://doi.org/10.1016/0003-4916(88)90232-1
https://doi.org/10.3938/jkps.71.886
https://doi.org/10.3938/jkps.71.886
https://doi.org/10.1016/j.physletb.2017.02.065
https://doi.org/10.1088/1674-1137/42/11/113105
https://doi.org/10.1051/epjconf/201816807004
https://doi.org/10.1051/epjconf/201816807004
https://doi.org/10.1016/j.physletb.2017.11.038
https://doi.org/10.1016/j.physletb.2017.11.038
https://doi.org/10.1016/j.physletb.2019.06.068
https://doi.org/10.1016/j.physletb.2019.06.068
https://doi.org/10.1016/0550-3213(77)90206-1
https://doi.org/10.1016/0550-3213(77)90206-1
https://doi.org/10.1016/0370-2693(86)91462-0
https://doi.org/10.1103/PhysRevLett.56.440
https://doi.org/10.1143/PTP.75.162
https://doi.org/10.1143/PTP.75.162
https://doi.org/10.1016/0370-2693(86)91528-5
https://doi.org/10.1016/0370-2693(86)91528-5

